linux/drivers/iio/adc/ad4170-4.c
Marcelo Schmitt 6098df897d iio: adc: ad4170-4: Add support for weigh scale, thermocouple, and RTD sens
The AD4170-4 design provides features to aid interfacing with weigh scales,
thermocouples, and RTD sensors, which are set up with additional circuitry
for proper sensor operation. A key characteristic of those sensors is that
the circuit they are in must be excited with a single, a pair, or two pairs
of signals. The external circuit can be excited either by a voltage supply
or by AD4170-4 excitation signals. The sensor can then be read through a
different pair of lines that are connected to the AD4170-4 ADC.

Extend the ad4170-4 driver to handle external circuit sensors.

Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
Link: https://patch.msgid.link/52686943040ecad34cc89833d4d5d37f1a51f412.1751895245.git.marcelo.schmitt@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2025-07-14 19:20:53 +01:00

3027 lines
86 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0+
/*
* Analog Devices AD4170-4 ADC driver
*
* Copyright (C) 2025 Analog Devices, Inc.
* Author: Ana-Maria Cusco <ana-maria.cusco@analog.com>
* Author: Marcelo Schmitt <marcelo.schmitt@analog.com>
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/driver.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/time.h>
#include <linux/types.h>
#include <linux/unaligned.h>
#include <linux/units.h>
#include <linux/util_macros.h>
/*
* AD4170 registers
* Multibyte register addresses point to the most significant byte which is the
* address to use to get the most significant byte first (address accessed is
* decremented by one for each data byte)
*
* Each register address define follows the AD4170_<REG_NAME>_REG format.
* Each mask follows the AD4170_<REG_NAME>_<FIELD_NAME> format.
* E.g. AD4170_PIN_MUXING_DIG_AUX1_CTRL_MSK is for accessing DIG_AUX1_CTRL field
* of PIN_MUXING_REG.
* Each constant follows the AD4170_<REG_NAME>_<FIELD_NAME>_<FUNCTION> format.
* E.g. AD4170_PIN_MUXING_DIG_AUX1_DISABLED is the value written to
* DIG_AUX1_CTRL field of PIN_MUXING register to disable DIG_AUX1 pin.
* Some register names and register field names are shortened versions of
* their datasheet counterpart names to provide better code readability.
*/
#define AD4170_CONFIG_A_REG 0x00
#define AD4170_DATA_24B_REG 0x1E
#define AD4170_PIN_MUXING_REG 0x69
#define AD4170_CLOCK_CTRL_REG 0x6B
#define AD4170_ADC_CTRL_REG 0x71
#define AD4170_CHAN_EN_REG 0x79
#define AD4170_CHAN_SETUP_REG(x) (0x81 + 4 * (x))
#define AD4170_CHAN_MAP_REG(x) (0x83 + 4 * (x))
#define AD4170_MISC_REG(x) (0xC1 + 14 * (x))
#define AD4170_AFE_REG(x) (0xC3 + 14 * (x))
#define AD4170_FILTER_REG(x) (0xC5 + 14 * (x))
#define AD4170_FILTER_FS_REG(x) (0xC7 + 14 * (x))
#define AD4170_OFFSET_REG(x) (0xCA + 14 * (x))
#define AD4170_GAIN_REG(x) (0xCD + 14 * (x))
#define AD4170_V_BIAS_REG 0x135
#define AD4170_CURRENT_SRC_REG(x) (0x139 + 2 * (x))
#define AD4170_GPIO_MODE_REG 0x191
#define AD4170_GPIO_OUTPUT_REG 0x193
#define AD4170_GPIO_INPUT_REG 0x195
#define AD4170_ADC_CTRL_CONT_READ_EXIT_REG 0x200 /* virtual reg */
#define AD4170_REG_READ_MASK BIT(14)
/* AD4170_CONFIG_A_REG - INTERFACE_CONFIG_A REGISTER */
#define AD4170_SW_RESET_MSK (BIT(7) | BIT(0))
/* AD4170_PIN_MUXING_REG */
#define AD4170_PIN_MUXING_DIG_AUX1_CTRL_MSK GENMASK(5, 4)
/* AD4170_CLOCK_CTRL_REG */
#define AD4170_CLOCK_CTRL_CLOCKSEL_MSK GENMASK(1, 0)
/* AD4170_ADC_CTRL_REG */
#define AD4170_ADC_CTRL_MULTI_DATA_REG_SEL_MSK BIT(7)
#define AD4170_ADC_CTRL_CONT_READ_MSK GENMASK(5, 4)
#define AD4170_ADC_CTRL_MODE_MSK GENMASK(3, 0)
/* AD4170_CHAN_EN_REG */
#define AD4170_CHAN_EN(ch) BIT(ch)
/* AD4170_CHAN_SETUP_REG */
#define AD4170_CHAN_SETUP_SETUP_MSK GENMASK(2, 0)
/* AD4170_CHAN_MAP_REG */
#define AD4170_CHAN_MAP_AINP_MSK GENMASK(12, 8)
#define AD4170_CHAN_MAP_AINM_MSK GENMASK(4, 0)
/* AD4170_MISC_REG */
#define AD4170_MISC_CHOP_IEXC_MSK GENMASK(15, 14)
#define AD4170_MISC_CHOP_ADC_MSK GENMASK(9, 8)
/* AD4170_AFE_REG */
#define AD4170_AFE_REF_BUF_M_MSK GENMASK(11, 10)
#define AD4170_AFE_REF_BUF_P_MSK GENMASK(9, 8)
#define AD4170_AFE_REF_SELECT_MSK GENMASK(6, 5)
#define AD4170_AFE_BIPOLAR_MSK BIT(4)
#define AD4170_AFE_PGA_GAIN_MSK GENMASK(3, 0)
/* AD4170_FILTER_REG */
#define AD4170_FILTER_FILTER_TYPE_MSK GENMASK(3, 0)
/* AD4170_CURRENT_SRC_REG */
#define AD4170_CURRENT_SRC_I_OUT_PIN_MSK GENMASK(12, 8)
#define AD4170_CURRENT_SRC_I_OUT_VAL_MSK GENMASK(2, 0)
/* AD4170_GPIO_MODE_REG */
#define AD4170_GPIO_MODE_GPIO0_MSK GENMASK(1, 0)
#define AD4170_GPIO_MODE_GPIO1_MSK GENMASK(3, 2)
#define AD4170_GPIO_MODE_GPIO2_MSK GENMASK(5, 4)
#define AD4170_GPIO_MODE_GPIO3_MSK GENMASK(7, 6)
/* AD4170_GPIO_OUTPUT_REG */
#define AD4170_GPIO_OUTPUT_GPIO_MSK(x) BIT(x)
/* AD4170 register constants */
/* AD4170_CLOCK_CTRL_REG constants */
#define AD4170_CLOCK_CTRL_CLOCKSEL_INT 0x0
#define AD4170_CLOCK_CTRL_CLOCKSEL_INT_OUT 0x1
#define AD4170_CLOCK_CTRL_CLOCKSEL_EXT 0x2
#define AD4170_CLOCK_CTRL_CLOCKSEL_EXT_XTAL 0x3
/* AD4170_CHAN_MAP_REG constants */
#define AD4170_CHAN_MAP_AIN(x) (x)
#define AD4170_CHAN_MAP_TEMP_SENSOR 17
#define AD4170_CHAN_MAP_AVDD_AVSS_P 18
#define AD4170_CHAN_MAP_AVDD_AVSS_N 18
#define AD4170_CHAN_MAP_IOVDD_DGND_P 19
#define AD4170_CHAN_MAP_IOVDD_DGND_N 19
#define AD4170_CHAN_MAP_AVSS 23
#define AD4170_CHAN_MAP_DGND 24
#define AD4170_CHAN_MAP_REFIN1_P 25
#define AD4170_CHAN_MAP_REFIN1_N 26
#define AD4170_CHAN_MAP_REFIN2_P 27
#define AD4170_CHAN_MAP_REFIN2_N 28
#define AD4170_CHAN_MAP_REFOUT 29
/* AD4170_MISC_REG constants */
#define AD4170_MISC_CHOP_IEXC_PAIR1 0x1
#define AD4170_MISC_CHOP_IEXC_PAIR2 0x2
#define AD4170_MISC_CHOP_IEXC_BOTH 0x3
/* AD4170_PIN_MUXING_REG constants */
#define AD4170_PIN_MUXING_DIG_AUX1_DISABLED 0x0
#define AD4170_PIN_MUXING_DIG_AUX1_RDY 0x1
/* AD4170_ADC_CTRL_REG constants */
#define AD4170_ADC_CTRL_MODE_CONT 0x0
#define AD4170_ADC_CTRL_MODE_SINGLE 0x4
#define AD4170_ADC_CTRL_MODE_IDLE 0x7
#define AD4170_ADC_CTRL_CONT_READ_DISABLE 0x0
#define AD4170_ADC_CTRL_CONT_READ_ENABLE 0x1
/* AD4170_FILTER_REG constants */
#define AD4170_FILTER_FILTER_TYPE_SINC5_AVG 0x0
#define AD4170_FILTER_FILTER_TYPE_SINC5 0x4
#define AD4170_FILTER_FILTER_TYPE_SINC3 0x6
/* AD4170_CURRENT_SRC_REG constants */
#define AD4170_CURRENT_SRC_I_OUT_PIN_AIN(x) (x)
#define AD4170_CURRENT_SRC_I_OUT_PIN_GPIO(x) ((x) + 17)
/* AD4170_GPIO_MODE_REG constants */
#define AD4170_GPIO_MODE_GPIO_INPUT 1
#define AD4170_GPIO_MODE_GPIO_OUTPUT 2
/* Device properties and auxiliary constants */
#define AD4170_NUM_ANALOG_PINS 9
#define AD4170_NUM_GPIO_PINS 4
#define AD4170_MAX_ADC_CHANNELS 16
#define AD4170_MAX_IIO_CHANNELS (AD4170_MAX_ADC_CHANNELS + 1)
#define AD4170_MAX_ANALOG_PINS 8
#define AD4170_MAX_SETUPS 8
#define AD4170_INVALID_SETUP 9
#define AD4170_SPI_INST_PHASE_LEN 2
#define AD4170_SPI_MAX_XFER_LEN 6
#define AD4170_NUM_CURRENT_SRC 4
#define AD4170_DEFAULT_SAMP_RATE (125 * HZ_PER_KHZ)
#define AD4170_INT_REF_2_5V 2500000
/* Internal and external clock properties */
#define AD4170_INT_CLOCK_16MHZ (16 * HZ_PER_MHZ)
#define AD4170_EXT_CLOCK_MHZ_MIN (1 * HZ_PER_MHZ)
#define AD4170_EXT_CLOCK_MHZ_MAX (17 * HZ_PER_MHZ)
#define AD4170_NUM_PGA_OPTIONS 10
/* Digital filter properties */
#define AD4170_SINC3_MIN_FS 4
#define AD4170_SINC3_MAX_FS 65532
#define AD4170_SINC5_MIN_FS 1
#define AD4170_SINC5_MAX_FS 256
#define AD4170_GAIN_REG_DEFAULT 0x555555
#define AD4170_ADC_CTRL_CONT_READ_EXIT 0xA5
/* Analog pin functions */
#define AD4170_PIN_UNASSIGNED 0x00
#define AD4170_PIN_ANALOG_IN 0x01
#define AD4170_PIN_CURRENT_OUT 0x02
#define AD4170_PIN_VBIAS 0x04
/* GPIO pin functions */
#define AD4170_GPIO_UNASSIGNED 0x00
#define AD4170_GPIO_AC_EXCITATION 0x02
#define AD4170_GPIO_OUTPUT 0x04
/* Current source */
#define AD4170_CURRENT_SRC_DISABLED 0xFF
static const unsigned int ad4170_reg_size[] = {
[AD4170_CONFIG_A_REG] = 1,
[AD4170_DATA_24B_REG] = 3,
[AD4170_PIN_MUXING_REG] = 2,
[AD4170_CLOCK_CTRL_REG] = 2,
[AD4170_ADC_CTRL_REG] = 2,
[AD4170_CHAN_EN_REG] = 2,
/*
* CHANNEL_SETUP and CHANNEL_MAP register are all 2 byte size each and
* their addresses are interleaved such that we have CHANNEL_SETUP0
* address followed by CHANNEL_MAP0 address, followed by CHANNEL_SETUP1,
* and so on until CHANNEL_MAP15.
* Thus, initialize the register size for them only once.
*/
[AD4170_CHAN_SETUP_REG(0) ... AD4170_CHAN_MAP_REG(AD4170_MAX_ADC_CHANNELS - 1)] = 2,
/*
* MISC, AFE, FILTER, FILTER_FS, OFFSET, and GAIN register addresses are
* also interleaved but MISC, AFE, FILTER, FILTER_FS, OFFSET are 16-bit
* while OFFSET, GAIN are 24-bit registers so we can't init them all to
* the same size.
