linux/drivers/iio/adc/ad7768-1.c
Jonathan Santos 00a468c931 iio: adc: ad7768-1: add low pass -3dB cutoff attribute
Ad7768-1 has a different -3db frequency multiplier depending on
the filter type configured. The cutoff frequency also varies according
to the current ODR.

Add a readonly low pass -3dB frequency cutoff attribute to clarify to
the user which bandwidth is being allowed depending on the filter
configurations.

Reviewed-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
Reviewed-by: David Lechner <dlechner@baylibre.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Jonathan Santos <Jonathan.Santos@analog.com>
Link: https://patch.msgid.link/804d66f1858014d7278aec3344d81c223661e878.1749569957.git.Jonathan.Santos@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-07-13 15:36:24 +01:00

1456 lines
39 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
/*
* Analog Devices AD7768-1 SPI ADC driver
*
* Copyright 2017 Analog Devices Inc.
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/driver.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/unaligned.h>
#include <linux/units.h>
#include <linux/util_macros.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <dt-bindings/iio/adc/adi,ad7768-1.h>
/* AD7768 registers definition */
#define AD7768_REG_CHIP_TYPE 0x3
#define AD7768_REG_PROD_ID_L 0x4
#define AD7768_REG_PROD_ID_H 0x5
#define AD7768_REG_CHIP_GRADE 0x6
#define AD7768_REG_SCRATCH_PAD 0x0A
#define AD7768_REG_VENDOR_L 0x0C
#define AD7768_REG_VENDOR_H 0x0D
#define AD7768_REG_INTERFACE_FORMAT 0x14
#define AD7768_REG_POWER_CLOCK 0x15
#define AD7768_REG_ANALOG 0x16
#define AD7768_REG_ANALOG2 0x17
#define AD7768_REG_CONVERSION 0x18
#define AD7768_REG_DIGITAL_FILTER 0x19
#define AD7768_REG_SINC3_DEC_RATE_MSB 0x1A
#define AD7768_REG_SINC3_DEC_RATE_LSB 0x1B
#define AD7768_REG_DUTY_CYCLE_RATIO 0x1C
#define AD7768_REG_SYNC_RESET 0x1D
#define AD7768_REG_GPIO_CONTROL 0x1E
#define AD7768_REG_GPIO_WRITE 0x1F
#define AD7768_REG_GPIO_READ 0x20
#define AD7768_REG_OFFSET_HI 0x21
#define AD7768_REG_OFFSET_MID 0x22
#define AD7768_REG_OFFSET_LO 0x23
#define AD7768_REG_GAIN_HI 0x24
#define AD7768_REG_GAIN_MID 0x25
#define AD7768_REG_GAIN_LO 0x26
#define AD7768_REG_SPI_DIAG_ENABLE 0x28
#define AD7768_REG_ADC_DIAG_ENABLE 0x29
#define AD7768_REG_DIG_DIAG_ENABLE 0x2A
#define AD7768_REG24_ADC_DATA 0x2C
#define AD7768_REG_MASTER_STATUS 0x2D
#define AD7768_REG_SPI_DIAG_STATUS 0x2E
#define AD7768_REG_ADC_DIAG_STATUS 0x2F
#define AD7768_REG_DIG_DIAG_STATUS 0x30
#define AD7768_REG_MCLK_COUNTER 0x31
#define AD7768_REG_COEFF_CONTROL 0x32
#define AD7768_REG24_COEFF_DATA 0x33
#define AD7768_REG_ACCESS_KEY 0x34
/* AD7768_REG_POWER_CLOCK */
#define AD7768_PWR_MCLK_DIV_MSK GENMASK(5, 4)
#define AD7768_PWR_MCLK_DIV(x) FIELD_PREP(AD7768_PWR_MCLK_DIV_MSK, x)
#define AD7768_PWR_PWRMODE_MSK GENMASK(1, 0)
#define AD7768_PWR_PWRMODE(x) FIELD_PREP(AD7768_PWR_PWRMODE_MSK, x)
/* AD7768_REG_DIGITAL_FILTER */
#define AD7768_DIG_FIL_EN_60HZ_REJ BIT(7)
#define AD7768_DIG_FIL_FIL_MSK GENMASK(6, 4)
#define AD7768_DIG_FIL_FIL(x) FIELD_PREP(AD7768_DIG_FIL_FIL_MSK, x)
#define AD7768_DIG_FIL_DEC_MSK GENMASK(2, 0)
#define AD7768_DIG_FIL_DEC_RATE(x) FIELD_PREP(AD7768_DIG_FIL_DEC_MSK, x)
/* AD7768_REG_CONVERSION */
#define AD7768_CONV_MODE_MSK GENMASK(2, 0)
#define AD7768_CONV_MODE(x) FIELD_PREP(AD7768_CONV_MODE_MSK, x)
/* AD7768_REG_ANALOG2 */
#define AD7768_REG_ANALOG2_VCM_MSK GENMASK(2, 0)
#define AD7768_REG_ANALOG2_VCM(x) FIELD_PREP(AD7768_REG_ANALOG2_VCM_MSK, (x))
/* AD7768_REG_GPIO_CONTROL */
