linux/drivers/iio/adc/ad_sigma_delta.c
David Lechner 66d4374d97 iio: adc: ad_sigma_delta: change to buffer predisable
Change the buffer disable callback from postdisable to predisable.
This balances the existing posteanble callback. Using postdisable
with posteanble can be problematic, for example, if update_scan_mode
fails, it would call postdisable without ever having called posteanble,
so the drivers using this would be in an unexpected state when
postdisable was called.

Fixes: af3008485e ("iio:adc: Add common code for ADI Sigma Delta devices")
Signed-off-by: David Lechner <dlechner@baylibre.com>
Reviewed-by: Nuno Sá <nuno.sa@analog.com>
Link: https://patch.msgid.link/20250703-iio-adc-ad_sigma_delta-buffer-predisable-v1-1-f2ab85138f1f@baylibre.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-07-16 08:47:12 +01:00

919 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Support code for Analog Devices Sigma-Delta ADCs
*
* Copyright 2012 Analog Devices Inc.
* Author: Lars-Peter Clausen <lars@metafoo.de>
*/
#include <linux/align.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/find.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/spi/offload/consumer.h>
#include <linux/spi/spi.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/unaligned.h>
#include <linux/iio/adc/ad_sigma_delta.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#define AD_SD_COMM_CHAN_MASK 0x3
#define AD_SD_REG_COMM 0x00
#define AD_SD_REG_STATUS 0x00
#define AD_SD_REG_DATA 0x03
#define AD_SD_REG_STATUS_RDY 0x80
/**
* ad_sd_set_comm() - Set communications register
*
* @sigma_delta: The sigma delta device
* @comm: New value for the communications register
*/
void ad_sd_set_comm(struct ad_sigma_delta *sigma_delta, u8 comm)
{
/* Some variants use the lower two bits of the communications register
* to select the channel */
sigma_delta->comm = comm & AD_SD_COMM_CHAN_MASK;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_set_comm, "IIO_AD_SIGMA_DELTA");
/**
* ad_sd_write_reg() - Write a register
*
* @sigma_delta: The sigma delta device
* @reg: Address of the register
* @size: Size of the register (0-3)
* @val: Value to write to the register
*
* Returns 0 on success, an error code otherwise.
**/
int ad_sd_write_reg(struct ad_sigma_delta *sigma_delta, unsigned int reg,
unsigned int size, unsigned int val)
{
u8 *data = sigma_delta->tx_buf;
struct spi_transfer t = {
.tx_buf = data,
.len = size + 1,
.cs_change = sigma_delta->keep_cs_asserted,
};
struct spi_message m;
int ret;
data[0] = (reg << sigma_delta->info->addr_shift) | sigma_delta->comm;
switch (size) {
case 3:
put_unaligned_be24(val, &data[1]);
break;
case 2:
put_unaligned_be16(val, &data[1]);
break;
case 1:
data[1] = val;
break;
case 0:
break;
default:
return -EINVAL;
}
spi_message_init(&m);
spi_message_add_tail(&t, &m);
if (sigma_delta->bus_locked)
ret = spi_sync_locked(sigma_delta->spi, &m);
else
ret = spi_sync(sigma_delta->spi, &m);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_write_reg, "IIO_AD_SIGMA_DELTA");
static void ad_sd_set_read_reg_addr(struct ad_sigma_delta *sigma_delta, u8 reg,
u8 *data)
{
data[0] = reg << sigma_delta->info->addr_shift;
data[0] |= sigma_delta->info->read_mask;
data[0] |= sigma_delta->comm;
}
static int ad_sd_read_reg_raw(struct ad_sigma_delta *sigma_delta,
unsigned int reg, unsigned int size, u8 *val)
{
u8 *data = sigma_delta->tx_buf;
int ret;
struct spi_transfer t[] = {
{
.tx_buf = data,
.len = 1,
}, {
.rx_buf = val,
.len = size,
.cs_change = sigma_delta->keep_cs_asserted,
},
};
struct spi_message m;
spi_message_init(&m);
if (sigma_delta->info->has_registers) {
ad_sd_set_read_reg_addr(sigma_delta, reg, data);
spi_message_add_tail(&t[0], &m);
}
spi_message_add_tail(&t[1], &m);
if (sigma_delta->bus_locked)
ret = spi_sync_locked(sigma_delta->spi, &m);
else
ret = spi_sync(sigma_delta->spi, &m);
return ret;
}
/**
* ad_sd_read_reg() - Read a register
*
* @sigma_delta: The sigma delta device
* @reg: Address of the register
* @size: Size of the register (1-4)
* @val: Read value
*
* Returns 0 on success, an error code otherwise.