*/
[AD4170_MISC_REG(0) ... AD4170_FILTER_FS_REG(0)] = 2,
[AD4170_MISC_REG(1) ... AD4170_FILTER_FS_REG(1)] = 2,
[AD4170_MISC_REG(2) ... AD4170_FILTER_FS_REG(2)] = 2,
[AD4170_MISC_REG(3) ... AD4170_FILTER_FS_REG(3)] = 2,
[AD4170_MISC_REG(4) ... AD4170_FILTER_FS_REG(4)] = 2,
[AD4170_MISC_REG(5) ... AD4170_FILTER_FS_REG(5)] = 2,
[AD4170_MISC_REG(6) ... AD4170_FILTER_FS_REG(6)] = 2,
[AD4170_MISC_REG(7) ... AD4170_FILTER_FS_REG(7)] = 2,
[AD4170_OFFSET_REG(0) ... AD4170_GAIN_REG(0)] = 3,
[AD4170_OFFSET_REG(1) ... AD4170_GAIN_REG(1)] = 3,
[AD4170_OFFSET_REG(2) ... AD4170_GAIN_REG(2)] = 3,
[AD4170_OFFSET_REG(3) ... AD4170_GAIN_REG(3)] = 3,
[AD4170_OFFSET_REG(4) ... AD4170_GAIN_REG(4)] = 3,
[AD4170_OFFSET_REG(5) ... AD4170_GAIN_REG(5)] = 3,
[AD4170_OFFSET_REG(6) ... AD4170_GAIN_REG(6)] = 3,
[AD4170_OFFSET_REG(7) ... AD4170_GAIN_REG(7)] = 3,
[AD4170_V_BIAS_REG] = 2,
[AD4170_CURRENT_SRC_REG(0) ... AD4170_CURRENT_SRC_REG(3)] = 2,
[AD4170_GPIO_MODE_REG] = 2,
[AD4170_GPIO_OUTPUT_REG] = 2,
[AD4170_GPIO_INPUT_REG] = 2,
[AD4170_ADC_CTRL_CONT_READ_EXIT_REG] = 0,
};
enum ad4170_ref_buf {
AD4170_REF_BUF_PRE, /* Pre-charge referrence buffer */
AD4170_REF_BUF_FULL, /* Full referrence buffering */
AD4170_REF_BUF_BYPASS, /* Bypass referrence buffering */
};
/* maps adi,positive/negative-reference-buffer property values to enum */
static const char * const ad4170_ref_buf_str[] = {
[AD4170_REF_BUF_PRE] = "precharge",
[AD4170_REF_BUF_FULL] = "full",
[AD4170_REF_BUF_BYPASS] = "disabled",
};
enum ad4170_ref_select {
AD4170_REF_REFIN1,
AD4170_REF_REFIN2,
AD4170_REF_REFOUT,
AD4170_REF_AVDD,
};
enum ad4170_filter_type {
AD4170_SINC5_AVG,
AD4170_SINC5,
AD4170_SINC3,
};
enum ad4170_regulator {
AD4170_AVDD_SUP,
AD4170_AVSS_SUP,
AD4170_IOVDD_SUP,
AD4170_REFIN1P_SUP,
AD4170_REFIN1N_SUP,
AD4170_REFIN2P_SUP,
AD4170_REFIN2N_SUP,
AD4170_MAX_SUP,
};
static const char *const ad4170_clk_sel[] = {
"ext-clk", "xtal",
};
enum ad4170_int_pin_sel {
AD4170_INT_PIN_SDO,
AD4170_INT_PIN_DIG_AUX1,
};
static const char * const ad4170_int_pin_names[] = {
[AD4170_INT_PIN_SDO] = "sdo",
[AD4170_INT_PIN_DIG_AUX1] = "dig_aux1",
};
static const unsigned int ad4170_sinc3_filt_fs_tbl[] = {
4, 8, 12, 16, 20, 40, 48, 80, /* 0 - 7 */
100, 256, 500, 1000, 5000, 8332, 10000, 25000, /* 8 - 15 */
50000, 65532, /* 16 - 17 */
};
#define AD4170_MAX_FS_TBL_SIZE ARRAY_SIZE(ad4170_sinc3_filt_fs_tbl)
static const unsigned int ad4170_sinc5_filt_fs_tbl[] = {
1, 2, 4, 8, 12, 16, 20, 40, 48, 80, 100, 256,
};
static const unsigned int ad4170_iout_pin_tbl[] = {
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(0),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(1),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(2),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(3),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(4),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(5),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(6),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(7),
AD4170_CURRENT_SRC_I_OUT_PIN_AIN(8),
AD4170_CURRENT_SRC_I_OUT_PIN_GPIO(0),
AD4170_CURRENT_SRC_I_OUT_PIN_GPIO(1),
AD4170_CURRENT_SRC_I_OUT_PIN_GPIO(2),
AD4170_CURRENT_SRC_I_OUT_PIN_GPIO(3),
};
static const unsigned int ad4170_iout_current_ua_tbl[] = {
0, 10, 50, 100, 250, 500, 1000, 1500,
};
enum ad4170_sensor_enum {
AD4170_ADC_SENSOR = 0,
AD4170_WEIGH_SCALE_SENSOR = 1,
AD4170_RTD_SENSOR = 2,
AD4170_THERMOCOUPLE_SENSOR = 3,
};
/* maps adi,sensor-type property value to enum */
static const char * const ad4170_sensor_type[] = {
[AD4170_ADC_SENSOR] = "adc",
[AD4170_WEIGH_SCALE_SENSOR] = "weighscale",
[AD4170_RTD_SENSOR] = "rtd",
[AD4170_THERMOCOUPLE_SENSOR] = "thermocouple",
};
struct ad4170_chip_info {
const char *name;
};
static const struct ad4170_chip_info ad4170_chip_info = {
.name = "ad4170-4",
};
static const struct ad4170_chip_info ad4190_chip_info = {
.name = "ad4190-4",
};
static const struct ad4170_chip_info ad4195_chip_info = {
.name = "ad4195-4",
};
/*
* There are 8 of each MISC, AFE, FILTER, FILTER_FS, OFFSET, and GAIN
* configuration registers. That is, there are 8 miscellaneous registers, MISC0
* to MISC7. Each MISC register is associated with a setup; MISCN is associated
* with setup number N. The other 5 above mentioned types of registers have
* analogous structure. A setup is a set of those registers. For example,
* setup 1 comprises of MISC1, AFE1, FILTER1, FILTER_FS1, OFFSET1, and GAIN1
* registers. Also, there are 16 CHANNEL_SETUP registers (CHANNEL_SETUP0 to
* CHANNEL_SETUP15). Each channel setup is associated with one of the 8 possible
* setups. Thus, AD4170 can support up to 16 channels but, since there are only
* 8 available setups, channels must share settings if more than 8 channels are
* configured.
*
* If this struct is modified, ad4170_setup_eq() will probably need to be
* updated too.
*/
struct ad4170_setup {
u16 misc;
u16 afe;
u16 filter;
u16 filter_fs;
u32 offset; /* For calibration purposes */
u32 gain; /* For calibration purposes */
};
struct ad4170_setup_info {
struct ad4170_setup setup;
unsigned int enabled_channels;
unsigned int channels;
};
struct ad4170_chan_info {
unsigned int input_range_uv;
unsigned int setup_num; /* Index to access state setup_infos array */
struct ad4170_setup setup; /* cached setup */
int offset_tbl[10];
u32 scale_tbl[10][2];
bool initialized;
bool enabled;
};
static const char * const ad4170_filt_names[] = {
[AD4170_SINC5_AVG] = "sinc5+avg",
[AD4170_SINC5] = "sinc5",
[AD4170_SINC3] = "sinc3",
};
struct ad4170_state {
struct mutex lock; /* Protect read-modify-write and multi write sequences */
int vrefs_uv[AD4170_MAX_SUP];
u32 mclk_hz;
struct ad4170_setup_info setup_infos[AD4170_MAX_SETUPS];
struct ad4170_chan_info chan_infos[AD4170_MAX_ADC_CHANNELS];
struct completion completion;
struct iio_chan_spec chans[AD4170_MAX_IIO_CHANNELS];
struct spi_device *spi;
struct regmap *regmap;
int sps_tbl[ARRAY_SIZE(ad4170_filt_names)][AD4170_MAX_FS_TBL_SIZE][2];
__be32 bounce_buffer[AD4170_MAX_ADC_CHANNELS];
struct spi_message msg;
struct spi_transfer xfer;
struct iio_trigger *trig;
struct clk_hw int_clk_hw;
unsigned int clock_ctrl;
unsigned int pins_fn[AD4170_NUM_ANALOG_PINS];
int gpio_fn[AD4170_NUM_GPIO_PINS];
unsigned int cur_src_pins[AD4170_NUM_CURRENT_SRC];
struct gpio_chip gpiochip;
/*
* DMA (thus cache coherency maintenance) requires the transfer buffers
* to live in their own cache lines.
*/
u8 rx_buf[4] __aligned(IIO_DMA_MINALIGN);
};
static void ad4170_fill_sps_tbl(struct ad4170_state *st)
{
unsigned int tmp0, tmp1, i;
/*
* The ODR can be calculated the same way for sinc5+avg, sinc5, and
* sinc3 filter types with the exception that sinc5 filter has a
* narrowed range of allowed FILTER_FS values.
