linux/drivers/i2c/busses/i2c-imx-lpi2c.c
Emanuele Ghidoli 85b9dd6e90 i2c: lpi2c: implement xfer_atomic callback
Rework the read and write code paths in the driver to support operation
in atomic contexts. To achieve this, the driver must not rely on IRQs
or perform any scheduling, e.g., via a sleep or schedule routine.

Implement atomic, sleep-free, and IRQ-less operation. This increases
complexity but is necessary for atomic I2C transfers required by some
hardware configurations, e.g., to trigger reboots on an external PMIC chip.

Signed-off-by: Emanuele Ghidoli <emanuele.ghidoli@toradex.com>
Signed-off-by: Francesco Dolcini <francesco.dolcini@toradex.com>
Reviewed-by: Carlos Song <carlos.song@nxp.com>
Tested-by: Primoz Fiser <primoz.fiser@norik.com>
Signed-off-by: Andi Shyti <andi.shyti@kernel.org>
Link: https://lore.kernel.org/r/20250718133429.67219-3-francesco@dolcini.it
2025-07-25 23:15:39 +02:00

1595 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* This is i.MX low power i2c controller driver.
*
* Copyright 2016 Freescale Semiconductor, Inc.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#define DRIVER_NAME "imx-lpi2c"
#define LPI2C_PARAM 0x04 /* i2c RX/TX FIFO size */
#define LPI2C_MCR 0x10 /* i2c contrl register */
#define LPI2C_MSR 0x14 /* i2c status register */
#define LPI2C_MIER 0x18 /* i2c interrupt enable */
#define LPI2C_MDER 0x1C /* i2c DMA enable */
#define LPI2C_MCFGR0 0x20 /* i2c master configuration */
#define LPI2C_MCFGR1 0x24 /* i2c master configuration */
#define LPI2C_MCFGR2 0x28 /* i2c master configuration */
#define LPI2C_MCFGR3 0x2C /* i2c master configuration */
#define LPI2C_MCCR0 0x48 /* i2c master clk configuration */
#define LPI2C_MCCR1 0x50 /* i2c master clk configuration */
#define LPI2C_MFCR 0x58 /* i2c master FIFO control */
#define LPI2C_MFSR 0x5C /* i2c master FIFO status */
#define LPI2C_MTDR 0x60 /* i2c master TX data register */
#define LPI2C_MRDR 0x70 /* i2c master RX data register */
#define LPI2C_SCR 0x110 /* i2c target control register */
#define LPI2C_SSR 0x114 /* i2c target status register */
#define LPI2C_SIER 0x118 /* i2c target interrupt enable */
#define LPI2C_SDER 0x11C /* i2c target DMA enable */
#define LPI2C_SCFGR0 0x120 /* i2c target configuration */
#define LPI2C_SCFGR1 0x124 /* i2c target configuration */
#define LPI2C_SCFGR2 0x128 /* i2c target configuration */
#define LPI2C_SAMR 0x140 /* i2c target address match */
#define LPI2C_SASR 0x150 /* i2c target address status */
#define LPI2C_STAR 0x154 /* i2c target transmit ACK */
#define LPI2C_STDR 0x160 /* i2c target transmit data */
#define LPI2C_SRDR 0x170 /* i2c target receive data */
#define LPI2C_SRDROR 0x178 /* i2c target receive data read only */
/* i2c command */
#define TRAN_DATA 0X00
#define RECV_DATA 0X01
#define GEN_STOP 0X02
#define RECV_DISCARD 0X03
#define GEN_START 0X04
#define START_NACK 0X05
#define START_HIGH 0X06
#define START_HIGH_NACK 0X07