**/
int ad_sd_read_reg(struct ad_sigma_delta *sigma_delta,
unsigned int reg, unsigned int size, unsigned int *val)
{
int ret;
ret = ad_sd_read_reg_raw(sigma_delta, reg, size, sigma_delta->rx_buf);
if (ret < 0)
goto out;
switch (size) {
case 4:
*val = get_unaligned_be32(sigma_delta->rx_buf);
break;
case 3:
*val = get_unaligned_be24(sigma_delta->rx_buf);
break;
case 2:
*val = get_unaligned_be16(sigma_delta->rx_buf);
break;
case 1:
*val = sigma_delta->rx_buf[0];
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_read_reg, "IIO_AD_SIGMA_DELTA");
/**
* ad_sd_reset() - Reset the serial interface
*
* @sigma_delta: The sigma delta device
*
* Returns 0 on success, an error code otherwise.
**/
int ad_sd_reset(struct ad_sigma_delta *sigma_delta)
{
unsigned int reset_length = sigma_delta->info->num_resetclks;
unsigned int size;
u8 *buf;
int ret;
size = BITS_TO_BYTES(reset_length);
buf = kcalloc(size, sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
memset(buf, 0xff, size);
ret = spi_write(sigma_delta->spi, buf, size);
kfree(buf);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_reset, "IIO_AD_SIGMA_DELTA");
static bool ad_sd_disable_irq(struct ad_sigma_delta *sigma_delta)
{
guard(spinlock_irqsave)(&sigma_delta->irq_lock);
/* It's already off, return false to indicate nothing was changed */
if (sigma_delta->irq_dis)
return false;
sigma_delta->irq_dis = true;
disable_irq_nosync(sigma_delta->irq_line);
return true;
}
static void ad_sd_enable_irq(struct ad_sigma_delta *sigma_delta)
{
guard(spinlock_irqsave)(&sigma_delta->irq_lock);
sigma_delta->irq_dis = false;
enable_irq(sigma_delta->irq_line);
}
#define AD_SD_CLEAR_DATA_BUFLEN 9
/* Called with `sigma_delta->bus_locked == true` only. */
static int ad_sigma_delta_clear_pending_event(struct ad_sigma_delta *sigma_delta)
{
bool pending_event;
unsigned int data_read_len = BITS_TO_BYTES(sigma_delta->info->num_resetclks);
u8 *data;
struct spi_transfer t[] = {
{
.len = 1,
}, {
.len = data_read_len,
}
};
struct spi_message m;
int ret;
/*
* Read R̅D̅Y̅ pin (if possible) or status register to check if there is an
* old event.
*/
if (sigma_delta->rdy_gpiod) {
pending_event = gpiod_get_value(sigma_delta->rdy_gpiod);
} else {
unsigned int status_reg;
ret = ad_sd_read_reg(sigma_delta, AD_SD_REG_STATUS, 1, &status_reg);
if (ret)
return ret;
pending_event = !(status_reg & AD_SD_REG_STATUS_RDY);
}
if (!pending_event)
return 0;
/*
* In general the size of the data register is unknown. It varies from
* device to device, might be one byte longer if CONTROL.DATA_STATUS is
* set and even varies on some devices depending on which input is
* selected. So send one byte to start reading the data register and
* then just clock for some bytes with DIN (aka MOSI) high to not
* confuse the register access state machine after the data register was
* completely read. Note however that the sequence length must be
* shorter than the reset procedure.