*/
for (i = 0; i < ARRAY_SIZE(ad4170_sinc3_filt_fs_tbl); i++) {
tmp0 = div_u64_rem(st->mclk_hz, 32 * ad4170_sinc3_filt_fs_tbl[i],
&tmp1);
tmp1 = mult_frac(tmp1, MICRO, 32 * ad4170_sinc3_filt_fs_tbl[i]);
/* Fill sinc5+avg filter SPS table */
st->sps_tbl[AD4170_SINC5_AVG][i][0] = tmp0; /* Integer part */
st->sps_tbl[AD4170_SINC5_AVG][i][1] = tmp1; /* Fractional part */
/* Fill sinc3 filter SPS table */
st->sps_tbl[AD4170_SINC3][i][0] = tmp0; /* Integer part */
st->sps_tbl[AD4170_SINC3][i][1] = tmp1; /* Fractional part */
}
/* Sinc5 filter ODR doesn't use all FILTER_FS bits */
for (i = 0; i < ARRAY_SIZE(ad4170_sinc5_filt_fs_tbl); i++) {
tmp0 = div_u64_rem(st->mclk_hz, 32 * ad4170_sinc5_filt_fs_tbl[i],
&tmp1);
tmp1 = mult_frac(tmp1, MICRO, 32 * ad4170_sinc5_filt_fs_tbl[i]);
/* Fill sinc5 filter SPS table */
st->sps_tbl[AD4170_SINC5][i][0] = tmp0; /* Integer part */
st->sps_tbl[AD4170_SINC5][i][1] = tmp1; /* Fractional part */
}
}
static int ad4170_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned int reg, unsigned int writeval,
unsigned int *readval)
{
struct ad4170_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static int ad4170_get_reg_size(struct ad4170_state *st, unsigned int reg,
unsigned int *size)
{
if (reg >= ARRAY_SIZE(ad4170_reg_size))
return -EINVAL;
*size = ad4170_reg_size[reg];
return 0;
}
static int ad4170_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct ad4170_state *st = context;
u8 tx_buf[AD4170_SPI_MAX_XFER_LEN];
unsigned int size;
int ret;
ret = ad4170_get_reg_size(st, reg, &size);
if (ret)
return ret;
put_unaligned_be16(reg, tx_buf);
switch (size) {
case 3:
put_unaligned_be24(val, &tx_buf[AD4170_SPI_INST_PHASE_LEN]);
break;
case 2:
put_unaligned_be16(val, &tx_buf[AD4170_SPI_INST_PHASE_LEN]);
break;
case 1:
tx_buf[AD4170_SPI_INST_PHASE_LEN] = val;
break;
case 0:
/* Write continuous read exit code */
tx_buf[0] = AD4170_ADC_CTRL_CONT_READ_EXIT;
return spi_write_then_read(st->spi, tx_buf, 1, NULL, 0);
default:
return -EINVAL;
}
return spi_write_then_read(st->spi, tx_buf,
AD4170_SPI_INST_PHASE_LEN + size, NULL, 0);
}
static int ad4170_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct ad4170_state *st = context;
u8 tx_buf[AD4170_SPI_INST_PHASE_LEN];
unsigned int size;
int ret;
put_unaligned_be16(AD4170_REG_READ_MASK | reg, tx_buf);
ret = ad4170_get_reg_size(st, reg, &size);
if (ret)
return ret;
ret = spi_write_then_read(st->spi, tx_buf, ARRAY_SIZE(tx_buf),
st->rx_buf, size);
if (ret)
return ret;
switch (size) {
case 3:
*val = get_unaligned_be24(st->rx_buf);
return 0;
case 2:
*val = get_unaligned_be16(st->rx_buf);
return 0;
case 1:
*val = st->rx_buf[0];
return 0;
default:
return -EINVAL;
}
}
static const struct regmap_config ad4170_regmap_config = {
.reg_read = ad4170_reg_read,
.reg_write = ad4170_reg_write,
};
static bool ad4170_setup_eq(struct ad4170_setup *a, struct ad4170_setup *b)
{
if (a->misc != b->misc ||
a->afe != b->afe ||
a->filter != b->filter ||
a->filter_fs != b->filter_fs ||
a->offset != b->offset ||
a->gain != b->gain)
return false;
return true;
}
static int ad4170_find_setup(struct ad4170_state *st,
struct ad4170_setup *target_setup,
unsigned int *setup_num, bool *overwrite)
{
unsigned int i;
*setup_num = AD4170_INVALID_SETUP;
*overwrite = false;
for (i = 0; i < AD4170_MAX_SETUPS; i++) {
struct ad4170_setup_info *setup_info = &st->setup_infos[i];
/* Immediately accept a matching setup. */
if (ad4170_setup_eq(target_setup, &setup_info->setup)) {
*setup_num = i;
return 0;
}
/* Ignore all setups which are used by enabled channels. */
if (setup_info->enabled_channels)
continue;
/* Find the least used slot. */
if (*setup_num == AD4170_INVALID_SETUP ||
setup_info->channels < st->setup_infos[*setup_num].channels)
*setup_num = i;
}
if (*setup_num == AD4170_INVALID_SETUP)
return -EINVAL;
*overwrite = true;
return 0;
}
static void ad4170_unlink_channel(struct ad4170_state *st, unsigned int channel)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[channel];
struct ad4170_setup_info *setup_info = &st->setup_infos[chan_info->setup_num];
chan_info->setup_num = AD4170_INVALID_SETUP;
setup_info->channels--;
}
static int ad4170_unlink_setup(struct ad4170_state *st, unsigned int setup_num)
{
unsigned int i;
for (i = 0; i < AD4170_MAX_ADC_CHANNELS; i++) {
struct ad4170_chan_info *chan_info = &st->chan_infos[i];
if (!chan_info->initialized || chan_info->setup_num != setup_num)
continue;
ad4170_unlink_channel(st, i);
}
return 0;
}
static int ad4170_link_channel_setup(struct ad4170_state *st,
unsigned int chan_addr,
unsigned int setup_num)
{
struct ad4170_setup_info *setup_info = &st->setup_infos[setup_num];
struct ad4170_chan_info *chan_info = &st->chan_infos[chan_addr];
int ret;
ret = regmap_update_bits(st->regmap, AD4170_CHAN_SETUP_REG(chan_addr),
AD4170_CHAN_SETUP_SETUP_MSK,
FIELD_PREP(AD4170_CHAN_SETUP_SETUP_MSK, setup_num));
if (ret)
return ret;
chan_info->setup_num = setup_num;
setup_info->channels++;
return 0;
}
static int ad4170_write_setup(struct ad4170_state *st, unsigned int setup_num,
struct ad4170_setup *setup)
{
int ret;
/*
* It is recommended to place the ADC in standby mode or idle mode to
* write to OFFSET and GAIN registers.
*/
ret = regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_MODE_MSK,
FIELD_PREP(AD4170_ADC_CTRL_MODE_MSK,
AD4170_ADC_CTRL_MODE_IDLE));
if (ret)
return ret;
ret = regmap_write(st->regmap, AD4170_MISC_REG(setup_num), setup->misc);
if (ret)
return ret;
ret = regmap_write(st->regmap, AD4170_AFE_REG(setup_num), setup->afe);
if (ret)
return ret;
ret = regmap_write(st->regmap, AD4170_FILTER_REG(setup_num),
setup->filter);
if (ret)
return ret;
ret = regmap_write(st->regmap, AD4170_FILTER_FS_REG(setup_num),
setup->filter_fs);
if (ret)
return ret;
ret = regmap_write(st->regmap, AD4170_OFFSET_REG(setup_num),
setup->offset);
if (ret)
return ret;
ret = regmap_write(st->regmap, AD4170_GAIN_REG(setup_num), setup->gain);
if (ret)
return ret;
memcpy(&st->setup_infos[setup_num].setup, setup, sizeof(*setup));
return 0;
}
static int ad4170_write_channel_setup(struct ad4170_state *st,
unsigned int chan_addr, bool on_enable)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[chan_addr];
bool overwrite;
int setup_num;
int ret;
/*
* Similar to AD4130 driver, the following cases need to be handled.
*
* 1. Enabled and linked channel with setup changes:
* - Find a setup. If not possible, return error.
* - Unlink channel from current setup.
* - If the setup found has only disabled channels linked to it,
* unlink all channels, and write the new setup to it.
* - Link channel to new setup.
*
* 2. Soon to be enabled and unlinked channel:
* - Find a setup. If not possible, return error.
* - If the setup found has only disabled channels linked to it,
* unlink all channels, and write the new setup to it.
* - Link channel to the setup.
*
* 3. Disabled and linked channel with setup changes:
* - Unlink channel from current setup.
*
* 4. Soon to be enabled and linked channel:
* 5. Disabled and unlinked channel with setup changes:
* - Do nothing.
*/
/* Cases 3, 4, and 5 */
if (chan_info->setup_num != AD4170_INVALID_SETUP) {
/* Case 4 */
if (on_enable)
return 0;
/* Case 3 */
if (!chan_info->enabled) {
ad4170_unlink_channel(st, chan_addr);
return 0;
}
} else if (!on_enable && !chan_info->enabled) {
/* Case 5 */
return 0;
}
/* Cases 1 & 2 */
ret = ad4170_find_setup(st, &chan_info->setup, &setup_num, &overwrite);
if (ret)
return ret;
if (chan_info->setup_num != AD4170_INVALID_SETUP)
/* Case 1 */
ad4170_unlink_channel(st, chan_addr);
if (overwrite) {
ret = ad4170_unlink_setup(st, setup_num);
if (ret)
return ret;
ret = ad4170_write_setup(st, setup_num, &chan_info->setup);
if (ret)
return ret;
}
return ad4170_link_channel_setup(st, chan_addr, setup_num);
}
static int ad4170_set_channel_enable(struct ad4170_state *st,
unsigned int chan_addr, bool status)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[chan_addr];
struct ad4170_setup_info *setup_info;
int ret;
if (chan_info->enabled == status)
return 0;
if (status) {
ret = ad4170_write_channel_setup(st, chan_addr, true);
if (ret)
return ret;
}
setup_info = &st->setup_infos[chan_info->setup_num];
ret = regmap_update_bits(st->regmap, AD4170_CHAN_EN_REG,
AD4170_CHAN_EN(chan_addr),
status ? AD4170_CHAN_EN(chan_addr) : 0);
if (ret)
return ret;
setup_info->enabled_channels += status ? 1 : -1;
chan_info->enabled = status;
return 0;
}
static int __ad4170_get_filter_type(unsigned int filter)
{
u16 f_conf = FIELD_GET(AD4170_FILTER_FILTER_TYPE_MSK, filter);
switch (f_conf) {
case AD4170_FILTER_FILTER_TYPE_SINC5_AVG:
return AD4170_SINC5_AVG;
case AD4170_FILTER_FILTER_TYPE_SINC5:
return AD4170_SINC5;
case AD4170_FILTER_FILTER_TYPE_SINC3:
return AD4170_SINC3;
default:
return -EINVAL;
}
}
static int ad4170_set_filter_type(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
unsigned int val)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
unsigned int filter_type_conf;
int ret;
switch (val) {
case AD4170_SINC5_AVG:
filter_type_conf = AD4170_FILTER_FILTER_TYPE_SINC5_AVG;
break;
case AD4170_SINC5:
filter_type_conf = AD4170_FILTER_FILTER_TYPE_SINC5;
break;
case AD4170_SINC3:
filter_type_conf = AD4170_FILTER_FILTER_TYPE_SINC3;
break;
default:
return -EINVAL;
}
/*
* The filters provide the same ODR for a given filter_fs value but
* there are different minimum and maximum filter_fs limits for each
* filter. The filter_fs value will be adjusted if the current filter_fs
* is out of the limits of the just requested filter. Since the
* filter_fs value affects the ODR (sampling_frequency), changing the
* filter may lead to a change in the sampling frequency.
*/
scoped_guard(mutex, &st->lock) {
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
if (val == AD4170_SINC5_AVG || val == AD4170_SINC3)
setup->filter_fs = clamp(val, AD4170_SINC3_MIN_FS,
AD4170_SINC3_MAX_FS);
else
setup->filter_fs = clamp(val, AD4170_SINC5_MIN_FS,
AD4170_SINC5_MAX_FS);
setup->filter &= ~AD4170_FILTER_FILTER_TYPE_MSK;
setup->filter |= FIELD_PREP(AD4170_FILTER_FILTER_TYPE_MSK,
filter_type_conf);
ret = ad4170_write_channel_setup(st, chan->address, false);
iio_device_release_direct(indio_dev);
}
return ret;
}
static int ad4170_get_filter_type(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
return __ad4170_get_filter_type(setup->filter);
}
static const struct iio_enum ad4170_filter_type_enum = {
.items = ad4170_filt_names,
.num_items = ARRAY_SIZE(ad4170_filt_names),
.get = ad4170_get_filter_type,
.set = ad4170_set_filter_type,
};
static const struct iio_chan_spec_ext_info ad4170_filter_type_ext_info[] = {
IIO_ENUM("filter_type", IIO_SEPARATE, &ad4170_filter_type_enum),
IIO_ENUM_AVAILABLE("filter_type", IIO_SHARED_BY_TYPE,
&ad4170_filter_type_enum),
{ }
};
static const struct iio_chan_spec ad4170_channel_template = {
.type = IIO_VOLTAGE,
.indexed = 1,
.differential = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_OFFSET),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.ext_info = ad4170_filter_type_ext_info,
.scan_type = {
.realbits = 24,
.storagebits = 32,
.shift = 8,
.endianness = IIO_BE,
},
};
static const struct iio_chan_spec ad4170_temp_channel_template = {
.type = IIO_TEMP,
.indexed = 0,
.channel = 17,
.channel2 = 17,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.scan_type = {
.sign = 's',
.realbits = 24,
.storagebits = 32,
.shift = 8,
.endianness = IIO_BE,
},
};
/*
* Receives the number of a multiplexed AD4170 input (ain_n), and stores the
* voltage (in µV) of the specified input into ain_voltage. If the input number
* is a ordinary analog input (AIN0 to AIN8), stores zero into ain_voltage.
* If a voltage regulator required by a special input is unavailable, return
* error code. Return 0 on success.
*/
static int ad4170_get_ain_voltage_uv(struct ad4170_state *st, int ain_n,
int *ain_voltage)
{
struct device *dev = &st->spi->dev;
int v_diff;
*ain_voltage = 0;
/*
* The voltage bias (vbias) sets the common-mode voltage of the channel
* to (AVDD + AVSS)/2. If provided, AVSS supply provides the magnitude
* (absolute value) of the negative voltage supplied to the AVSS pin.
* So, we do AVDD - AVSS to compute the DC voltage generated by the bias
* voltage generator.