#define AD7768_GPIO_UNIVERSAL_EN BIT(7)
#define AD7768_GPIO_CONTROL_MSK GENMASK(3, 0)
/* AD7768_REG_GPIO_WRITE */
#define AD7768_GPIO_WRITE_MSK GENMASK(3, 0)
/* AD7768_REG_GPIO_READ */
#define AD7768_GPIO_READ_MSK GENMASK(3, 0)
#define AD7768_VCM_OFF 0x07
#define AD7768_TRIGGER_SOURCE_SYNC_IDX 0
#define AD7768_MAX_CHANNELS 1
enum ad7768_conv_mode {
AD7768_CONTINUOUS,
AD7768_ONE_SHOT,
AD7768_SINGLE,
AD7768_PERIODIC,
AD7768_STANDBY
};
enum ad7768_pwrmode {
AD7768_ECO_MODE = 0,
AD7768_MED_MODE = 2,
AD7768_FAST_MODE = 3
};
enum ad7768_mclk_div {
AD7768_MCLK_DIV_16,
AD7768_MCLK_DIV_8,
AD7768_MCLK_DIV_4,
AD7768_MCLK_DIV_2
};
enum ad7768_filter_type {
AD7768_FILTER_SINC5,
AD7768_FILTER_SINC3,
AD7768_FILTER_WIDEBAND,
AD7768_FILTER_SINC3_REJ60,
};
enum ad7768_filter_regval {
AD7768_FILTER_REGVAL_SINC5 = 0,
AD7768_FILTER_REGVAL_SINC5_X8 = 1,
AD7768_FILTER_REGVAL_SINC5_X16 = 2,
AD7768_FILTER_REGVAL_SINC3 = 3,
AD7768_FILTER_REGVAL_WIDEBAND = 4,
AD7768_FILTER_REGVAL_SINC3_REJ60 = 11,
};
enum ad7768_scan_type {
AD7768_SCAN_TYPE_NORMAL,
AD7768_SCAN_TYPE_HIGH_SPEED,
};
/* -3dB cutoff frequency multipliers (relative to ODR) for each filter type. */
static const int ad7768_filter_3db_odr_multiplier[] = {
[AD7768_FILTER_SINC5] = 204, /* 0.204 */
[AD7768_FILTER_SINC3] = 262, /* 0.2617 */
[AD7768_FILTER_SINC3_REJ60] = 262, /* 0.2617 */
[AD7768_FILTER_WIDEBAND] = 433, /* 0.433 */
};
static const int ad7768_mclk_div_rates[] = {
16, 8, 4, 2,
};
static const int ad7768_dec_rate_values[8] = {
8, 16, 32, 64, 128, 256, 512, 1024,
};
/* Decimation rate range for sinc3 filter */
static const int ad7768_sinc3_dec_rate_range[3] = {
32, 32, 163840,
};
/*
* The AD7768-1 supports three primary filter types:
* Sinc5, Sinc3, and Wideband.
* However, the filter register values can also encode additional parameters
* such as decimation rates and 60Hz rejection. This utility array separates
* the filter type from these parameters.
*/
static const int ad7768_filter_regval_to_type[] = {
[AD7768_FILTER_REGVAL_SINC5] = AD7768_FILTER_SINC5,
[AD7768_FILTER_REGVAL_SINC5_X8] = AD7768_FILTER_SINC5,
[AD7768_FILTER_REGVAL_SINC5_X16] = AD7768_FILTER_SINC5,
[AD7768_FILTER_REGVAL_SINC3] = AD7768_FILTER_SINC3,
[AD7768_FILTER_REGVAL_WIDEBAND] = AD7768_FILTER_WIDEBAND,
[AD7768_FILTER_REGVAL_SINC3_REJ60] = AD7768_FILTER_SINC3_REJ60,
};
static const char * const ad7768_filter_enum[] = {
[AD7768_FILTER_SINC5] = "sinc5",
[AD7768_FILTER_SINC3] = "sinc3",
[AD7768_FILTER_WIDEBAND] = "wideband",
[AD7768_FILTER_SINC3_REJ60] = "sinc3+rej60",
};
static const struct iio_scan_type ad7768_scan_type[] = {
[AD7768_SCAN_TYPE_NORMAL] = {
.sign = 's',
.realbits = 24,
.storagebits = 32,
.shift = 8,
.endianness = IIO_BE,
},
[AD7768_SCAN_TYPE_HIGH_SPEED] = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_BE,
},
};
struct ad7768_state {
struct spi_device *spi;
struct regmap *regmap;
struct regmap *regmap24;
struct regulator *vref;
struct regulator_dev *vcm_rdev;
unsigned int vcm_output_sel;
struct clk *mclk;
unsigned int mclk_freq;
unsigned int mclk_div;
unsigned int oversampling_ratio;
enum ad7768_filter_type filter_type;
unsigned int samp_freq;
unsigned int samp_freq_avail[ARRAY_SIZE(ad7768_mclk_div_rates)];
unsigned int samp_freq_avail_len;
struct completion completion;
struct iio_trigger *trig;
struct gpio_desc *gpio_sync_in;
struct gpio_desc *gpio_reset;
const char *labels[AD7768_MAX_CHANNELS];
struct gpio_chip gpiochip;
bool en_spi_sync;
/*
* DMA (thus cache coherency maintenance) may require the
* transfer buffers to live in their own cache lines.