*/
data = kzalloc(data_read_len + 1, GFP_KERNEL);
if (!data)
return -ENOMEM;
spi_message_init(&m);
if (sigma_delta->info->has_registers) {
unsigned int data_reg = sigma_delta->info->data_reg ?: AD_SD_REG_DATA;
ad_sd_set_read_reg_addr(sigma_delta, data_reg, data);
t[0].tx_buf = data;
spi_message_add_tail(&t[0], &m);
}
/*
* The first transferred byte is part of the real data register,
* so this doesn't need to be 0xff. In the remaining
* `data_read_len - 1` bytes are less than $num_resetclks ones.
*/
t[1].tx_buf = data + 1;
data[1] = 0x00;
memset(data + 2, 0xff, data_read_len - 1);
spi_message_add_tail(&t[1], &m);
ret = spi_sync_locked(sigma_delta->spi, &m);
kfree(data);
return ret;
}
int ad_sd_calibrate(struct ad_sigma_delta *sigma_delta,
unsigned int mode, unsigned int channel)
{
int ret;
unsigned long time_left;
ret = ad_sigma_delta_set_channel(sigma_delta, channel);
if (ret)
return ret;
spi_bus_lock(sigma_delta->spi->controller);
sigma_delta->bus_locked = true;
sigma_delta->keep_cs_asserted = true;
reinit_completion(&sigma_delta->completion);
ret = ad_sigma_delta_clear_pending_event(sigma_delta);
if (ret)
goto out;
ret = ad_sigma_delta_set_mode(sigma_delta, mode);
if (ret < 0)
goto out;
ad_sd_enable_irq(sigma_delta);
time_left = wait_for_completion_timeout(&sigma_delta->completion, 2 * HZ);
if (time_left == 0) {
ad_sd_disable_irq(sigma_delta);
ret = -EIO;
} else {
ret = 0;
}
out:
sigma_delta->keep_cs_asserted = false;
ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE);
ad_sigma_delta_disable_one(sigma_delta, channel);
sigma_delta->bus_locked = false;
spi_bus_unlock(sigma_delta->spi->controller);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_calibrate, "IIO_AD_SIGMA_DELTA");
/**
* ad_sd_calibrate_all() - Performs channel calibration
* @sigma_delta: The sigma delta device
* @cb: Array of channels and calibration type to perform
* @n: Number of items in cb
*
* Returns 0 on success, an error code otherwise.
**/
int ad_sd_calibrate_all(struct ad_sigma_delta *sigma_delta,
const struct ad_sd_calib_data *cb, unsigned int n)
{
unsigned int i;
int ret;
for (i = 0; i < n; i++) {
ret = ad_sd_calibrate(sigma_delta, cb[i].mode, cb[i].channel);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_calibrate_all, "IIO_AD_SIGMA_DELTA");
/**
* ad_sigma_delta_single_conversion() - Performs a single data conversion
* @indio_dev: The IIO device
* @chan: The conversion is done for this channel
* @val: Pointer to the location where to store the read value
*
* Returns: 0 on success, an error value otherwise.