*/
if (st->pins_fn[ain_n] & AD4170_PIN_VBIAS) {
int v_diff = st->vrefs_uv[AD4170_AVDD_SUP] - st->vrefs_uv[AD4170_AVSS_SUP];
*ain_voltage = v_diff / 2;
return 0;
}
if (ain_n <= AD4170_CHAN_MAP_TEMP_SENSOR)
return 0;
switch (ain_n) {
case AD4170_CHAN_MAP_AVDD_AVSS_N:
v_diff = st->vrefs_uv[AD4170_AVDD_SUP] - st->vrefs_uv[AD4170_AVSS_SUP];
*ain_voltage = v_diff / 5;
return 0;
case AD4170_CHAN_MAP_IOVDD_DGND_N:
*ain_voltage = st->vrefs_uv[AD4170_IOVDD_SUP] / 5;
return 0;
case AD4170_CHAN_MAP_AVSS:
*ain_voltage = st->vrefs_uv[AD4170_AVSS_SUP];
return 0;
case AD4170_CHAN_MAP_DGND:
*ain_voltage = 0;
return 0;
case AD4170_CHAN_MAP_REFIN1_P:
if (st->vrefs_uv[AD4170_REFIN1P_SUP] == -ENODEV)
return dev_err_probe(dev, -ENODEV,
"input set to REFIN+ but ref not provided\n");
*ain_voltage = st->vrefs_uv[AD4170_REFIN1P_SUP];
return 0;
case AD4170_CHAN_MAP_REFIN1_N:
if (st->vrefs_uv[AD4170_REFIN1N_SUP] == -ENODEV)
return dev_err_probe(dev, -ENODEV,
"input set to REFIN- but ref not provided\n");
*ain_voltage = st->vrefs_uv[AD4170_REFIN1N_SUP];
return 0;
case AD4170_CHAN_MAP_REFIN2_P:
if (st->vrefs_uv[AD4170_REFIN2P_SUP] == -ENODEV)
return dev_err_probe(dev, -ENODEV,
"input set to REFIN2+ but ref not provided\n");
*ain_voltage = st->vrefs_uv[AD4170_REFIN2P_SUP];
return 0;
case AD4170_CHAN_MAP_REFIN2_N:
if (st->vrefs_uv[AD4170_REFIN2N_SUP] == -ENODEV)
return dev_err_probe(dev, -ENODEV,
"input set to REFIN2- but ref not provided\n");
*ain_voltage = st->vrefs_uv[AD4170_REFIN2N_SUP];
return 0;
case AD4170_CHAN_MAP_REFOUT:
/* REFOUT is 2.5V relative to AVSS so take that into account */
*ain_voltage = st->vrefs_uv[AD4170_AVSS_SUP] + AD4170_INT_REF_2_5V;
return 0;
default:
return -EINVAL;
}
}
static int ad4170_validate_analog_input(struct ad4170_state *st, int pin)
{
if (pin <= AD4170_MAX_ANALOG_PINS) {
if (st->pins_fn[pin] & AD4170_PIN_CURRENT_OUT)
return dev_err_probe(&st->spi->dev, -EINVAL,
"Pin %d already used with fn %u.\n",
pin, st->pins_fn[pin]);
st->pins_fn[pin] |= AD4170_PIN_ANALOG_IN;
}
return 0;
}
static int ad4170_validate_channel_input(struct ad4170_state *st, int pin, bool com)
{
/* Check common-mode input pin is mapped to a special input. */
if (com && (pin < AD4170_CHAN_MAP_AVDD_AVSS_P || pin > AD4170_CHAN_MAP_REFOUT))
return dev_err_probe(&st->spi->dev, -EINVAL,
"Invalid common-mode input pin number. %d\n",
pin);
/* Check differential input pin is mapped to a analog input pin. */
if (!com && pin > AD4170_MAX_ANALOG_PINS)
return dev_err_probe(&st->spi->dev, -EINVAL,
"Invalid analog input pin number. %d\n",
pin);
return ad4170_validate_analog_input(st, pin);
}
/*
* Verifies whether the channel input configuration is valid by checking the
* input numbers.
* Returns 0 on valid channel input configuration. -EINVAL otherwise.
*/
static int ad4170_validate_channel(struct ad4170_state *st,
struct iio_chan_spec const *chan)
{
int ret;
ret = ad4170_validate_channel_input(st, chan->channel, false);
if (ret)
return ret;
return ad4170_validate_channel_input(st, chan->channel2,
!chan->differential);
}
/*
* Verifies whether the channel configuration is valid by checking the provided
* input type, polarity, and voltage references result in a sane input range.
* Returns negative error code on failure.
*/
static int ad4170_get_input_range(struct ad4170_state *st,
struct iio_chan_spec const *chan,
unsigned int ch_reg, unsigned int ref_sel)
{
bool bipolar = chan->scan_type.sign == 's';
struct device *dev = &st->spi->dev;
int refp, refn, ain_voltage, ret;
switch (ref_sel) {
case AD4170_REF_REFIN1:
if (st->vrefs_uv[AD4170_REFIN1P_SUP] == -ENODEV ||
st->vrefs_uv[AD4170_REFIN1N_SUP] == -ENODEV)
return dev_err_probe(dev, -ENODEV,
"REFIN± selected but not provided\n");
refp = st->vrefs_uv[AD4170_REFIN1P_SUP];
refn = st->vrefs_uv[AD4170_REFIN1N_SUP];
break;
case AD4170_REF_REFIN2:
if (st->vrefs_uv[AD4170_REFIN2P_SUP] == -ENODEV ||
st->vrefs_uv[AD4170_REFIN2N_SUP] == -ENODEV)
return dev_err_probe(dev, -ENODEV,
"REFIN2± selected but not provided\n");
refp = st->vrefs_uv[AD4170_REFIN2P_SUP];
refn = st->vrefs_uv[AD4170_REFIN2N_SUP];
break;
case AD4170_REF_AVDD:
refp = st->vrefs_uv[AD4170_AVDD_SUP];
refn = st->vrefs_uv[AD4170_AVSS_SUP];
break;
case AD4170_REF_REFOUT:
/* REFOUT is 2.5 V relative to AVSS */
refp = st->vrefs_uv[AD4170_AVSS_SUP] + AD4170_INT_REF_2_5V;
refn = st->vrefs_uv[AD4170_AVSS_SUP];
break;
default:
return -EINVAL;
}
/*
* Find out the analog input range from the channel type, polarity, and
* voltage reference selection.
* AD4170 channels are either differential or pseudo-differential.
* Diff input voltage range: VREF/gain to +VREF/gain (datasheet page 6)
* Pseudo-diff input voltage range: 0 to VREF/gain (datasheet page 6)
*/
if (chan->differential) {
if (!bipolar)
return dev_err_probe(dev, -EINVAL,
"Channel %u differential unipolar\n",
ch_reg);
/*
* Differential bipolar channel.
* avss-supply is never above 0V.
* Assuming refin1n-supply not above 0V.
* Assuming refin2n-supply not above 0V.
*/
return refp + abs(refn);
}
/*
* Some configurations can lead to invalid setups.
* For example, if AVSS = -2.5V, REF_SELECT set to REFOUT (REFOUT/AVSS),
* and pseudo-diff channel configuration set, then the input range
* should go from 0V to +VREF (single-ended - datasheet pg 10), but
* REFOUT/AVSS range would be -2.5V to 0V.
* Check the positive reference is higher than 0V for pseudo-diff
* channels.
* Note that at this point in the code, refp can only be >= 0 since all
* error codes from reading the regulator voltage have been checked
* either at ad4170_regulator_setup() or above in this function.
*/
if (refp == 0)
return dev_err_probe(dev, -EINVAL,
"REF+ == GND for pseudo-diff chan %u\n",
ch_reg);
if (bipolar)
return refp;
/*
* Pseudo-differential unipolar channel.
* Input expected to swing from IN- to +VREF.
*/
ret = ad4170_get_ain_voltage_uv(st, chan->channel2, &ain_voltage);
if (ret)
return ret;
if (refp - ain_voltage <= 0)
return dev_err_probe(dev, -EINVAL,
"Negative input >= REF+ for pseudo-diff chan %u\n",
ch_reg);
return refp - ain_voltage;
}
static int __ad4170_read_sample(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val)
{
struct ad4170_state *st = iio_priv(indio_dev);
unsigned long settling_time_ms;
int ret;
reinit_completion(&st->completion);
ret = regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_MODE_MSK,
FIELD_PREP(AD4170_ADC_CTRL_MODE_MSK,
AD4170_ADC_CTRL_MODE_SINGLE));
if (ret)
return ret;
/*
* When a channel is manually selected by the user, the ADC needs an
* extra time to provide the first stable conversion. The ADC settling
* time depends on the filter type, filter frequency, and ADC clock
* frequency (see datasheet page 53). The maximum settling time among
* all filter configurations is 6291164 / fCLK. Use that formula to wait
* for sufficient time whatever the filter configuration may be.
*/
settling_time_ms = DIV_ROUND_UP(6291164 * MILLI, st->mclk_hz);
ret = wait_for_completion_timeout(&st->completion,
msecs_to_jiffies(settling_time_ms));
if (!ret)
dev_dbg(&st->spi->dev,
"No Data Ready signal. Reading after delay.\n");
ret = regmap_read(st->regmap, AD4170_DATA_24B_REG, val);
if (ret)
return ret;
if (chan->scan_type.sign == 's')
*val = sign_extend32(*val, chan->scan_type.realbits - 1);
return 0;
}
static int ad4170_read_sample(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
int ret, ret2;
/*
* The ADC sequences through all enabled channels. That can lead to
* incorrect channel being sampled if a previous read would have left a
* different channel enabled. Thus, always enable and disable the
* channel on single-shot read.
*/
ret = ad4170_set_channel_enable(st, chan->address, true);
if (ret)
return ret;
ret = __ad4170_read_sample(indio_dev, chan, val);
if (ret) {
dev_err(dev, "failed to read sample: %d\n", ret);
ret2 = ad4170_set_channel_enable(st, chan->address, false);
if (ret2)
dev_err(dev, "failed to disable channel: %d\n", ret2);
return ret;
}
ret = ad4170_set_channel_enable(st, chan->address, false);
if (ret)
return ret;
return IIO_VAL_INT;
}
static int ad4170_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
enum ad4170_filter_type f_type;
unsigned int pga, fs_idx;
int ret;
guard(mutex)(&st->lock);
switch (info) {
case IIO_CHAN_INFO_RAW:
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad4170_read_sample(indio_dev, chan, val);
iio_device_release_direct(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
pga = FIELD_GET(AD4170_AFE_PGA_GAIN_MSK, setup->afe);
switch (chan->type) {
case IIO_VOLTAGE:
*val = chan_info->scale_tbl[pga][0];
*val2 = chan_info->scale_tbl[pga][1];
return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
/*
* The scale_tbl converts output codes to mV units so
* multiply by MILLI to make the factor convert to µV.
* Then, apply the temperature sensor change sensitivity
* of 477 μV/K. Finally, multiply the result by MILLI
* again to comply with milli degrees Celsius IIO ABI.
*/
*val = 0;
*val2 = DIV_ROUND_CLOSEST(chan_info->scale_tbl[pga][1] * MILLI, 477) *
MILLI;
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
pga = FIELD_GET(AD4170_AFE_PGA_GAIN_MSK, setup->afe);
*val = chan_info->offset_tbl[pga];
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
f_type = __ad4170_get_filter_type(setup->filter);
switch (f_type) {
case AD4170_SINC5_AVG:
case AD4170_SINC3:
fs_idx = find_closest(setup->filter_fs,
ad4170_sinc3_filt_fs_tbl,
ARRAY_SIZE(ad4170_sinc3_filt_fs_tbl));
*val = st->sps_tbl[f_type][fs_idx][0];
*val2 = st->sps_tbl[f_type][fs_idx][1];
return IIO_VAL_INT_PLUS_MICRO;
case AD4170_SINC5:
fs_idx = find_closest(setup->filter_fs,
ad4170_sinc5_filt_fs_tbl,
ARRAY_SIZE(ad4170_sinc5_filt_fs_tbl));
*val = st->sps_tbl[f_type][fs_idx][0];
*val2 = st->sps_tbl[f_type][fs_idx][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
*val = setup->offset;
return IIO_VAL_INT;
case IIO_CHAN_INFO_CALIBSCALE:
*val = setup->gain;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad4170_fill_scale_tbl(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct device *dev = &st->spi->dev;
int bipolar = chan->scan_type.sign == 's' ? 1 : 0;
int precision_bits = chan->scan_type.realbits;
int pga, ainm_voltage, ret;
unsigned long long offset;
ainm_voltage = 0;
ret = ad4170_get_ain_voltage_uv(st, chan->channel2, &ainm_voltage);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to fill scale table\n");
for (pga = 0; pga < AD4170_NUM_PGA_OPTIONS; pga++) {
u64 nv;
unsigned int lshift, rshift;
/*
* The PGA options are numbered from 0 to 9, with option 0 being
* a gain of 2^0 (no actual gain), and 7 meaning a gain of 2^7.
* Option 8, though, sets a gain of 0.5, so the input signal can
* be attenuated by 2 rather than amplified. Option 9, allows
* the signal to bypass the PGA circuitry (no gain).
*
* The scale factor to get ADC output codes to values in mV
* units is given by:
* _scale = (input_range / gain) / 2^precision
* AD4170 gain is a power of 2 so the above can be written as
* _scale = input_range / 2^(precision + gain)
* Keep the input range in µV to avoid truncating the less
* significant bits when right shifting it so to preserve scale
* precision.