*/
union {
struct {
__be32 chan;
aligned_s64 timestamp;
} scan;
__be32 d32;
u8 d8[2];
} data __aligned(IIO_DMA_MINALIGN);
};
static const struct regmap_range ad7768_regmap_rd_ranges[] = {
regmap_reg_range(AD7768_REG_CHIP_TYPE, AD7768_REG_CHIP_GRADE),
regmap_reg_range(AD7768_REG_SCRATCH_PAD, AD7768_REG_SCRATCH_PAD),
regmap_reg_range(AD7768_REG_VENDOR_L, AD7768_REG_VENDOR_H),
regmap_reg_range(AD7768_REG_INTERFACE_FORMAT, AD7768_REG_GAIN_LO),
regmap_reg_range(AD7768_REG_SPI_DIAG_ENABLE, AD7768_REG_DIG_DIAG_ENABLE),
regmap_reg_range(AD7768_REG_MASTER_STATUS, AD7768_REG_COEFF_CONTROL),
regmap_reg_range(AD7768_REG_ACCESS_KEY, AD7768_REG_ACCESS_KEY),
};
static const struct regmap_access_table ad7768_regmap_rd_table = {
.yes_ranges = ad7768_regmap_rd_ranges,
.n_yes_ranges = ARRAY_SIZE(ad7768_regmap_rd_ranges),
};
static const struct regmap_range ad7768_regmap_wr_ranges[] = {
regmap_reg_range(AD7768_REG_SCRATCH_PAD, AD7768_REG_SCRATCH_PAD),
regmap_reg_range(AD7768_REG_INTERFACE_FORMAT, AD7768_REG_GPIO_WRITE),
regmap_reg_range(AD7768_REG_OFFSET_HI, AD7768_REG_GAIN_LO),
regmap_reg_range(AD7768_REG_SPI_DIAG_ENABLE, AD7768_REG_DIG_DIAG_ENABLE),
regmap_reg_range(AD7768_REG_SPI_DIAG_STATUS, AD7768_REG_SPI_DIAG_STATUS),
regmap_reg_range(AD7768_REG_COEFF_CONTROL, AD7768_REG_COEFF_CONTROL),
regmap_reg_range(AD7768_REG_ACCESS_KEY, AD7768_REG_ACCESS_KEY),
};
static const struct regmap_access_table ad7768_regmap_wr_table = {
.yes_ranges = ad7768_regmap_wr_ranges,
.n_yes_ranges = ARRAY_SIZE(ad7768_regmap_wr_ranges),
};
static const struct regmap_config ad7768_regmap_config = {
.name = "ad7768-1-8",
.reg_bits = 8,
.val_bits = 8,
.read_flag_mask = BIT(6),
.rd_table = &ad7768_regmap_rd_table,
.wr_table = &ad7768_regmap_wr_table,
.max_register = AD7768_REG_ACCESS_KEY,
.use_single_write = true,
.use_single_read = true,
};
static const struct regmap_range ad7768_regmap24_rd_ranges[] = {
regmap_reg_range(AD7768_REG24_ADC_DATA, AD7768_REG24_ADC_DATA),
regmap_reg_range(AD7768_REG24_COEFF_DATA, AD7768_REG24_COEFF_DATA),
};
static const struct regmap_access_table ad7768_regmap24_rd_table = {
.yes_ranges = ad7768_regmap24_rd_ranges,
.n_yes_ranges = ARRAY_SIZE(ad7768_regmap24_rd_ranges),
};
static const struct regmap_range ad7768_regmap24_wr_ranges[] = {
regmap_reg_range(AD7768_REG24_COEFF_DATA, AD7768_REG24_COEFF_DATA),
};
static const struct regmap_access_table ad7768_regmap24_wr_table = {
.yes_ranges = ad7768_regmap24_wr_ranges,
.n_yes_ranges = ARRAY_SIZE(ad7768_regmap24_wr_ranges),
};
static const struct regmap_config ad7768_regmap24_config = {
.name = "ad7768-1-24",
.reg_bits = 8,
.val_bits = 24,
.read_flag_mask = BIT(6),
.rd_table = &ad7768_regmap24_rd_table,
.wr_table = &ad7768_regmap24_wr_table,
.max_register = AD7768_REG24_COEFF_DATA,
};
static int ad7768_send_sync_pulse(struct ad7768_state *st)
{
if (st->en_spi_sync)
return regmap_write(st->regmap, AD7768_REG_SYNC_RESET, 0x00);
/*
* The datasheet specifies a minimum SYNC_IN pulse width of 1.5 × Tmclk,
* where Tmclk is the MCLK period. The supported MCLK frequencies range
* from 0.6 MHz to 17 MHz, which corresponds to a minimum SYNC_IN pulse
* width of approximately 2.5 µs in the worst-case scenario (0.6 MHz).
*
* Add a delay to ensure the pulse width is always sufficient to
* trigger synchronization.
*/
gpiod_set_value_cansleep(st->gpio_sync_in, 1);
fsleep(3);
gpiod_set_value_cansleep(st->gpio_sync_in, 0);
return 0;
}
static void ad7768_fill_samp_freq_tbl(struct ad7768_state *st)
{
unsigned int i, samp_freq_avail, freq_filtered;
unsigned int len = 0;
freq_filtered = DIV_ROUND_CLOSEST(st->mclk_freq, st->oversampling_ratio);
for (i = 0; i < ARRAY_SIZE(ad7768_mclk_div_rates); i++) {
samp_freq_avail = DIV_ROUND_CLOSEST(freq_filtered, ad7768_mclk_div_rates[i]);
/* Sampling frequency cannot be lower than the minimum of 50 SPS */
if (samp_freq_avail < 50)
continue;
st->samp_freq_avail[len++] = samp_freq_avail;
}
st->samp_freq_avail_len = len;
}
static int ad7768_set_mclk_div(struct ad7768_state *st, unsigned int mclk_div)
{
unsigned int mclk_div_value;
mclk_div_value = AD7768_PWR_MCLK_DIV(mclk_div);
/*
* Set power mode based on mclk_div value.
* ECO_MODE is only recommended for MCLK_DIV = 16.
*/
mclk_div_value |= mclk_div > AD7768_MCLK_DIV_16 ?