*/
int ad_sigma_delta_single_conversion(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
unsigned int sample, raw_sample;
unsigned int data_reg;
int ret = 0;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad_sigma_delta_set_channel(sigma_delta, chan->address);
if (ret)
goto out_release;
spi_bus_lock(sigma_delta->spi->controller);
sigma_delta->bus_locked = true;
sigma_delta->keep_cs_asserted = true;
reinit_completion(&sigma_delta->completion);
ret = ad_sigma_delta_clear_pending_event(sigma_delta);
if (ret)
goto out_unlock;
ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_SINGLE);
ad_sd_enable_irq(sigma_delta);
ret = wait_for_completion_interruptible_timeout(
&sigma_delta->completion, HZ);
if (ret == 0)
ret = -EIO;
if (ret < 0)
goto out;
if (sigma_delta->info->data_reg != 0)
data_reg = sigma_delta->info->data_reg;
else
data_reg = AD_SD_REG_DATA;
ret = ad_sd_read_reg(sigma_delta, data_reg,
BITS_TO_BYTES(chan->scan_type.realbits + chan->scan_type.shift),
&raw_sample);
out:
ad_sd_disable_irq(sigma_delta);
ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE);
ad_sigma_delta_disable_one(sigma_delta, chan->address);
out_unlock:
sigma_delta->keep_cs_asserted = false;
sigma_delta->bus_locked = false;
spi_bus_unlock(sigma_delta->spi->controller);
out_release:
iio_device_release_direct(indio_dev);
if (ret)
return ret;
sample = raw_sample >> chan->scan_type.shift;
sample &= (1 << chan->scan_type.realbits) - 1;
*val = sample;
ret = ad_sigma_delta_postprocess_sample(sigma_delta, raw_sample);
if (ret)
return ret;
return IIO_VAL_INT;
}
EXPORT_SYMBOL_NS_GPL(ad_sigma_delta_single_conversion, "IIO_AD_SIGMA_DELTA");
static int ad_sd_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
const struct iio_scan_type *scan_type = &indio_dev->channels[0].scan_type;
struct spi_transfer *xfer = sigma_delta->sample_xfer;
unsigned int i, slot, channel;
u8 *samples_buf;
int ret;
if (sigma_delta->num_slots == 1) {
channel = find_first_bit(indio_dev->active_scan_mask,
iio_get_masklength(indio_dev));
ret = ad_sigma_delta_set_channel(sigma_delta,
indio_dev->channels[channel].address);
if (ret)
return ret;
slot = 1;
} else {
/*
* At this point update_scan_mode already enabled the required channels.
* For sigma-delta sequencer drivers with multiple slots, an update_scan_mode
* implementation is mandatory.
*/
slot = 0;
iio_for_each_active_channel(indio_dev, i) {
sigma_delta->slots[slot] = indio_dev->channels[i].address;
slot++;
}
}
sigma_delta->active_slots = slot;
sigma_delta->current_slot = 0;
if (ad_sigma_delta_has_spi_offload(sigma_delta)) {
xfer[1].offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
xfer[1].bits_per_word = scan_type->realbits;
xfer[1].len = spi_bpw_to_bytes(scan_type->realbits);
} else {
unsigned int samples_buf_size, scan_size;
if (sigma_delta->active_slots > 1) {
ret = ad_sigma_delta_append_status(sigma_delta, true);
if (ret)
return ret;
}
samples_buf_size =
ALIGN(slot * BITS_TO_BYTES(scan_type->storagebits),
sizeof(s64));
samples_buf_size += sizeof(s64);
samples_buf = devm_krealloc(&sigma_delta->spi->dev,
sigma_delta->samples_buf,
samples_buf_size, GFP_KERNEL);
if (!samples_buf)
return -ENOMEM;
sigma_delta->samples_buf = samples_buf;
scan_size = BITS_TO_BYTES(scan_type->realbits + scan_type->shift);
/* For 24-bit data, there is an extra byte of padding. */
xfer[1].rx_buf = &sigma_delta->rx_buf[scan_size == 3 ? 1 : 0];
xfer[1].len = scan_size + (sigma_delta->status_appended ? 1 : 0);
}
xfer[1].cs_change = 1;
if (sigma_delta->info->has_registers) {
xfer[0].tx_buf = &sigma_delta->sample_addr;
xfer[0].len = 1;
ad_sd_set_read_reg_addr(sigma_delta,
sigma_delta->info->data_reg ?: AD_SD_REG_DATA,
&sigma_delta->sample_addr);
spi_message_init_with_transfers(&sigma_delta->sample_msg, xfer, 2);
} else {
spi_message_init_with_transfers(&sigma_delta->sample_msg,
&xfer[1], 1);
}
sigma_delta->sample_msg.offload = sigma_delta->offload;