*/
nv = (u64)chan_info->input_range_uv * NANO;
lshift = !!(pga & BIT(3)); /* handle PGA options 8 and 9 */
rshift = precision_bits - bipolar + (pga & GENMASK(2, 0)) - lshift;
chan_info->scale_tbl[pga][0] = 0;
chan_info->scale_tbl[pga][1] = div_u64(nv >> rshift, MILLI);
/*
* If the negative input is not at GND, the conversion result
* (which is relative to IN-) will be offset by the level at IN-.
* Use the scale factor the other way around to go from a known
* voltage to the corresponding ADC output code.
* With that, we are able to get to what would be the output
* code for the voltage at the negative input.
* If the negative input is not fixed, there is no offset.
*/
offset = ((unsigned long long)abs(ainm_voltage)) * MICRO;
offset = DIV_ROUND_CLOSEST_ULL(offset, chan_info->scale_tbl[pga][1]);
/*
* After divided by the scale, offset will always fit into 31
* bits. For _raw + _offset to be relative to GND, the value
* provided as _offset is of opposite sign than the real offset.
*/
if (ainm_voltage > 0)
chan_info->offset_tbl[pga] = -(int)(offset);
else
chan_info->offset_tbl[pga] = (int)(offset);
}
return 0;
}
static int ad4170_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
enum ad4170_filter_type f_type;
switch (info) {
case IIO_CHAN_INFO_SCALE:
*vals = (int *)chan_info->scale_tbl;
*length = ARRAY_SIZE(chan_info->scale_tbl) * 2;
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*type = IIO_VAL_INT_PLUS_MICRO;
f_type = ad4170_get_filter_type(indio_dev, chan);
switch (f_type) {
case AD4170_SINC5_AVG:
case AD4170_SINC3:
/* Read sps_tbl here to ensure in bounds array access */
*vals = (int *)st->sps_tbl[f_type];
*length = ARRAY_SIZE(ad4170_sinc3_filt_fs_tbl) * 2;
return IIO_AVAIL_LIST;
case AD4170_SINC5:
/* Read sps_tbl here to ensure in bounds array access */
*vals = (int *)st->sps_tbl[f_type];
*length = ARRAY_SIZE(ad4170_sinc5_filt_fs_tbl) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int ad4170_set_pga(struct ad4170_state *st,
struct iio_chan_spec const *chan, int val, int val2)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
unsigned int pga;
for (pga = 0; pga < AD4170_NUM_PGA_OPTIONS; pga++) {
if (val == chan_info->scale_tbl[pga][0] &&
val2 == chan_info->scale_tbl[pga][1])
break;
}
if (pga == AD4170_NUM_PGA_OPTIONS)
return -EINVAL;
guard(mutex)(&st->lock);
setup->afe &= ~AD4170_AFE_PGA_GAIN_MSK;
setup->afe |= FIELD_PREP(AD4170_AFE_PGA_GAIN_MSK, pga);
return ad4170_write_channel_setup(st, chan->address, false);
}
static int ad4170_set_channel_freq(struct ad4170_state *st,
struct iio_chan_spec const *chan, int val,
int val2)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
enum ad4170_filter_type f_type = __ad4170_get_filter_type(setup->filter);
unsigned int filt_fs_tbl_size, i;
switch (f_type) {
case AD4170_SINC5_AVG:
case AD4170_SINC3:
filt_fs_tbl_size = ARRAY_SIZE(ad4170_sinc3_filt_fs_tbl);
break;
case AD4170_SINC5:
filt_fs_tbl_size = ARRAY_SIZE(ad4170_sinc5_filt_fs_tbl);
break;
}
for (i = 0; i < filt_fs_tbl_size; i++) {
if (st->sps_tbl[f_type][i][0] == val &&
st->sps_tbl[f_type][i][1] == val2)
break;
}
if (i == filt_fs_tbl_size)
return -EINVAL;
guard(mutex)(&st->lock);
if (f_type == AD4170_SINC5)
setup->filter_fs = ad4170_sinc5_filt_fs_tbl[i];
else
setup->filter_fs = ad4170_sinc3_filt_fs_tbl[i];
return ad4170_write_channel_setup(st, chan->address, false);
}
static int ad4170_set_calib_offset(struct ad4170_state *st,
struct iio_chan_spec const *chan, int val)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
guard(mutex)(&st->lock);
setup->offset = val;
return ad4170_write_channel_setup(st, chan->address, false);
}
static int ad4170_set_calib_gain(struct ad4170_state *st,
struct iio_chan_spec const *chan, int val)
{
struct ad4170_chan_info *chan_info = &st->chan_infos[chan->address];
struct ad4170_setup *setup = &chan_info->setup;
guard(mutex)(&st->lock);
setup->gain = val;
return ad4170_write_channel_setup(st, chan->address, false);
}
static int __ad4170_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long info)
{
struct ad4170_state *st = iio_priv(indio_dev);
switch (info) {
case IIO_CHAN_INFO_SCALE:
return ad4170_set_pga(st, chan, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return ad4170_set_channel_freq(st, chan, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
return ad4170_set_calib_offset(st, chan, val);
case IIO_CHAN_INFO_CALIBSCALE:
return ad4170_set_calib_gain(st, chan, val);
default:
return -EINVAL;
}
}
static int ad4170_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long info)
{
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = __ad4170_write_raw(indio_dev, chan, val, val2, info);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4170_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long info)
{
switch (info) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_CALIBBIAS:
case IIO_CHAN_INFO_CALIBSCALE:
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad4170_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *active_scan_mask)
{
struct ad4170_state *st = iio_priv(indio_dev);
unsigned int chan_index;
int ret;
iio_for_each_active_channel(indio_dev, chan_index) {
ret = ad4170_set_channel_enable(st, chan_index, true);
if (ret)
return ret;
}
return 0;
}
static const struct iio_info ad4170_info = {
.read_raw = ad4170_read_raw,
.read_avail = ad4170_read_avail,
.write_raw = ad4170_write_raw,
.write_raw_get_fmt = ad4170_write_raw_get_fmt,
.update_scan_mode = ad4170_update_scan_mode,
.debugfs_reg_access = ad4170_debugfs_reg_access,
};
static int ad4170_soft_reset(struct ad4170_state *st)
{
int ret;
ret = regmap_write(st->regmap, AD4170_CONFIG_A_REG,
AD4170_SW_RESET_MSK);
if (ret)
return ret;
/* AD4170-4 requires 1 ms between reset and any register access. */
fsleep(1 * USEC_PER_MSEC);
return 0;
}
static int ad4170_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
struct iio_dev *indio_dev = gpiochip_get_data(gc);
struct ad4170_state *st = iio_priv(indio_dev);
unsigned int val;
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_read(st->regmap, AD4170_GPIO_MODE_REG, &val);
if (ret)
goto err_release;
/*
* If the GPIO is configured as an input, read the current value from
* AD4170_GPIO_INPUT_REG. Otherwise, read the input value from
* AD4170_GPIO_OUTPUT_REG.
*/
if (val & BIT(offset * 2))
ret = regmap_read(st->regmap, AD4170_GPIO_INPUT_REG, &val);
else
ret = regmap_read(st->regmap, AD4170_GPIO_OUTPUT_REG, &val);
if (ret)
goto err_release;
ret = !!(val & BIT(offset));
err_release:
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4170_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
struct iio_dev *indio_dev = gpiochip_get_data(gc);
struct ad4170_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_assign_bits(st->regmap, AD4170_GPIO_OUTPUT_REG,
BIT(offset), !!value);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4170_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
{
struct iio_dev *indio_dev = gpiochip_get_data(gc);
struct ad4170_state *st = iio_priv(indio_dev);
unsigned int val;
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = regmap_read(st->regmap, AD4170_GPIO_MODE_REG, &val);
if (ret)
goto err_release;
if (val & BIT(offset * 2 + 1))
ret = GPIO_LINE_DIRECTION_OUT;
else
ret = GPIO_LINE_DIRECTION_IN;
err_release:
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4170_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
{
struct iio_dev *indio_dev = gpiochip_get_data(gc);
struct ad4170_state *st = iio_priv(indio_dev);
unsigned long gpio_mask;
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
switch (offset) {
case 0:
gpio_mask = AD4170_GPIO_MODE_GPIO0_MSK;
break;
case 1:
gpio_mask = AD4170_GPIO_MODE_GPIO1_MSK;
break;
case 2:
gpio_mask = AD4170_GPIO_MODE_GPIO2_MSK;
break;
case 3:
gpio_mask = AD4170_GPIO_MODE_GPIO3_MSK;
break;
default:
ret = -EINVAL;
goto err_release;
}
ret = regmap_update_bits(st->regmap, AD4170_GPIO_MODE_REG, gpio_mask,
AD4170_GPIO_MODE_GPIO_INPUT << (2 * offset));
err_release:
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4170_gpio_direction_output(struct gpio_chip *gc,
unsigned int offset, int value)
{
struct iio_dev *indio_dev = gpiochip_get_data(gc);
struct ad4170_state *st = iio_priv(indio_dev);
unsigned long gpio_mask;
int ret;
ret = ad4170_gpio_set(gc, offset, value);
if (ret)
return ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
switch (offset) {
case 0:
gpio_mask = AD4170_GPIO_MODE_GPIO0_MSK;
break;
case 1:
gpio_mask = AD4170_GPIO_MODE_GPIO1_MSK;
break;
case 2:
gpio_mask = AD4170_GPIO_MODE_GPIO2_MSK;
break;
case 3:
gpio_mask = AD4170_GPIO_MODE_GPIO3_MSK;
break;
default:
ret = -EINVAL;
goto err_release;
}
ret = regmap_update_bits(st->regmap, AD4170_GPIO_MODE_REG, gpio_mask,
AD4170_GPIO_MODE_GPIO_OUTPUT << (2 * offset));
err_release:
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4170_gpio_init_valid_mask(struct gpio_chip *gc,
unsigned long *valid_mask,
unsigned int ngpios)
{
struct ad4170_state *st = gpiochip_get_data(gc);
unsigned int i;
/* Only expose GPIOs that were not assigned any other function. */
for (i = 0; i < ngpios; i++) {
bool valid = st->gpio_fn[i] == AD4170_GPIO_UNASSIGNED;
__assign_bit(i, valid_mask, valid);
}
return 0;
}
static int ad4170_gpio_init(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
st->gpiochip.label = "ad4170_gpios";
st->gpiochip.base = -1;
st->gpiochip.ngpio = AD4170_NUM_GPIO_PINS;
st->gpiochip.parent = &st->spi->dev;
st->gpiochip.can_sleep = true;
st->gpiochip.init_valid_mask = ad4170_gpio_init_valid_mask;
st->gpiochip.get_direction = ad4170_gpio_get_direction;
st->gpiochip.direction_input = ad4170_gpio_direction_input;
st->gpiochip.direction_output = ad4170_gpio_direction_output;
st->gpiochip.get = ad4170_gpio_get;
st->gpiochip.set_rv = ad4170_gpio_set;
st->gpiochip.owner = THIS_MODULE;
return devm_gpiochip_add_data(&st->spi->dev, &st->gpiochip, indio_dev);
}
static int ad4170_validate_excitation_pin(struct ad4170_state *st, u32 pin)
{
struct device *dev = &st->spi->dev;
unsigned int i;
/* Check the pin number is valid */
for (i = 0; i < ARRAY_SIZE(ad4170_iout_pin_tbl); i++)
if (ad4170_iout_pin_tbl[i] == pin)
break;
if (i == ARRAY_SIZE(ad4170_iout_pin_tbl))
return dev_err_probe(dev, -EINVAL,
"Invalid excitation pin: %u\n",
pin);
/* Check the pin is available */
if (pin <= AD4170_MAX_ANALOG_PINS) {
if (st->pins_fn[pin] != AD4170_PIN_UNASSIGNED)
return dev_err_probe(dev, -EINVAL,
"Pin %u already used with fn %u\n",
pin, st->pins_fn[pin]);
st->pins_fn[pin] |= AD4170_PIN_CURRENT_OUT;
} else {
unsigned int gpio = pin - AD4170_CURRENT_SRC_I_OUT_PIN_GPIO(0);
if (st->gpio_fn[gpio] != AD4170_GPIO_UNASSIGNED)
return dev_err_probe(dev, -EINVAL,
"GPIO %u already used with fn %u\n",
gpio, st->gpio_fn[gpio]);
st->gpio_fn[gpio] |= AD4170_GPIO_AC_EXCITATION;
}
return 0;
}
static int ad4170_validate_excitation_pins(struct ad4170_state *st,
u32 *exc_pins, int num_exc_pins)
{
unsigned int i;
int ret;
for (i = 0; i < num_exc_pins; i++) {
ret = ad4170_validate_excitation_pin(st, exc_pins[i]);
if (ret)
return ret;
}
return 0;
}
static const char *const ad4170_i_out_pin_dt_props[] = {
"adi,excitation-pin-0",
"adi,excitation-pin-1",
"adi,excitation-pin-2",
"adi,excitation-pin-3",
};
static const char *const ad4170_i_out_val_dt_props[] = {
"adi,excitation-current-0-microamp",
"adi,excitation-current-1-microamp",
"adi,excitation-current-2-microamp",
"adi,excitation-current-3-microamp",
};
/*
* Parses firmware data describing output current source setup. There are 4
* excitation currents (IOUT0 to IOUT3) that can be configured independently.