AD7768_PWR_PWRMODE(AD7768_FAST_MODE) :
AD7768_PWR_PWRMODE(AD7768_ECO_MODE);
return regmap_update_bits(st->regmap, AD7768_REG_POWER_CLOCK,
AD7768_PWR_MCLK_DIV_MSK | AD7768_PWR_PWRMODE_MSK,
mclk_div_value);
}
static int ad7768_set_mode(struct ad7768_state *st,
enum ad7768_conv_mode mode)
{
return regmap_update_bits(st->regmap, AD7768_REG_CONVERSION,
AD7768_CONV_MODE_MSK, AD7768_CONV_MODE(mode));
}
static int ad7768_scan_direct(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
int readval, ret;
reinit_completion(&st->completion);
ret = ad7768_set_mode(st, AD7768_ONE_SHOT);
if (ret < 0)
return ret;
ret = wait_for_completion_timeout(&st->completion,
msecs_to_jiffies(1000));
if (!ret)
return -ETIMEDOUT;
ret = regmap_read(st->regmap24, AD7768_REG24_ADC_DATA, &readval);
if (ret)
return ret;
/*
* When the decimation rate is set to x8, the ADC data precision is
* reduced from 24 bits to 16 bits. Since the AD7768_REG_ADC_DATA
* register provides 24-bit data, the precision is reduced by
* right-shifting the read value by 8 bits.
*/
if (st->oversampling_ratio == 8)
readval >>= 8;
/*
* Any SPI configuration of the AD7768-1 can only be
* performed in continuous conversion mode.
*/
ret = ad7768_set_mode(st, AD7768_CONTINUOUS);
if (ret < 0)
return ret;
return readval;
}
static int ad7768_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = -EINVAL;
if (readval) {
if (regmap_check_range_table(st->regmap, reg, &ad7768_regmap_rd_table))
ret = regmap_read(st->regmap, reg, readval);
if (regmap_check_range_table(st->regmap24, reg, &ad7768_regmap24_rd_table))
ret = regmap_read(st->regmap24, reg, readval);
} else {
if (regmap_check_range_table(st->regmap, reg, &ad7768_regmap_wr_table))
ret = regmap_write(st->regmap, reg, writeval);
if (regmap_check_range_table(st->regmap24, reg, &ad7768_regmap24_wr_table))
ret = regmap_write(st->regmap24, reg, writeval);
}
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_set_sinc3_dec_rate(struct ad7768_state *st,
unsigned int dec_rate)
{
unsigned int max_dec_rate;
u8 dec_rate_reg[2];
u16 regval;
int ret;
/*
* Maximum dec_rate is limited by the MCLK_DIV value and by the ODR.
* The edge case is for MCLK_DIV = 2, ODR = 50 SPS.
* max_dec_rate <= MCLK / (2 * 50)
*/
max_dec_rate = st->mclk_freq / 100;
dec_rate = clamp(dec_rate, 32, max_dec_rate);
/*
* Calculate the equivalent value to sinc3 decimation ratio
* to be written on the SINC3_DEC_RATE register:
* Value = (DEC_RATE / 32) - 1
*/
dec_rate = DIV_ROUND_UP(dec_rate, 32) - 1;
/*
* The SINC3_DEC_RATE value is a 13-bit value split across two
* registers: MSB [12:8] and LSB [7:0]. Prepare the 13-bit value using
* FIELD_PREP() and store it with the right endianness in dec_rate_reg.
*/
regval = FIELD_PREP(GENMASK(12, 0), dec_rate);
put_unaligned_be16(regval, dec_rate_reg);
ret = regmap_bulk_write(st->regmap, AD7768_REG_SINC3_DEC_RATE_MSB,
dec_rate_reg, 2);
if (ret)
return ret;
st->oversampling_ratio = (dec_rate + 1) * 32;
return 0;
}
static int ad7768_configure_dig_fil(struct iio_dev *dev,
enum ad7768_filter_type filter_type,
unsigned int dec_rate)
{
struct ad7768_state *st = iio_priv(dev);
unsigned int dec_rate_idx, dig_filter_regval;
int ret;
switch (filter_type) {
case AD7768_FILTER_SINC3:
dig_filter_regval = AD7768_DIG_FIL_FIL(AD7768_FILTER_REGVAL_SINC3);
break;
case AD7768_FILTER_SINC3_REJ60:
dig_filter_regval = AD7768_DIG_FIL_FIL(AD7768_FILTER_REGVAL_SINC3) |
AD7768_DIG_FIL_EN_60HZ_REJ;
break;
case AD7768_FILTER_WIDEBAND:
/* Skip decimations 8 and 16, not supported by the wideband filter */
dec_rate_idx = find_closest(dec_rate, &ad7768_dec_rate_values[2],
ARRAY_SIZE(ad7768_dec_rate_values) - 2);
dig_filter_regval = AD7768_DIG_FIL_FIL(AD7768_FILTER_REGVAL_WIDEBAND) |
AD7768_DIG_FIL_DEC_RATE(dec_rate_idx);
/* Correct the index offset */
dec_rate_idx += 2;
break;
case AD7768_FILTER_SINC5:
dec_rate_idx = find_closest(dec_rate, ad7768_dec_rate_values,
ARRAY_SIZE(ad7768_dec_rate_values));
/*
* Decimations 8 (idx 0) and 16 (idx 1) are set in the
* FILTER[6:4] field. The other decimations are set in the
* DEC_RATE[2:0] field, and the idx needs to be offsetted by two.
*/
if (dec_rate_idx == 0)
dig_filter_regval = AD7768_DIG_FIL_FIL(AD7768_FILTER_REGVAL_SINC5_X8);
else if (dec_rate_idx == 1)
dig_filter_regval = AD7768_DIG_FIL_FIL(AD7768_FILTER_REGVAL_SINC5_X16);
else
dig_filter_regval = AD7768_DIG_FIL_FIL(AD7768_FILTER_REGVAL_SINC5) |
AD7768_DIG_FIL_DEC_RATE(dec_rate_idx - 2);
break;
}
ret = regmap_write(st->regmap, AD7768_REG_DIGITAL_FILTER, dig_filter_regval);
if (ret)
return ret;
st->filter_type = filter_type;
/*
* The decimation for SINC3 filters are configured in different
* registers.