#define MCR_MEN BIT(0)
#define MCR_RST BIT(1)
#define MCR_DOZEN BIT(2)
#define MCR_DBGEN BIT(3)
#define MCR_RTF BIT(8)
#define MCR_RRF BIT(9)
#define MSR_TDF BIT(0)
#define MSR_RDF BIT(1)
#define MSR_SDF BIT(9)
#define MSR_NDF BIT(10)
#define MSR_ALF BIT(11)
#define MSR_MBF BIT(24)
#define MSR_BBF BIT(25)
#define MIER_TDIE BIT(0)
#define MIER_RDIE BIT(1)
#define MIER_SDIE BIT(9)
#define MIER_NDIE BIT(10)
#define MCFGR1_AUTOSTOP BIT(8)
#define MCFGR1_IGNACK BIT(9)
#define MRDR_RXEMPTY BIT(14)
#define MDER_TDDE BIT(0)
#define MDER_RDDE BIT(1)
#define SCR_SEN BIT(0)
#define SCR_RST BIT(1)
#define SCR_FILTEN BIT(4)
#define SCR_RTF BIT(8)
#define SCR_RRF BIT(9)
#define SSR_TDF BIT(0)
#define SSR_RDF BIT(1)
#define SSR_AVF BIT(2)
#define SSR_TAF BIT(3)
#define SSR_RSF BIT(8)
#define SSR_SDF BIT(9)
#define SSR_BEF BIT(10)
#define SSR_FEF BIT(11)
#define SSR_SBF BIT(24)
#define SSR_BBF BIT(25)
#define SSR_CLEAR_BITS (SSR_RSF | SSR_SDF | SSR_BEF | SSR_FEF)
#define SIER_TDIE BIT(0)
#define SIER_RDIE BIT(1)
#define SIER_AVIE BIT(2)
#define SIER_TAIE BIT(3)
#define SIER_RSIE BIT(8)
#define SIER_SDIE BIT(9)
#define SIER_BEIE BIT(10)
#define SIER_FEIE BIT(11)
#define SIER_AM0F BIT(12)
#define SCFGR1_RXSTALL BIT(1)
#define SCFGR1_TXDSTALL BIT(2)
#define SCFGR2_FILTSDA_SHIFT 24
#define SCFGR2_FILTSCL_SHIFT 16
#define SCFGR2_CLKHOLD(x) (x)
#define SCFGR2_FILTSDA(x) ((x) << SCFGR2_FILTSDA_SHIFT)
#define SCFGR2_FILTSCL(x) ((x) << SCFGR2_FILTSCL_SHIFT)
#define SASR_READ_REQ 0x1
#define SLAVE_INT_FLAG (SIER_TDIE | SIER_RDIE | SIER_AVIE | \
SIER_SDIE | SIER_BEIE)
#define I2C_CLK_RATIO 2
#define CHUNK_DATA 256
#define I2C_PM_TIMEOUT 10 /* ms */
#define I2C_DMA_THRESHOLD 8 /* bytes */
enum lpi2c_imx_mode {
STANDARD, /* 100+Kbps */
FAST, /* 400+Kbps */
FAST_PLUS, /* 1.0+Mbps */
HS, /* 3.4+Mbps */
ULTRA_FAST, /* 5.0+Mbps */
};
enum lpi2c_imx_pincfg {
TWO_PIN_OD,
TWO_PIN_OO,
TWO_PIN_PP,
FOUR_PIN_PP,
};
struct lpi2c_imx_dma {
bool using_pio_mode;
u8 rx_cmd_buf_len;
u8 *dma_buf;
u16 *rx_cmd_buf;
unsigned int dma_len;
unsigned int tx_burst_num;
unsigned int rx_burst_num;
unsigned long dma_msg_flag;
resource_size_t phy_addr;
dma_addr_t dma_tx_addr;
dma_addr_t dma_addr;
enum dma_data_direction dma_data_dir;
enum dma_transfer_direction dma_transfer_dir;
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
};
struct lpi2c_imx_struct {
struct i2c_adapter adapter;
int num_clks;
struct clk_bulk_data *clks;
void __iomem *base;
__u8 *rx_buf;
__u8 *tx_buf;
struct completion complete;
unsigned long rate_per;
unsigned int msglen;
unsigned int delivered;
unsigned int block_data;
unsigned int bitrate;
unsigned int txfifosize;
unsigned int rxfifosize;
enum lpi2c_imx_mode mode;
struct i2c_bus_recovery_info rinfo;
bool can_use_dma;
struct lpi2c_imx_dma *dma;
struct i2c_client *target;
};
#define lpi2c_imx_read_msr_poll_timeout(atomic, val, cond) \
(atomic ? readl_poll_timeout_atomic(lpi2c_imx->base + LPI2C_MSR, val, \
cond, 0, 500000) : \