* Excitation currents are added if they are output on the same pin.
*/
static int ad4170_parse_exc_current(struct ad4170_state *st,
struct fwnode_handle *child,
unsigned int *exc_pins,
unsigned int *exc_curs,
unsigned int *num_exc_pins)
{
struct device *dev = &st->spi->dev;
unsigned int num_pins, i, j;
u32 pin, val;
int ret;
num_pins = 0;
for (i = 0; i < AD4170_NUM_CURRENT_SRC; i++) {
/* Parse excitation current output pin properties. */
pin = AD4170_CURRENT_SRC_I_OUT_PIN_AIN(0);
ret = fwnode_property_read_u32(child, ad4170_i_out_pin_dt_props[i],
&pin);
if (ret)
continue;
exc_pins[num_pins] = pin;
/* Parse excitation current value properties. */
val = ad4170_iout_current_ua_tbl[0];
fwnode_property_read_u32(child,
ad4170_i_out_val_dt_props[i], &val);
for (j = 0; j < ARRAY_SIZE(ad4170_iout_current_ua_tbl); j++)
if (ad4170_iout_current_ua_tbl[j] == val)
break;
if (j == ARRAY_SIZE(ad4170_iout_current_ua_tbl))
return dev_err_probe(dev, -EINVAL, "Invalid %s: %uuA\n",
ad4170_i_out_val_dt_props[i], val);
exc_curs[num_pins] = j;
num_pins++;
}
*num_exc_pins = num_pins;
return 0;
}
static int ad4170_setup_current_src(struct ad4170_state *st,
struct fwnode_handle *child,
struct ad4170_setup *setup, u32 *exc_pins,
unsigned int *exc_curs, int num_exc_pins,
bool ac_excited)
{
unsigned int exc_cur_pair, i, j;
int ret;
for (i = 0; i < num_exc_pins; i++) {
unsigned int exc_cur = exc_curs[i];
unsigned int pin = exc_pins[i];
unsigned int current_src = 0;
for (j = 0; j < AD4170_NUM_CURRENT_SRC; j++)
if (st->cur_src_pins[j] == AD4170_CURRENT_SRC_DISABLED)
break;
if (j == AD4170_NUM_CURRENT_SRC)
return dev_err_probe(&st->spi->dev, -EINVAL,
"Too many excitation current sources\n");
current_src |= FIELD_PREP(AD4170_CURRENT_SRC_I_OUT_PIN_MSK, pin);
current_src |= FIELD_PREP(AD4170_CURRENT_SRC_I_OUT_VAL_MSK, exc_cur);
st->cur_src_pins[j] = pin;
ret = regmap_write(st->regmap, AD4170_CURRENT_SRC_REG(j),
current_src);
if (ret)
return ret;
}
if (!ac_excited)
return 0;
if (num_exc_pins < 2)
return dev_err_probe(&st->spi->dev, -EINVAL,
"Current chopping requested but only one pin provided: %u\n",
exc_pins[0]);
/*
* Two use cases to handle here:
* - 2 pairs of excitation currents;
* - 1 pair of excitation currents.
*/
if (num_exc_pins == 4) {
for (i = 0; i < AD4170_NUM_CURRENT_SRC; i++)
if (st->cur_src_pins[i] != exc_pins[i])
return dev_err_probe(&st->spi->dev, -EINVAL,
"Unable to use 4 exc pins\n");
} else {
/*
* Excitation current chopping is configured in pairs. Current
* sources IOUT0 and IOUT1 form pair 1, IOUT2 and IOUT3 make up
* pair 2. So, if current chopping was requested, check if the
* first end of the first pair of excitation currents is
* available. Try the next pair if IOUT0 has already been
* configured for another channel.
*/
i = st->cur_src_pins[0] == exc_pins[0] ? 0 : 2;
if (st->cur_src_pins[i] != exc_pins[0] ||
st->cur_src_pins[i + 1] != exc_pins[1])
return dev_err_probe(&st->spi->dev, -EINVAL,
"Failed to setup current chopping\n");
st->cur_src_pins[i] = exc_pins[0];
st->cur_src_pins[i + 1] = exc_pins[1];
if (i == 0)
exc_cur_pair = AD4170_MISC_CHOP_IEXC_PAIR1;
else
exc_cur_pair = AD4170_MISC_CHOP_IEXC_PAIR2;
}
/*
* Configure excitation current chopping.
* Chop both pairs if using four excitation pins.
*/
setup->misc |= FIELD_PREP(AD4170_MISC_CHOP_IEXC_MSK,
num_exc_pins == 2 ?
exc_cur_pair :
AD4170_MISC_CHOP_IEXC_BOTH);
return 0;
}
static int ad4170_setup_bridge(struct ad4170_state *st,
struct fwnode_handle *child,
struct ad4170_setup *setup, u32 *exc_pins,
unsigned int *exc_curs, int num_exc_pins,
bool ac_excited)
{
unsigned long gpio_mask;
unsigned int i;
int ret;
/*
* If a specific current is provided through
* adi,excitation-current-n-microamp, set excitation pins provided
* through adi,excitation-pin-n to excite the bridge circuit.
*/
for (i = 0; i < num_exc_pins; i++)
if (exc_curs[i] > 0)
return ad4170_setup_current_src(st, child, setup, exc_pins,
exc_curs, num_exc_pins,
ac_excited);
/*
* Else, use predefined ACX1, ACX1 negated, ACX2, ACX2 negated signals
* to AC excite the bridge. Those signals are output on GPIO2, GPIO0,
* GPIO3, and GPIO1, respectively. If only two pins are specified for AC
* excitation, use ACX1 and ACX2 (GPIO2 and GPIO3).
*
* Also, to avoid any short-circuit condition when more than one channel
* is enabled, set GPIO2 and GPIO0 high, and set GPIO1 and GPIO3 low to
* DC excite the bridge whenever a channel without AC excitation is
* selected. That is needed because GPIO pins are controlled by the next
* highest priority GPIO function when a channel doesn't enable AC
* excitation. See datasheet Figure 113 Weigh Scale (AC Excitation) for
* the reference circuit diagram.
*/
if (num_exc_pins == 2) {
setup->misc |= FIELD_PREP(AD4170_MISC_CHOP_ADC_MSK, 0x3);
gpio_mask = AD4170_GPIO_MODE_GPIO3_MSK | AD4170_GPIO_MODE_GPIO2_MSK;
ret = regmap_update_bits(st->regmap, AD4170_GPIO_MODE_REG, gpio_mask,
FIELD_PREP(AD4170_GPIO_MODE_GPIO3_MSK,
AD4170_GPIO_MODE_GPIO_OUTPUT) |
FIELD_PREP(AD4170_GPIO_MODE_GPIO2_MSK,
AD4170_GPIO_MODE_GPIO_OUTPUT));
if (ret)
return ret;
/*
* Set GPIO2 high and GPIO3 low to DC excite the bridge when
* a different channel is selected.
*/
gpio_mask = AD4170_GPIO_OUTPUT_GPIO_MSK(3) |
AD4170_GPIO_OUTPUT_GPIO_MSK(2);
ret = regmap_update_bits(st->regmap, AD4170_GPIO_OUTPUT_REG, gpio_mask,
FIELD_PREP(AD4170_GPIO_OUTPUT_GPIO_MSK(3), 0) |
FIELD_PREP(AD4170_GPIO_OUTPUT_GPIO_MSK(2), 1));
if (ret)
return ret;
st->gpio_fn[3] |= AD4170_GPIO_OUTPUT;
st->gpio_fn[2] |= AD4170_GPIO_OUTPUT;
} else {
setup->misc |= FIELD_PREP(AD4170_MISC_CHOP_ADC_MSK, 0x2);
gpio_mask = AD4170_GPIO_MODE_GPIO3_MSK | AD4170_GPIO_MODE_GPIO2_MSK |
AD4170_GPIO_MODE_GPIO1_MSK | AD4170_GPIO_MODE_GPIO0_MSK;
ret = regmap_update_bits(st->regmap, AD4170_GPIO_MODE_REG, gpio_mask,
FIELD_PREP(AD4170_GPIO_MODE_GPIO3_MSK,
AD4170_GPIO_MODE_GPIO_OUTPUT) |
FIELD_PREP(AD4170_GPIO_MODE_GPIO2_MSK,
AD4170_GPIO_MODE_GPIO_OUTPUT) |
FIELD_PREP(AD4170_GPIO_MODE_GPIO1_MSK,
AD4170_GPIO_MODE_GPIO_OUTPUT) |
FIELD_PREP(AD4170_GPIO_MODE_GPIO0_MSK,
AD4170_GPIO_MODE_GPIO_OUTPUT));
if (ret)
return ret;
/*
* Set GPIO2 and GPIO0 high, and set GPIO1 and GPIO3 low to DC
* excite the bridge when a different channel is selected.