*/
if (filter_type == AD7768_FILTER_SINC3 ||
filter_type == AD7768_FILTER_SINC3_REJ60) {
ret = ad7768_set_sinc3_dec_rate(st, dec_rate);
if (ret)
return ret;
} else {
st->oversampling_ratio = ad7768_dec_rate_values[dec_rate_idx];
}
ad7768_fill_samp_freq_tbl(st);
/* A sync-in pulse is required after every configuration change */
return ad7768_send_sync_pulse(st);
}
static int ad7768_gpio_direction_input(struct gpio_chip *chip, unsigned int offset)
{
struct iio_dev *indio_dev = gpiochip_get_data(chip);
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_clear_bits(st->regmap, AD7768_REG_GPIO_CONTROL,
BIT(offset));
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int value)
{
struct iio_dev *indio_dev = gpiochip_get_data(chip);
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_set_bits(st->regmap, AD7768_REG_GPIO_CONTROL,
BIT(offset));
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct iio_dev *indio_dev = gpiochip_get_data(chip);
struct ad7768_state *st = iio_priv(indio_dev);
unsigned int val;
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_read(st->regmap, AD7768_REG_GPIO_CONTROL, &val);
if (ret)
goto err_release;
/*
* If the GPIO is configured as an output, read the current value from
* AD7768_REG_GPIO_WRITE. Otherwise, read the input value from
* AD7768_REG_GPIO_READ.
*/
if (val & BIT(offset))
ret = regmap_read(st->regmap, AD7768_REG_GPIO_WRITE, &val);
else
ret = regmap_read(st->regmap, AD7768_REG_GPIO_READ, &val);
if (ret)
goto err_release;
ret = !!(val & BIT(offset));
err_release:
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_gpio_set(struct gpio_chip *chip, unsigned int offset, int value)
{
struct iio_dev *indio_dev = gpiochip_get_data(chip);
struct ad7768_state *st = iio_priv(indio_dev);
unsigned int val;
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_read(st->regmap, AD7768_REG_GPIO_CONTROL, &val);
if (ret)
goto err_release;
if (val & BIT(offset))
ret = regmap_assign_bits(st->regmap, AD7768_REG_GPIO_WRITE,
BIT(offset), value);
err_release:
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_gpio_init(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
ret = regmap_write(st->regmap, AD7768_REG_GPIO_CONTROL,
AD7768_GPIO_UNIVERSAL_EN);
if (ret)
return ret;
st->gpiochip = (struct gpio_chip) {
.label = "ad7768_1_gpios",
.base = -1,
.ngpio = 4,
.parent = &st->spi->dev,
.can_sleep = true,
.direction_input = ad7768_gpio_direction_input,
.direction_output = ad7768_gpio_direction_output,
.get = ad7768_gpio_get,
.set_rv = ad7768_gpio_set,
.owner = THIS_MODULE,
};
return devm_gpiochip_add_data(&st->spi->dev, &st->gpiochip, indio_dev);
}
static int ad7768_set_freq(struct ad7768_state *st,
unsigned int freq)
{
unsigned int idx, mclk_div;
int ret;
freq = clamp(freq, 50, 1024000);
if (freq == 0)
return -EINVAL;
mclk_div = DIV_ROUND_CLOSEST(st->mclk_freq, freq * st->oversampling_ratio);
/* Find the closest match for the desired sampling frequency */
idx = find_closest_descending(mclk_div, ad7768_mclk_div_rates,
ARRAY_SIZE(ad7768_mclk_div_rates));
/* Set both the mclk_div and pwrmode */
ret = ad7768_set_mclk_div(st, idx);
if (ret)
return ret;
st->samp_freq = DIV_ROUND_CLOSEST(st->mclk_freq,
ad7768_mclk_div_rates[idx] * st->oversampling_ratio);
/* A sync-in pulse is required after every configuration change */
return ad7768_send_sync_pulse(st);
}
static int ad7768_set_filter_type_attr(struct iio_dev *dev,
const struct iio_chan_spec *chan,
unsigned int filter)
{
struct ad7768_state *st = iio_priv(dev);
int ret;
ret = ad7768_configure_dig_fil(dev, filter, st->oversampling_ratio);
if (ret)
return ret;
/* Update sampling frequency */
return ad7768_set_freq(st, st->samp_freq);
}
static int ad7768_get_filter_type_attr(struct iio_dev *dev,
const struct iio_chan_spec *chan)
{
struct ad7768_state *st = iio_priv(dev);
int ret;
unsigned int mode, mask;
ret = regmap_read(st->regmap, AD7768_REG_DIGITAL_FILTER, &mode);
if (ret)
return ret;
mask = AD7768_DIG_FIL_EN_60HZ_REJ | AD7768_DIG_FIL_FIL_MSK;
/* From the register value, get the corresponding filter type */
return ad7768_filter_regval_to_type[FIELD_GET(mask, mode)];
}
static const struct iio_enum ad7768_filter_type_iio_enum = {
.items = ad7768_filter_enum,
.num_items = ARRAY_SIZE(ad7768_filter_enum),
.set = ad7768_set_filter_type_attr,
.get = ad7768_get_filter_type_attr,
};
static const struct iio_chan_spec_ext_info ad7768_ext_info[] = {
IIO_ENUM("filter_type", IIO_SHARED_BY_ALL, &ad7768_filter_type_iio_enum),
IIO_ENUM_AVAILABLE("filter_type", IIO_SHARED_BY_ALL, &ad7768_filter_type_iio_enum),
{ }
};
static const struct iio_chan_spec ad7768_channels[] = {
{
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.ext_info = ad7768_ext_info,
.indexed = 1,
.channel = 0,
.scan_index = 0,
.has_ext_scan_type = 1,
.ext_scan_type = ad7768_scan_type,
.num_ext_scan_type = ARRAY_SIZE(ad7768_scan_type),
},
};
static int ad7768_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct ad7768_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type;
int scale_uv, ret, temp;
scan_type = iio_get_current_scan_type(indio_dev, chan);
if (IS_ERR(scan_type))
return PTR_ERR(scan_type);
switch (info) {
case IIO_CHAN_INFO_RAW:
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad7768_scan_direct(indio_dev);
iio_device_release_direct(indio_dev);
if (ret < 0)
return ret;
*val = sign_extend32(ret, scan_type->realbits - 1);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
scale_uv = regulator_get_voltage(st->vref);
if (scale_uv < 0)
return scale_uv;
*val = (scale_uv * 2) / 1000;
*val2 = scan_type->realbits;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->samp_freq;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = st->oversampling_ratio;
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
temp = st->samp_freq * ad7768_filter_3db_odr_multiplier[st->filter_type];
*val = DIV_ROUND_CLOSEST(temp, MILLI);
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ad7768_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
struct ad7768_state *st = iio_priv(indio_dev);
unsigned int shift;
switch (info) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
/*
* Sinc3 filter allows a wider range of OSR values, so show
* the available values in range format.