ret = spi_optimize_message(sigma_delta->spi, &sigma_delta->sample_msg);
if (ret)
return ret;
spi_bus_lock(sigma_delta->spi->controller);
sigma_delta->bus_locked = true;
sigma_delta->keep_cs_asserted = true;
ret = ad_sigma_delta_clear_pending_event(sigma_delta);
if (ret)
goto err_unlock;
ret = ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_CONTINUOUS);
if (ret)
goto err_unlock;
if (ad_sigma_delta_has_spi_offload(sigma_delta)) {
struct spi_offload_trigger_config config = {
.type = SPI_OFFLOAD_TRIGGER_DATA_READY,
};
ret = spi_offload_trigger_enable(sigma_delta->offload,
sigma_delta->offload_trigger,
&config);
if (ret)
goto err_unlock;
} else {
ad_sd_enable_irq(sigma_delta);
}
return 0;
err_unlock:
spi_bus_unlock(sigma_delta->spi->controller);
spi_unoptimize_message(&sigma_delta->sample_msg);
return ret;
}
static int ad_sd_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
if (ad_sigma_delta_has_spi_offload(sigma_delta)) {
spi_offload_trigger_disable(sigma_delta->offload,
sigma_delta->offload_trigger);
} else {
reinit_completion(&sigma_delta->completion);
wait_for_completion_timeout(&sigma_delta->completion, HZ);
ad_sd_disable_irq(sigma_delta);
}
sigma_delta->keep_cs_asserted = false;
ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE);
if (sigma_delta->status_appended)
ad_sigma_delta_append_status(sigma_delta, false);
ad_sigma_delta_disable_all(sigma_delta);
sigma_delta->bus_locked = false;
spi_bus_unlock(sigma_delta->spi->controller);
spi_unoptimize_message(&sigma_delta->sample_msg);
return 0;
}
static irqreturn_t ad_sd_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
const struct iio_scan_type *scan_type = &indio_dev->channels[0].scan_type;
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
u8 *data = sigma_delta->rx_buf;
unsigned int sample_size;
unsigned int sample_pos;
unsigned int status_pos;
unsigned int reg_size;
int ret;
reg_size = BITS_TO_BYTES(scan_type->realbits + scan_type->shift);
/* For 24-bit data, there is an extra byte of padding. */
status_pos = reg_size + (reg_size == 3 ? 1 : 0);
ret = spi_sync_locked(sigma_delta->spi, &sigma_delta->sample_msg);
if (ret)
goto irq_handled;
/*
* For devices sampling only one channel at
* once, there is no need for sample number tracking.
*/
if (sigma_delta->active_slots == 1) {
iio_push_to_buffers_with_timestamp(indio_dev, data, pf->timestamp);
goto irq_handled;
}
if (sigma_delta->status_appended) {
u8 converted_channel;
converted_channel = data[status_pos] & sigma_delta->info->status_ch_mask;
if (converted_channel != sigma_delta->slots[sigma_delta->current_slot]) {
/*
* Desync occurred during continuous sampling of multiple channels.
* Drop this incomplete sample and start from first channel again.
*/
sigma_delta->current_slot = 0;
goto irq_handled;
}
}
sample_size = BITS_TO_BYTES(scan_type->storagebits);
sample_pos = sample_size * sigma_delta->current_slot;
memcpy(&sigma_delta->samples_buf[sample_pos], data, sample_size);
sigma_delta->current_slot++;
if (sigma_delta->current_slot == sigma_delta->active_slots) {
sigma_delta->current_slot = 0;
iio_push_to_buffers_with_timestamp(indio_dev, sigma_delta->samples_buf,
pf->timestamp);
}
irq_handled:
iio_trigger_notify_done(indio_dev->trig);
ad_sd_enable_irq(sigma_delta);
return IRQ_HANDLED;
}
static bool ad_sd_validate_scan_mask(struct iio_dev *indio_dev, const unsigned long *mask)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
return bitmap_weight(mask, iio_get_masklength(indio_dev)) <= sigma_delta->num_slots;
}
static const struct iio_buffer_setup_ops ad_sd_buffer_setup_ops = {
.postenable = &ad_sd_buffer_postenable,
.predisable = &ad_sd_buffer_predisable,
.validate_scan_mask = &ad_sd_validate_scan_mask,
};
static irqreturn_t ad_sd_data_rdy_trig_poll(int irq, void *private)
{
struct ad_sigma_delta *sigma_delta = private;
/*
* AD7124 and a few others use the same physical line for interrupt
* reporting (R̅D̅Y̅) and MISO.