*/
gpio_mask = AD4170_GPIO_OUTPUT_GPIO_MSK(3) |
AD4170_GPIO_OUTPUT_GPIO_MSK(2) |
AD4170_GPIO_OUTPUT_GPIO_MSK(1) |
AD4170_GPIO_OUTPUT_GPIO_MSK(0);
ret = regmap_update_bits(st->regmap, AD4170_GPIO_OUTPUT_REG, gpio_mask,
FIELD_PREP(AD4170_GPIO_OUTPUT_GPIO_MSK(3), 0) |
FIELD_PREP(AD4170_GPIO_OUTPUT_GPIO_MSK(2), 1) |
FIELD_PREP(AD4170_GPIO_OUTPUT_GPIO_MSK(1), 0) |
FIELD_PREP(AD4170_GPIO_OUTPUT_GPIO_MSK(0), 1));
if (ret)
return ret;
st->gpio_fn[3] |= AD4170_GPIO_OUTPUT;
st->gpio_fn[2] |= AD4170_GPIO_OUTPUT;
st->gpio_fn[1] |= AD4170_GPIO_OUTPUT;
st->gpio_fn[0] |= AD4170_GPIO_OUTPUT;
}
return 0;
}
static int ad4170_setup_rtd(struct ad4170_state *st,
struct fwnode_handle *child,
struct ad4170_setup *setup, u32 *exc_pins,
unsigned int *exc_curs, int num_exc_pins, bool ac_excited)
{
return ad4170_setup_current_src(st, child, setup, exc_pins,
exc_curs, num_exc_pins, ac_excited);
}
static int ad4170_parse_external_sensor(struct ad4170_state *st,
struct fwnode_handle *child,
struct ad4170_setup *setup,
struct iio_chan_spec *chan,
unsigned int s_type)
{
unsigned int num_exc_pins, reg_val;
struct device *dev = &st->spi->dev;
u32 pins[2], exc_pins[4], exc_curs[4];
bool ac_excited;
int ret;
ret = fwnode_property_read_u32_array(child, "diff-channels", pins,
ARRAY_SIZE(pins));
if (ret)
return dev_err_probe(dev, ret,
"Failed to read sensor diff-channels\n");
chan->differential = true;
chan->channel = pins[0];
chan->channel2 = pins[1];
ret = ad4170_parse_exc_current(st, child, exc_pins, exc_curs, &num_exc_pins);
if (ret)
return ret;
/* The external sensor may not need excitation from the ADC chip. */
if (num_exc_pins == 0)
return 0;
ret = ad4170_validate_excitation_pins(st, exc_pins, num_exc_pins);
if (ret)
return ret;
ac_excited = fwnode_property_read_bool(child, "adi,excitation-ac");
if (s_type == AD4170_THERMOCOUPLE_SENSOR) {
if (st->pins_fn[chan->channel2] & AD4170_PIN_VBIAS) {
reg_val = BIT(chan->channel2);
ret = regmap_write(st->regmap, AD4170_V_BIAS_REG, reg_val);
if (ret)
dev_err_probe(dev, ret, "Failed to set vbias\n");
}
}
if (s_type == AD4170_WEIGH_SCALE_SENSOR)
ret = ad4170_setup_bridge(st, child, setup, exc_pins, exc_curs,
num_exc_pins, ac_excited);
else
ret = ad4170_setup_rtd(st, child, setup, exc_pins, exc_curs,
num_exc_pins, ac_excited);
return ret;
}
static int ad4170_parse_reference(struct ad4170_state *st,
struct fwnode_handle *child,
struct ad4170_setup *setup)
{
struct device *dev = &st->spi->dev;
const char *propname;
u32 aux;
int ret;
/* Optional positive reference buffering */
propname = "adi,positive-reference-buffer";
ret = device_property_match_property_string(dev, propname,
ad4170_ref_buf_str,
ARRAY_SIZE(ad4170_ref_buf_str));
/* Default to full precharge buffer enabled. */
setup->afe |= FIELD_PREP(AD4170_AFE_REF_BUF_P_MSK,
ret >= 0 ? ret : AD4170_REF_BUF_FULL);
/* Optional negative reference buffering */
propname = "adi,negative-reference-buffer";
ret = device_property_match_property_string(dev, propname,
ad4170_ref_buf_str,
ARRAY_SIZE(ad4170_ref_buf_str));
/* Default to full precharge buffer enabled. */
setup->afe |= FIELD_PREP(AD4170_AFE_REF_BUF_M_MSK,
ret >= 0 ? ret : AD4170_REF_BUF_FULL);
/* Optional voltage reference selection */
propname = "adi,reference-select";
aux = AD4170_REF_REFOUT; /* Default reference selection. */
fwnode_property_read_u32(child, propname, &aux);
if (aux > AD4170_REF_AVDD)
return dev_err_probe(dev, -EINVAL, "Invalid %s: %u\n",
propname, aux);
setup->afe |= FIELD_PREP(AD4170_AFE_REF_SELECT_MSK, aux);
return 0;
}
static int ad4170_parse_adc_channel_type(struct device *dev,
struct fwnode_handle *child,
struct iio_chan_spec *chan)
{
const char *propname, *propname2;
int ret, ret2;
u32 pins[2];
propname = "single-channel";
propname2 = "diff-channels";
if (!fwnode_property_present(child, propname) &&
!fwnode_property_present(child, propname2))
return dev_err_probe(dev, -EINVAL,
"Channel must define one of %s or %s.\n",
propname, propname2);
/* Parse differential channel configuration */
ret = fwnode_property_read_u32_array(child, propname2, pins,
ARRAY_SIZE(pins));
if (!ret) {
chan->differential = true;
chan->channel = pins[0];
chan->channel2 = pins[1];
return 0;
}
/* Failed to parse diff chan so try pseudo-diff chan props */
propname2 = "common-mode-channel";
if (fwnode_property_present(child, propname) &&
!fwnode_property_present(child, propname2))
return dev_err_probe(dev, -EINVAL,
"When %s is defined, %s must be defined too\n",
propname, propname2);
/* Parse pseudo-differential channel configuration */
ret = fwnode_property_read_u32(child, propname, &pins[0]);
ret2 = fwnode_property_read_u32(child, propname2, &pins[1]);
if (!ret && !ret2) {
chan->differential = false;
chan->channel = pins[0];
chan->channel2 = pins[1];
return 0;
}
return dev_err_probe(dev, -EINVAL,
"Failed to parse channel %lu input. %d, %d\n",
chan->address, ret, ret2);
}
static int ad4170_parse_channel_node(struct iio_dev *indio_dev,
struct fwnode_handle *child,
unsigned int chan_num)
{
struct ad4170_state *st = iio_priv(indio_dev);
unsigned int s_type = AD4170_ADC_SENSOR;
struct device *dev = &st->spi->dev;
struct ad4170_chan_info *chan_info;
struct ad4170_setup *setup;
struct iio_chan_spec *chan;
unsigned int ref_select;
unsigned int ch_reg;
bool bipolar;
int ret;
ret = fwnode_property_read_u32(child, "reg", &ch_reg);
if (ret)
return dev_err_probe(dev, ret, "Failed to read channel reg\n");
if (ch_reg >= AD4170_MAX_ADC_CHANNELS)
return dev_err_probe(dev, -EINVAL,
"Channel idx greater than no of channels\n");
chan = &st->chans[chan_num];
*chan = ad4170_channel_template;
chan->address = ch_reg;
chan->scan_index = ch_reg;
chan_info = &st->chan_infos[chan->address];
chan_info->setup_num = AD4170_INVALID_SETUP;
chan_info->initialized = true;
setup = &chan_info->setup;
ret = ad4170_parse_reference(st, child, setup);
if (ret)
return ret;
ret = fwnode_property_match_property_string(child, "adi,sensor-type",
ad4170_sensor_type,
ARRAY_SIZE(ad4170_sensor_type));
/* Default to conventional ADC channel if sensor type not present */
s_type = ret < 0 ? AD4170_ADC_SENSOR : ret;
switch (s_type) {
case AD4170_ADC_SENSOR:
ret = ad4170_parse_adc_channel_type(dev, child, chan);
if (ret)
return ret;
break;
case AD4170_WEIGH_SCALE_SENSOR:
case AD4170_THERMOCOUPLE_SENSOR:
case AD4170_RTD_SENSOR:
ret = ad4170_parse_external_sensor(st, child, setup, chan, s_type);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
bipolar = fwnode_property_read_bool(child, "bipolar");
setup->afe |= FIELD_PREP(AD4170_AFE_BIPOLAR_MSK, bipolar);
if (bipolar)
chan->scan_type.sign = 's';
else
chan->scan_type.sign = 'u';
ret = ad4170_validate_channel(st, chan);
if (ret)
return ret;
ref_select = FIELD_GET(AD4170_AFE_REF_SELECT_MSK, setup->afe);
ret = ad4170_get_input_range(st, chan, ch_reg, ref_select);
if (ret < 0)
return dev_err_probe(dev, ret, "Invalid input config\n");
chan_info->input_range_uv = ret;
return 0;
}
static int ad4170_parse_channels(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
unsigned int num_channels;
unsigned int chan_num;
int ret;
num_channels = device_get_child_node_count(dev);
if (num_channels > AD4170_MAX_ADC_CHANNELS)
return dev_err_probe(dev, -EINVAL, "Too many channels\n");
/* Add one for temperature */
num_channels = min(num_channels + 1, AD4170_MAX_ADC_CHANNELS);
chan_num = 0;
device_for_each_child_node_scoped(dev, child) {
ret = ad4170_parse_channel_node(indio_dev, child, chan_num++);
if (ret)
return ret;
}
/*
* Add internal temperature sensor channel if the maximum number of
* channels has not been reached.
*/
if (num_channels < AD4170_MAX_ADC_CHANNELS) {
struct ad4170_setup *setup = &st->chan_infos[chan_num].setup;
st->chans[chan_num] = ad4170_temp_channel_template;
st->chans[chan_num].address = chan_num;
st->chans[chan_num].scan_index = chan_num;
st->chan_infos[chan_num].setup_num = AD4170_INVALID_SETUP;
st->chan_infos[chan_num].initialized = true;
setup->afe |= FIELD_PREP(AD4170_AFE_REF_SELECT_MSK,
AD4170_REF_AVDD);
ret = ad4170_get_input_range(st, &st->chans[chan_num], chan_num,
AD4170_REF_AVDD);
if (ret < 0)
return dev_err_probe(dev, ret, "Invalid input config\n");
st->chan_infos[chan_num].input_range_uv = ret;
chan_num++;
}
/* Add timestamp channel */
struct iio_chan_spec ts_chan = IIO_CHAN_SOFT_TIMESTAMP(chan_num);
st->chans[chan_num] = ts_chan;
num_channels = num_channels + 1;
indio_dev->num_channels = num_channels;
indio_dev->channels = st->chans;
return 0;
}
static struct ad4170_state *clk_hw_to_ad4170(struct clk_hw *hw)
{
return container_of(hw, struct ad4170_state, int_clk_hw);
}
static unsigned long ad4170_sel_clk(struct ad4170_state *st,
unsigned int clk_sel)
{
st->clock_ctrl &= ~AD4170_CLOCK_CTRL_CLOCKSEL_MSK;
st->clock_ctrl |= FIELD_PREP(AD4170_CLOCK_CTRL_CLOCKSEL_MSK, clk_sel);
return regmap_write(st->regmap, AD4170_CLOCK_CTRL_REG, st->clock_ctrl);
}
static unsigned long ad4170_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return AD4170_INT_CLOCK_16MHZ;
}
static int ad4170_clk_output_is_enabled(struct clk_hw *hw)
{
struct ad4170_state *st = clk_hw_to_ad4170(hw);
u32 clk_sel;
clk_sel = FIELD_GET(AD4170_CLOCK_CTRL_CLOCKSEL_MSK, st->clock_ctrl);
return clk_sel == AD4170_CLOCK_CTRL_CLOCKSEL_INT_OUT;
}
static int ad4170_clk_output_prepare(struct clk_hw *hw)
{
struct ad4170_state *st = clk_hw_to_ad4170(hw);
return ad4170_sel_clk(st, AD4170_CLOCK_CTRL_CLOCKSEL_INT_OUT);
}
static void ad4170_clk_output_unprepare(struct clk_hw *hw)
{
struct ad4170_state *st = clk_hw_to_ad4170(hw);
ad4170_sel_clk(st, AD4170_CLOCK_CTRL_CLOCKSEL_INT);
}
static const struct clk_ops ad4170_int_clk_ops = {
.recalc_rate = ad4170_clk_recalc_rate,
.is_enabled = ad4170_clk_output_is_enabled,
.prepare = ad4170_clk_output_prepare,
.unprepare = ad4170_clk_output_unprepare,
};
static int ad4170_register_clk_provider(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = indio_dev->dev.parent;
struct clk_init_data init = {};
int ret;
if (device_property_read_string(dev, "clock-output-names", &init.name)) {
init.name = devm_kasprintf(dev, GFP_KERNEL, "%pfw",
dev_fwnode(dev));
if (!init.name)
return -ENOMEM;
}
init.ops = &ad4170_int_clk_ops;
st->int_clk_hw.init = &init;
ret = devm_clk_hw_register(dev, &st->int_clk_hw);
if (ret)
return ret;
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
&st->int_clk_hw);
}
static int ad4170_clock_select(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
struct clk *ext_clk;
int ret;
ext_clk = devm_clk_get_optional_enabled(dev, NULL);
if (IS_ERR(ext_clk))
return dev_err_probe(dev, PTR_ERR(ext_clk),
"Failed to get external clock\n");
if (!ext_clk) {
/* Use internal clock reference */
st->mclk_hz = AD4170_INT_CLOCK_16MHZ;
st->clock_ctrl |= FIELD_PREP(AD4170_CLOCK_CTRL_CLOCKSEL_MSK,
AD4170_CLOCK_CTRL_CLOCKSEL_INT_OUT);
if (!device_property_present(&st->spi->dev, "#clock-cells"))
return 0;
return ad4170_register_clk_provider(indio_dev);
}
/* Read optional clock-names prop to specify the external clock type */
ret = device_property_match_property_string(dev, "clock-names",
ad4170_clk_sel,
ARRAY_SIZE(ad4170_clk_sel));
ret = ret < 0 ? 0 : ret; /* Default to external clock if no clock-names */
st->clock_ctrl |= FIELD_PREP(AD4170_CLOCK_CTRL_CLOCKSEL_MSK,
AD4170_CLOCK_CTRL_CLOCKSEL_EXT + ret);
st->mclk_hz = clk_get_rate(ext_clk);
if (st->mclk_hz < AD4170_EXT_CLOCK_MHZ_MIN ||
st->mclk_hz > AD4170_EXT_CLOCK_MHZ_MAX) {
return dev_err_probe(dev, -EINVAL,
"Invalid external clock frequency %u\n",
st->mclk_hz);
}
return 0;
}
static int ad4170_parse_firmware(struct iio_dev *indio_dev)
{
unsigned int vbias_pins[AD4170_MAX_ANALOG_PINS];
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
unsigned int num_vbias_pins;
int reg_data, ret;
u32 int_pin_sel;
unsigned int i;
ret = ad4170_clock_select(indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup device clock\n");
ret = regmap_write(st->regmap, AD4170_CLOCK_CTRL_REG, st->clock_ctrl);
if (ret)
return ret;
for (i = 0; i < AD4170_NUM_CURRENT_SRC; i++)
st->cur_src_pins[i] = AD4170_CURRENT_SRC_DISABLED;
/* On power on, device defaults to using SDO pin for data ready signal */
int_pin_sel = AD4170_INT_PIN_SDO;
ret = device_property_match_property_string(dev, "interrupt-names",
ad4170_int_pin_names,
ARRAY_SIZE(ad4170_int_pin_names));
if (ret >= 0)
int_pin_sel = ret;
reg_data = FIELD_PREP(AD4170_PIN_MUXING_DIG_AUX1_CTRL_MSK,
int_pin_sel == AD4170_INT_PIN_DIG_AUX1 ?