*/
if (st->filter_type == AD7768_FILTER_SINC3 ||
st->filter_type == AD7768_FILTER_SINC3_REJ60) {
*vals = (int *)ad7768_sinc3_dec_rate_range;
*type = IIO_VAL_INT;
return IIO_AVAIL_RANGE;
}
shift = st->filter_type == AD7768_FILTER_SINC5 ? 0 : 2;
*vals = (int *)&ad7768_dec_rate_values[shift];
*length = ARRAY_SIZE(ad7768_dec_rate_values) - shift;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)st->samp_freq_avail;
*length = st->samp_freq_avail_len;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int __ad7768_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_CHAN_INFO_SAMP_FREQ:
return ad7768_set_freq(st, val);
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
ret = ad7768_configure_dig_fil(indio_dev, st->filter_type, val);
if (ret)
return ret;
/* Update sampling frequency */
return ad7768_set_freq(st, st->samp_freq);
default:
return -EINVAL;
}
}
static int ad7768_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = __ad7768_write_raw(indio_dev, chan, val, val2, info);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_read_label(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, char *label)
{
struct ad7768_state *st = iio_priv(indio_dev);
return sprintf(label, "%s\n", st->labels[chan->channel]);
}
static int ad7768_get_current_scan_type(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad7768_state *st = iio_priv(indio_dev);
return st->oversampling_ratio == 8 ?
AD7768_SCAN_TYPE_HIGH_SPEED : AD7768_SCAN_TYPE_NORMAL;
}
static const struct iio_info ad7768_info = {
.read_raw = &ad7768_read_raw,
.read_avail = &ad7768_read_avail,
.write_raw = &ad7768_write_raw,
.read_label = ad7768_read_label,
.get_current_scan_type = &ad7768_get_current_scan_type,
.debugfs_reg_access = &ad7768_reg_access,
};
static struct fwnode_handle *
ad7768_fwnode_find_reference_args(const struct fwnode_handle *fwnode,
const char *name, const char *nargs_prop,
unsigned int nargs, unsigned int index,
struct fwnode_reference_args *args)
{
int ret;
ret = fwnode_property_get_reference_args(fwnode, name, nargs_prop,
nargs, index, args);
return ret ? ERR_PTR(ret) : args->fwnode;
}
static int ad7768_trigger_sources_sync_setup(struct device *dev,
struct fwnode_handle *fwnode,
struct ad7768_state *st)
{
struct fwnode_reference_args args;
struct fwnode_handle *ref __free(fwnode_handle) =
ad7768_fwnode_find_reference_args(fwnode, "trigger-sources",
"#trigger-source-cells", 0,
AD7768_TRIGGER_SOURCE_SYNC_IDX,
&args);
if (IS_ERR(ref))
return PTR_ERR(ref);
ref = args.fwnode;
/* First, try getting the GPIO trigger source */
if (fwnode_device_is_compatible(ref, "gpio-trigger")) {
st->gpio_sync_in = devm_fwnode_gpiod_get_index(dev, ref, NULL, 0,
GPIOD_OUT_LOW,
"sync-in");
return PTR_ERR_OR_ZERO(st->gpio_sync_in);
}
/*
* TODO: Support the other cases when we have a trigger subsystem
* to reliably handle other types of devices as trigger sources.
*
* For now, return an error message. For self triggering, omit the
* trigger-sources property.
*/
return dev_err_probe(dev, -EOPNOTSUPP, "Invalid synchronization trigger source\n");
}
static int ad7768_trigger_sources_get_sync(struct device *dev,
struct ad7768_state *st)
{
struct fwnode_handle *fwnode = dev_fwnode(dev);
/*
* The AD7768-1 allows two primary methods for driving the SYNC_IN pin
* to synchronize one or more devices:
* 1. Using an external GPIO.
* 2. Using a SPI command, where the SYNC_OUT pin generates a
* synchronization pulse that drives the SYNC_IN pin.
*/
if (fwnode_property_present(fwnode, "trigger-sources"))
return ad7768_trigger_sources_sync_setup(dev, fwnode, st);
/*
* In the absence of trigger-sources property, enable self
* synchronization over SPI (SYNC_OUT).
*/
st->en_spi_sync = true;
return 0;
}
static int ad7768_setup(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
st->gpio_reset = devm_gpiod_get_optional(&st->spi->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(st->gpio_reset))
return PTR_ERR(st->gpio_reset);
if (st->gpio_reset) {
fsleep(10);
gpiod_set_value_cansleep(st->gpio_reset, 0);
fsleep(200);
} else {
/*
* Two writes to the SPI_RESET[1:0] bits are required to initiate
* a software reset. The bits must first be set to 11, and then
* to 10. When the sequence is detected, the reset occurs.