* As MISO toggles when reading a register, this likely results in a
* pending interrupt. This has two consequences: a) The irq might
* trigger immediately after it's enabled even though the conversion
* isn't done yet; and b) checking the STATUS register's R̅D̅Y̅ flag is
* off-limits as reading that would trigger another irq event.
*
* So read the MOSI line as GPIO (if available) and only trigger the irq
* if the line is active. Without such a GPIO assume this is a valid
* interrupt.
*
* Also as disable_irq_nosync() is used to disable the irq, only act if
* the irq wasn't disabled before.
*/
if ((!sigma_delta->rdy_gpiod || gpiod_get_value(sigma_delta->rdy_gpiod)) &&
ad_sd_disable_irq(sigma_delta)) {
complete(&sigma_delta->completion);
if (sigma_delta->trig)
iio_trigger_poll(sigma_delta->trig);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/**
* ad_sd_validate_trigger() - validate_trigger callback for ad_sigma_delta devices
* @indio_dev: The IIO device
* @trig: The new trigger
*
* Returns: 0 if the 'trig' matches the trigger registered by the ad_sigma_delta
* device, -EINVAL otherwise.
*/
int ad_sd_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
if (sigma_delta->trig != trig)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_validate_trigger, "IIO_AD_SIGMA_DELTA");
static int devm_ad_sd_probe_trigger(struct device *dev, struct iio_dev *indio_dev)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
unsigned long irq_flags = irq_get_trigger_type(sigma_delta->irq_line);
int ret;
init_completion(&sigma_delta->completion);
sigma_delta->irq_dis = true;
/* the IRQ core clears IRQ_DISABLE_UNLAZY flag when freeing an IRQ */
irq_set_status_flags(sigma_delta->irq_line, IRQ_DISABLE_UNLAZY);
/* Allow overwriting the flags from firmware */
if (!irq_flags)
irq_flags = sigma_delta->info->irq_flags;
ret = devm_request_irq(dev, sigma_delta->irq_line,
ad_sd_data_rdy_trig_poll,
irq_flags | IRQF_NO_AUTOEN,
indio_dev->name,
sigma_delta);
if (ret)
return ret;
if (ad_sigma_delta_has_spi_offload(sigma_delta)) {
sigma_delta->offload_trigger =
devm_spi_offload_trigger_get(dev, sigma_delta->offload,
SPI_OFFLOAD_TRIGGER_DATA_READY);
if (IS_ERR(sigma_delta->offload_trigger))
return dev_err_probe(dev, PTR_ERR(sigma_delta->offload_trigger),
"Failed to get SPI offload trigger\n");
} else {
if (dev != &sigma_delta->spi->dev)
return dev_err_probe(dev, -EFAULT,
"Trigger parent should be '%s', got '%s'\n",
dev_name(dev), dev_name(&sigma_delta->spi->dev));
sigma_delta->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
indio_dev->name, iio_device_id(indio_dev));
if (!sigma_delta->trig)
return -ENOMEM;
iio_trigger_set_drvdata(sigma_delta->trig, sigma_delta);
ret = devm_iio_trigger_register(dev, sigma_delta->trig);
if (ret)
return ret;
/* select default trigger */
indio_dev->trig = iio_trigger_get(sigma_delta->trig);
}
return 0;
}
/**
* devm_ad_sd_setup_buffer_and_trigger() - Device-managed buffer & trigger setup
* @dev: Device object to which to bind the life-time of the resources attached
* @indio_dev: The IIO device
*/
int devm_ad_sd_setup_buffer_and_trigger(struct device *dev, struct iio_dev *indio_dev)
{
struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev);
int ret;