AD4170_PIN_MUXING_DIG_AUX1_RDY :
AD4170_PIN_MUXING_DIG_AUX1_DISABLED);
ret = regmap_update_bits(st->regmap, AD4170_PIN_MUXING_REG,
AD4170_PIN_MUXING_DIG_AUX1_CTRL_MSK, reg_data);
if (ret)
return ret;
ret = device_property_count_u32(dev, "adi,vbias-pins");
if (ret > 0) {
if (ret > AD4170_MAX_ANALOG_PINS)
return dev_err_probe(dev, -EINVAL,
"Too many vbias pins %u\n", ret);
num_vbias_pins = ret;
ret = device_property_read_u32_array(dev, "adi,vbias-pins",
vbias_pins,
num_vbias_pins);
if (ret)
return dev_err_probe(dev, ret,
"Failed to read vbias pins\n");
for (i = 0; i < num_vbias_pins; i++)
st->pins_fn[vbias_pins[i]] |= AD4170_PIN_VBIAS;
}
ret = ad4170_parse_channels(indio_dev);
if (ret)
return ret;
/* Only create a GPIO chip if flagged for it */
if (device_property_read_bool(dev, "gpio-controller")) {
ret = ad4170_gpio_init(indio_dev);
if (ret)
return ret;
}
return 0;
}
static int ad4170_initial_config(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
unsigned int i;
int ret;
ad4170_fill_sps_tbl(st);
ret = regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_MODE_MSK,
FIELD_PREP(AD4170_ADC_CTRL_MODE_MSK,
AD4170_ADC_CTRL_MODE_IDLE));
if (ret)
return dev_err_probe(dev, ret,
"Failed to set ADC mode to idle\n");
for (i = 0; i < indio_dev->num_channels; i++) {
struct ad4170_chan_info *chan_info;
struct iio_chan_spec const *chan;
struct ad4170_setup *setup;
unsigned int val;
chan = &indio_dev->channels[i];
if (chan->type == IIO_TIMESTAMP)
continue;
chan_info = &st->chan_infos[chan->address];
setup = &chan_info->setup;
setup->gain = AD4170_GAIN_REG_DEFAULT;
ret = ad4170_write_channel_setup(st, chan->address, false);
if (ret)
return dev_err_probe(dev, ret,
"Failed to write channel setup\n");
val = FIELD_PREP(AD4170_CHAN_MAP_AINP_MSK, chan->channel) |
FIELD_PREP(AD4170_CHAN_MAP_AINM_MSK, chan->channel2);
ret = regmap_write(st->regmap, AD4170_CHAN_MAP_REG(i), val);
if (ret)
return dev_err_probe(dev, ret,
"Failed to write CHAN_MAP_REG\n");
ret = ad4170_set_channel_freq(st, chan,
AD4170_DEFAULT_SAMP_RATE, 0);
if (ret)
return dev_err_probe(dev, ret,
"Failed to set channel freq\n");
ret = ad4170_fill_scale_tbl(indio_dev, chan);
if (ret)
return dev_err_probe(dev, ret,
"Failed to fill scale tbl\n");
}
/* Disable all channels to avoid reading from unexpected channel */
ret = regmap_write(st->regmap, AD4170_CHAN_EN_REG, 0);
if (ret)
return dev_err_probe(dev, ret,
"Failed to disable channels\n");
/*
* Configure channels to share the same data output register, i.e. data
* can be read from the same register address regardless of channel
* number.
*/
return regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_MULTI_DATA_REG_SEL_MSK,
AD4170_ADC_CTRL_MULTI_DATA_REG_SEL_MSK);
}
static int ad4170_prepare_spi_message(struct ad4170_state *st)
{
/*
* Continuous data register read is enabled on buffer postenable so
* no instruction phase is needed meaning we don't need to send the
* register address to read data. Transfer only needs the read buffer.
*/
st->xfer.rx_buf = &st->rx_buf;
st->xfer.len = BITS_TO_BYTES(ad4170_channel_template.scan_type.realbits);
spi_message_init_with_transfers(&st->msg, &st->xfer, 1);
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg);
}
static int ad4170_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
int ret;
ret = regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_MODE_MSK,
FIELD_PREP(AD4170_ADC_CTRL_MODE_MSK,
AD4170_ADC_CTRL_MODE_CONT));
if (ret)
return ret;
/*
* This enables continuous read of the ADC data register. The ADC must
* be in continuous conversion mode.
*/
return regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_CONT_READ_MSK,
FIELD_PREP(AD4170_ADC_CTRL_CONT_READ_MSK,
AD4170_ADC_CTRL_CONT_READ_ENABLE));
}
static int ad4170_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
unsigned int i;
int ret;
/*
* Use a high register address (virtual register) to request a write of
* 0xA5 to the ADC during the first 8 SCLKs of the ADC data read cycle,
* thus exiting continuous read.
*/
ret = regmap_write(st->regmap, AD4170_ADC_CTRL_CONT_READ_EXIT_REG, 0);
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_CONT_READ_MSK,
FIELD_PREP(AD4170_ADC_CTRL_CONT_READ_MSK,
AD4170_ADC_CTRL_CONT_READ_DISABLE));
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AD4170_ADC_CTRL_REG,
AD4170_ADC_CTRL_MODE_MSK,
FIELD_PREP(AD4170_ADC_CTRL_MODE_MSK,
AD4170_ADC_CTRL_MODE_IDLE));
if (ret)
return ret;
/*
* The ADC sequences through all the enabled channels (see datasheet
* page 95). That can lead to incorrect channel being read if a
* single-shot read (or buffered read with different active_scan_mask)
* is done after buffer disable. Disable all channels so only requested
* channels will be read.
*/
for (i = 0; i < indio_dev->num_channels; i++) {
if (indio_dev->channels[i].type == IIO_TIMESTAMP)
continue;
ret = ad4170_set_channel_enable(st, i, false);
if (ret)
return ret;
}
return 0;
}
static bool ad4170_validate_scan_mask(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
unsigned int masklength = iio_get_masklength(indio_dev);
unsigned int enabled;
/*
* The channel sequencer cycles through the enabled channels in
* sequential order, from channel 0 to channel 15, bypassing disabled
* channels. When more than one channel is enabled, channel 0 must
* always be enabled. See datasheet channel_en register description at
* page 95.
*/
enabled = bitmap_weight(scan_mask, masklength);
if (enabled > 1)
return test_bit(0, scan_mask);
return enabled == 1;
}
static const struct iio_buffer_setup_ops ad4170_buffer_ops = {
.postenable = ad4170_buffer_postenable,
.predisable = ad4170_buffer_predisable,
.validate_scan_mask = ad4170_validate_scan_mask,
};
static irqreturn_t ad4170_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad4170_state *st = iio_priv(indio_dev);
unsigned int chan_index;
unsigned int i = 0;
int ret;
iio_for_each_active_channel(indio_dev, chan_index) {
ret = spi_sync(st->spi, &st->msg);
if (ret)
goto err_out;
memcpy(&st->bounce_buffer[i++], st->rx_buf, ARRAY_SIZE(st->rx_buf));
}
iio_push_to_buffers_with_ts(indio_dev, st->bounce_buffer,
sizeof(st->bounce_buffer),
iio_get_time_ns(indio_dev));
err_out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_trigger_ops ad4170_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
};
static irqreturn_t ad4170_irq_handler(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct ad4170_state *st = iio_priv(indio_dev);
if (iio_buffer_enabled(indio_dev))
iio_trigger_poll(st->trig);
else
complete(&st->completion);
return IRQ_HANDLED;
};
static int ad4170_trigger_setup(struct iio_dev *indio_dev)
{
struct ad4170_state *st = iio_priv(indio_dev);
struct device *dev = &st->spi->dev;
int ret;
st->trig = devm_iio_trigger_alloc(dev, "%s-trig%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!st->trig)
return -ENOMEM;
st->trig->ops = &ad4170_trigger_ops;
iio_trigger_set_drvdata(st->trig, indio_dev);
ret = devm_iio_trigger_register(dev, st->trig);
if (ret)
return dev_err_probe(dev, ret, "Failed to register trigger\n");
indio_dev->trig = iio_trigger_get(st->trig);
return 0;
}
static int ad4170_regulator_setup(struct ad4170_state *st)
{
struct device *dev = &st->spi->dev;
int ret;
/* Required regulators */
ret = devm_regulator_get_enable_read_voltage(dev, "avdd");
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to get AVDD voltage.\n");
st->vrefs_uv[AD4170_AVDD_SUP] = ret;
ret = devm_regulator_get_enable_read_voltage(dev, "iovdd");
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to get IOVDD voltage.\n");
st->vrefs_uv[AD4170_IOVDD_SUP] = ret;
/* Optional regulators */
ret = devm_regulator_get_enable_read_voltage(dev, "avss");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get AVSS voltage.\n");
/*
* Assume AVSS at GND (0V) if not provided.
* REVISIT: AVSS is never above system ground level (i.e. AVSS is either
* GND or a negative voltage). But we currently don't have support for
* reading negative voltages with the regulator framework. So, the
* current AD4170 support reads a positive value from the regulator,
* then inverts sign to make that negative.
*/
st->vrefs_uv[AD4170_AVSS_SUP] = ret == -ENODEV ? 0 : -ret;
ret = devm_regulator_get_enable_read_voltage(dev, "refin1p");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get REFIN+ voltage.\n");
st->vrefs_uv[AD4170_REFIN1P_SUP] = ret;
ret = devm_regulator_get_enable_read_voltage(dev, "refin1n");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get REFIN- voltage.\n");
/*
* Negative supplies are assumed to provide negative voltage.
* REVISIT when support for negative regulator voltage read be available
* in the regulator framework.
*/
st->vrefs_uv[AD4170_REFIN1N_SUP] = ret == -ENODEV ? -ENODEV : -ret;
ret = devm_regulator_get_enable_read_voltage(dev, "refin2p");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get REFIN2+ voltage.\n");
st->vrefs_uv[AD4170_REFIN2P_SUP] = ret;
ret = devm_regulator_get_enable_read_voltage(dev, "refin2n");
if (ret < 0 && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get REFIN2- voltage.\n");
/*
* Negative supplies are assumed to provide negative voltage.
* REVISIT when support for negative regulator voltage read be available
* in the regulator framework.
*/
st->vrefs_uv[AD4170_REFIN2N_SUP] = ret == -ENODEV ? -ENODEV : -ret;
return 0;
}
static int ad4170_probe(struct spi_device *spi)
{
const struct ad4170_chip_info *chip;
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad4170_state *st;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
ret = devm_mutex_init(dev, &st->lock);
if (ret)
return ret;
chip = spi_get_device_match_data(spi);
if (!chip)
return -EINVAL;
indio_dev->name = chip->name;
indio_dev->info = &ad4170_info;
st->regmap = devm_regmap_init(dev, NULL, st, &ad4170_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(dev, PTR_ERR(st->regmap),
"Failed to initialize regmap\n");
ret = ad4170_regulator_setup(st);
if (ret)
return ret;
ret = ad4170_soft_reset(st);
if (ret)
return ret;
ret = ad4170_parse_firmware(indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Failed to parse firmware\n");
ret = ad4170_initial_config(indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup device\n");
init_completion(&st->completion);
if (spi->irq) {
ret = devm_request_irq(dev, spi->irq, &ad4170_irq_handler,
IRQF_ONESHOT, indio_dev->name, indio_dev);
if (ret)
return ret;
ret = ad4170_trigger_setup(indio_dev);
if (ret)
return ret;
}
ret = ad4170_prepare_spi_message(st);
if (ret)
return dev_err_probe(dev, ret, "Failed to prepare SPI message\n");
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
&ad4170_trigger_handler,
&ad4170_buffer_ops);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup read buffer\n");
return devm_iio_device_register(dev, indio_dev);
}
static const struct spi_device_id ad4170_id_table[] = {
{ "ad4170-4", (kernel_ulong_t)&ad4170_chip_info },
{ "ad4190-4", (kernel_ulong_t)&ad4190_chip_info },
{ "ad4195-4", (kernel_ulong_t)&ad4195_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad4170_id_table);
static const struct of_device_id ad4170_of_match[] = {
{ .compatible = "adi,ad4170-4", .data = &ad4170_chip_info },
{ .compatible = "adi,ad4190-4", .data = &ad4190_chip_info },
{ .compatible = "adi,ad4195-4", .data = &ad4195_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, ad4170_of_match);
static struct spi_driver ad4170_driver = {
.driver = {
.name = "ad4170-4",
.of_match_table = ad4170_of_match,
},
.probe = ad4170_probe,
.id_table = ad4170_id_table,
};
module_spi_driver(ad4170_driver);
MODULE_AUTHOR("Ana-Maria Cusco <ana-maria.cusco@analog.com>");
MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD4170 SPI driver");
MODULE_LICENSE("GPL");