* See the datasheet, page 70.
*/
ret = regmap_write(st->regmap, AD7768_REG_SYNC_RESET, 0x3);
if (ret)
return ret;
ret = regmap_write(st->regmap, AD7768_REG_SYNC_RESET, 0x2);
if (ret)
return ret;
}
/* For backwards compatibility, try the adi,sync-in-gpios property */
st->gpio_sync_in = devm_gpiod_get_optional(&st->spi->dev, "adi,sync-in",
GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_sync_in))
return PTR_ERR(st->gpio_sync_in);
/*
* If the synchronization is not defined by adi,sync-in-gpios, try the
* trigger-sources.
*/
if (!st->gpio_sync_in) {
ret = ad7768_trigger_sources_get_sync(&st->spi->dev, st);
if (ret)
return ret;
}
/* Only create a Chip GPIO if flagged for it */
if (device_property_read_bool(&st->spi->dev, "gpio-controller")) {
ret = ad7768_gpio_init(indio_dev);
if (ret)
return ret;
}
/*
* Set Default Digital Filter configuration:
* SINC5 filter with x32 Decimation rate
*/
ret = ad7768_configure_dig_fil(indio_dev, AD7768_FILTER_SINC5, 32);
if (ret)
return ret;
/* Set the default sampling frequency to 32000 kSPS */
return ad7768_set_freq(st, 32000);
}
static irqreturn_t ad7768_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad7768_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type;
int ret;
scan_type = iio_get_current_scan_type(indio_dev, &indio_dev->channels[0]);
if (IS_ERR(scan_type))
goto out;
ret = spi_read(st->spi, &st->data.scan.chan,
BITS_TO_BYTES(scan_type->realbits));
if (ret < 0)
goto out;
iio_push_to_buffers_with_ts(indio_dev, &st->data.scan,
sizeof(st->data.scan),
iio_get_time_ns(indio_dev));
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static irqreturn_t ad7768_interrupt(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct ad7768_state *st = iio_priv(indio_dev);
if (iio_buffer_enabled(indio_dev))
iio_trigger_poll(st->trig);
else
complete(&st->completion);
return IRQ_HANDLED;
};
static int ad7768_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
/*
* Write a 1 to the LSB of the INTERFACE_FORMAT register to enter
* continuous read mode. Subsequent data reads do not require an
* initial 8-bit write to query the ADC_DATA register.
*/
return regmap_write(st->regmap, AD7768_REG_INTERFACE_FORMAT, 0x01);
}
static int ad7768_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
unsigned int unused;
/*
* To exit continuous read mode, perform a single read of the ADC_DATA
* reg (0x2C), which allows further configuration of the device.
*/
return regmap_read(st->regmap24, AD7768_REG24_ADC_DATA, &unused);
}
static const struct iio_buffer_setup_ops ad7768_buffer_ops = {
.postenable = &ad7768_buffer_postenable,
.predisable = &ad7768_buffer_predisable,
};
static const struct iio_trigger_ops ad7768_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
};
static void ad7768_regulator_disable(void *data)
{
struct ad7768_state *st = data;
regulator_disable(st->vref);
}
static int ad7768_set_channel_label(struct iio_dev *indio_dev,
int num_channels)
{
struct ad7768_state *st = iio_priv(indio_dev);
struct device *device = indio_dev->dev.parent;
const char *label;
int crt_ch = 0;
device_for_each_child_node_scoped(device, child) {
if (fwnode_property_read_u32(child, "reg", &crt_ch))
continue;
if (crt_ch >= num_channels)
continue;
if (fwnode_property_read_string(child, "label", &label))
continue;
st->labels[crt_ch] = label;
}
return 0;
}
static int ad7768_triggered_buffer_alloc(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
st->trig = devm_iio_trigger_alloc(indio_dev->dev.parent, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!st->trig)
return -ENOMEM;
st->trig->ops = &ad7768_trigger_ops;
iio_trigger_set_drvdata(st->trig, indio_dev);
ret = devm_iio_trigger_register(indio_dev->dev.parent, st->trig);
if (ret)
return ret;
indio_dev->trig = iio_trigger_get(st->trig);
return devm_iio_triggered_buffer_setup(indio_dev->dev.parent, indio_dev,
&iio_pollfunc_store_time,
&ad7768_trigger_handler,
&ad7768_buffer_ops);
}
static int ad7768_vcm_enable(struct regulator_dev *rdev)
{
struct iio_dev *indio_dev = rdev_get_drvdata(rdev);
struct ad7768_state *st = iio_priv(indio_dev);
int ret, regval;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
/* To enable, set the last selected output */
regval = AD7768_REG_ANALOG2_VCM(st->vcm_output_sel + 1);
ret = regmap_update_bits(st->regmap, AD7768_REG_ANALOG2,
AD7768_REG_ANALOG2_VCM_MSK, regval);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_vcm_disable(struct regulator_dev *rdev)
{
struct iio_dev *indio_dev = rdev_get_drvdata(rdev);
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_update_bits(st->regmap, AD7768_REG_ANALOG2,
AD7768_REG_ANALOG2_VCM_MSK, AD7768_VCM_OFF);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad7768_vcm_is_enabled(struct regulator_dev *rdev)
{
struct iio_dev *indio_dev = rdev_get_drvdata(rdev);
struct ad7768_state *st = iio_priv(indio_dev);
int ret, val;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_read(st->regmap, AD7768_REG_ANALOG2, &val);
iio_device_release_direct(indio_dev);