sigma_delta->slots = devm_kcalloc(dev, sigma_delta->num_slots,
sizeof(*sigma_delta->slots), GFP_KERNEL);
if (!sigma_delta->slots)
return -ENOMEM;
if (ad_sigma_delta_has_spi_offload(sigma_delta)) {
struct dma_chan *rx_dma;
rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev,
sigma_delta->offload);
if (IS_ERR(rx_dma))
return dev_err_probe(dev, PTR_ERR(rx_dma),
"Failed to get RX DMA channel\n");
ret = devm_iio_dmaengine_buffer_setup_with_handle(dev, indio_dev,
rx_dma, IIO_BUFFER_DIRECTION_IN);
if (ret)
return dev_err_probe(dev, ret, "Cannot setup DMA buffer\n");
indio_dev->setup_ops = &ad_sd_buffer_setup_ops;
} else {
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
&ad_sd_trigger_handler,
&ad_sd_buffer_setup_ops);
if (ret)
return ret;
}
return devm_ad_sd_probe_trigger(dev, indio_dev);
}
EXPORT_SYMBOL_NS_GPL(devm_ad_sd_setup_buffer_and_trigger, "IIO_AD_SIGMA_DELTA");
/**
* ad_sd_init() - Initializes a ad_sigma_delta struct
* @sigma_delta: The ad_sigma_delta device
* @indio_dev: The IIO device which the Sigma Delta device is used for
* @spi: The SPI device for the ad_sigma_delta device
* @info: Device specific callbacks and options
*
* This function needs to be called before any other operations are performed on
* the ad_sigma_delta struct.
*/
int ad_sd_init(struct ad_sigma_delta *sigma_delta, struct iio_dev *indio_dev,
struct spi_device *spi, const struct ad_sigma_delta_info *info)
{
sigma_delta->spi = spi;
sigma_delta->info = info;
/* If the field is unset in ad_sigma_delta_info, assume there can only be 1 slot. */
if (!info->num_slots)
sigma_delta->num_slots = 1;
else
sigma_delta->num_slots = info->num_slots;
if (sigma_delta->num_slots > 1) {
if (!indio_dev->info->update_scan_mode) {
dev_err(&spi->dev, "iio_dev lacks update_scan_mode().\n");
return -EINVAL;
}
if (!info->disable_all) {
dev_err(&spi->dev, "ad_sigma_delta_info lacks disable_all().\n");
return -EINVAL;
}
}
spin_lock_init(&sigma_delta->irq_lock);
if (info->has_named_irqs) {
sigma_delta->irq_line = fwnode_irq_get_byname(dev_fwnode(&spi->dev),
"rdy");
if (sigma_delta->irq_line < 0)
return dev_err_probe(&spi->dev, sigma_delta->irq_line,
"Interrupt 'rdy' is required\n");
} else {
sigma_delta->irq_line = spi->irq;
}
sigma_delta->rdy_gpiod = devm_gpiod_get_optional(&spi->dev, "rdy", GPIOD_IN);
if (IS_ERR(sigma_delta->rdy_gpiod))
return dev_err_probe(&spi->dev, PTR_ERR(sigma_delta->rdy_gpiod),
"Failed to find rdy gpio\n");
if (sigma_delta->rdy_gpiod && !sigma_delta->irq_line) {
sigma_delta->irq_line = gpiod_to_irq(sigma_delta->rdy_gpiod);
if (sigma_delta->irq_line < 0)
return sigma_delta->irq_line;
}
if (info->supports_spi_offload) {
struct spi_offload_config offload_config = {
.capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
SPI_OFFLOAD_CAP_RX_STREAM_DMA,
};
int ret;
sigma_delta->offload = devm_spi_offload_get(&spi->dev, spi,
&offload_config);
ret = PTR_ERR_OR_ZERO(sigma_delta->offload);
if (ret && ret != -ENODEV)
return dev_err_probe(&spi->dev, ret, "Failed to get SPI offload\n");
}
iio_device_set_drvdata(indio_dev, sigma_delta);
return 0;
}
EXPORT_SYMBOL_NS_GPL(ad_sd_init, "IIO_AD_SIGMA_DELTA");
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Analog Devices Sigma-Delta ADCs");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");