if (ret)
return ret;
return FIELD_GET(AD7768_REG_ANALOG2_VCM_MSK, val) != AD7768_VCM_OFF;
}
static int ad7768_set_voltage_sel(struct regulator_dev *rdev,
unsigned int selector)
{
unsigned int regval = AD7768_REG_ANALOG2_VCM(selector + 1);
struct iio_dev *indio_dev = rdev_get_drvdata(rdev);
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_update_bits(st->regmap, AD7768_REG_ANALOG2,
AD7768_REG_ANALOG2_VCM_MSK, regval);
iio_device_release_direct(indio_dev);
if (ret)
return ret;
st->vcm_output_sel = selector;
return 0;
}
static int ad7768_get_voltage_sel(struct regulator_dev *rdev)
{
struct iio_dev *indio_dev = rdev_get_drvdata(rdev);
struct ad7768_state *st = iio_priv(indio_dev);
int ret, val;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_read(st->regmap, AD7768_REG_ANALOG2, &val);
iio_device_release_direct(indio_dev);
if (ret)
return ret;
val = FIELD_GET(AD7768_REG_ANALOG2_VCM_MSK, val);
return clamp(val, 1, rdev->desc->n_voltages) - 1;
}
static const struct regulator_ops vcm_regulator_ops = {
.enable = ad7768_vcm_enable,
.disable = ad7768_vcm_disable,
.is_enabled = ad7768_vcm_is_enabled,
.list_voltage = regulator_list_voltage_table,
.set_voltage_sel = ad7768_set_voltage_sel,
.get_voltage_sel = ad7768_get_voltage_sel,
};
static const unsigned int vcm_voltage_table[] = {
2500000,
2050000,
1650000,
1900000,
1100000,
900000,
};
static const struct regulator_desc vcm_desc = {
.name = "ad7768-1-vcm",
.of_match = "vcm-output",
.regulators_node = "regulators",
.n_voltages = ARRAY_SIZE(vcm_voltage_table),
.volt_table = vcm_voltage_table,
.ops = &vcm_regulator_ops,
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
};
static int ad7768_register_regulators(struct device *dev, struct ad7768_state *st,
struct iio_dev *indio_dev)
{
struct regulator_config config = {
.dev = dev,
.driver_data = indio_dev,
};
int ret;
/* Disable the regulator before registering it */
ret = regmap_update_bits(st->regmap, AD7768_REG_ANALOG2,
AD7768_REG_ANALOG2_VCM_MSK, AD7768_VCM_OFF);
if (ret)
return ret;
st->vcm_rdev = devm_regulator_register(dev, &vcm_desc, &config);
if (IS_ERR(st->vcm_rdev))
return dev_err_probe(dev, PTR_ERR(st->vcm_rdev),
"failed to register VCM regulator\n");
return 0;
}
static int ad7768_probe(struct spi_device *spi)
{
struct ad7768_state *st;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
/*
* Datasheet recommends SDI line to be kept high when data is not being
* clocked out of the controller and the spi clock is free running,
* to prevent accidental reset.
* Since many controllers do not support the SPI_MOSI_IDLE_HIGH flag
* yet, only request the MOSI idle state to enable if the controller
* supports it.
*/
if (spi->controller->mode_bits & SPI_MOSI_IDLE_HIGH) {
spi->mode |= SPI_MOSI_IDLE_HIGH;
ret = spi_setup(spi);
if (ret < 0)
return ret;
}
st->spi = spi;
st->regmap = devm_regmap_init_spi(spi, &ad7768_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(&spi->dev, PTR_ERR(st->regmap),
"Failed to initialize regmap");
st->regmap24 = devm_regmap_init_spi(spi, &ad7768_regmap24_config);
if (IS_ERR(st->regmap24))
return dev_err_probe(&spi->dev, PTR_ERR(st->regmap24),
"Failed to initialize regmap24");
st->vref = devm_regulator_get(&spi->dev, "vref");
if (IS_ERR(st->vref))
return PTR_ERR(st->vref);
ret = regulator_enable(st->vref);
if (ret) {
dev_err(&spi->dev, "Failed to enable specified vref supply\n");
return ret;
}
ret = devm_add_action_or_reset(&spi->dev, ad7768_regulator_disable, st);
if (ret)
return ret;
st->mclk = devm_clk_get_enabled(&spi->dev, "mclk");
if (IS_ERR(st->mclk))
return PTR_ERR(st->mclk);
st->mclk_freq = clk_get_rate(st->mclk);
indio_dev->channels = ad7768_channels;
indio_dev->num_channels = ARRAY_SIZE(ad7768_channels);
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->info = &ad7768_info;
indio_dev->modes = INDIO_DIRECT_MODE;
/* Register VCM output regulator */
ret = ad7768_register_regulators(&spi->dev, st, indio_dev);
if (ret)
return ret;
ret = ad7768_setup(indio_dev);
if (ret < 0) {
dev_err(&spi->dev, "AD7768 setup failed\n");
return ret;
}
init_completion(&st->completion);
ret = ad7768_set_channel_label(indio_dev, ARRAY_SIZE(ad7768_channels));
if (ret)
return ret;
ret = devm_request_irq(&spi->dev, spi->irq,
&ad7768_interrupt,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
indio_dev->name, indio_dev);
if (ret)
return ret;
ret = ad7768_triggered_buffer_alloc(indio_dev);
if (ret)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id ad7768_id_table[] = {
{ "ad7768-1", 0 },
{ }
};
MODULE_DEVICE_TABLE(spi, ad7768_id_table);
static const struct of_device_id ad7768_of_match[] = {
{ .compatible = "adi,ad7768-1" },
{ }
};
MODULE_DEVICE_TABLE(of, ad7768_of_match);
static struct spi_driver ad7768_driver = {
.driver = {
.name = "ad7768-1",
.of_match_table = ad7768_of_match,
},
.probe = ad7768_probe,
.id_table = ad7768_id_table,
};
module_spi_driver(ad7768_driver);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7768-1 ADC driver");
MODULE_LICENSE("GPL v2");