readl_poll_timeout(lpi2c_imx->base + LPI2C_MSR, val, cond, \
0, 500000))
static void lpi2c_imx_intctrl(struct lpi2c_imx_struct *lpi2c_imx,
unsigned int enable)
{
writel(enable, lpi2c_imx->base + LPI2C_MIER);
}
static int lpi2c_imx_bus_busy(struct lpi2c_imx_struct *lpi2c_imx, bool atomic)
{
unsigned int temp;
int err;
err = lpi2c_imx_read_msr_poll_timeout(atomic, temp,
temp & (MSR_ALF | MSR_BBF | MSR_MBF));
/* check for arbitration lost, clear if set */
if (temp & MSR_ALF) {
writel(temp, lpi2c_imx->base + LPI2C_MSR);
return -EAGAIN;
}
/* check for bus not busy */
if (err) {
dev_dbg(&lpi2c_imx->adapter.dev, "bus not work\n");
if (lpi2c_imx->adapter.bus_recovery_info)
i2c_recover_bus(&lpi2c_imx->adapter);
return -ETIMEDOUT;
}
return 0;
}
static u32 lpi2c_imx_txfifo_cnt(struct lpi2c_imx_struct *lpi2c_imx)
{
return readl(lpi2c_imx->base + LPI2C_MFSR) & 0xff;
}
static void lpi2c_imx_set_mode(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int bitrate = lpi2c_imx->bitrate;
enum lpi2c_imx_mode mode;
if (bitrate < I2C_MAX_FAST_MODE_FREQ)
mode = STANDARD;
else if (bitrate < I2C_MAX_FAST_MODE_PLUS_FREQ)
mode = FAST;
else if (bitrate < I2C_MAX_HIGH_SPEED_MODE_FREQ)
mode = FAST_PLUS;
else if (bitrate < I2C_MAX_ULTRA_FAST_MODE_FREQ)
mode = HS;
else
mode = ULTRA_FAST;
lpi2c_imx->mode = mode;
}
static int lpi2c_imx_start(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs, bool atomic)
{
unsigned int temp;
temp = readl(lpi2c_imx->base + LPI2C_MCR);
temp |= MCR_RRF | MCR_RTF;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
writel(0x7f00, lpi2c_imx->base + LPI2C_MSR);
temp = i2c_8bit_addr_from_msg(msgs) | (GEN_START << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
return lpi2c_imx_bus_busy(lpi2c_imx, atomic);
}
static void lpi2c_imx_stop(struct lpi2c_imx_struct *lpi2c_imx, bool atomic)
{
unsigned int temp;
int err;
writel(GEN_STOP << 8, lpi2c_imx->base + LPI2C_MTDR);
err = lpi2c_imx_read_msr_poll_timeout(atomic, temp, temp & MSR_SDF);
if (err) {
dev_dbg(&lpi2c_imx->adapter.dev, "stop timeout\n");
if (lpi2c_imx->adapter.bus_recovery_info)
i2c_recover_bus(&lpi2c_imx->adapter);
}
}
/* CLKLO = I2C_CLK_RATIO * CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2 */
static int lpi2c_imx_config(struct lpi2c_imx_struct *lpi2c_imx)
{
u8 prescale, filt, sethold, datavd;
unsigned int clk_rate, clk_cycle, clkhi, clklo;
enum lpi2c_imx_pincfg pincfg;
unsigned int temp;
lpi2c_imx_set_mode(lpi2c_imx);
clk_rate = lpi2c_imx->rate_per;
if (lpi2c_imx->mode == HS || lpi2c_imx->mode == ULTRA_FAST)
filt = 0;
else
filt = 2;
for (prescale = 0; prescale <= 7; prescale++) {
clk_cycle = clk_rate / ((1 << prescale) * lpi2c_imx->bitrate)
- 3 - (filt >> 1);
clkhi = DIV_ROUND_UP(clk_cycle, I2C_CLK_RATIO + 1);
clklo = clk_cycle - clkhi;
if (clklo < 64)
break;
}
if (prescale > 7)
return -EINVAL;
/* set MCFGR1: PINCFG, PRESCALE, IGNACK */
if (lpi2c_imx->mode == ULTRA_FAST)
pincfg = TWO_PIN_OO;
else
pincfg = TWO_PIN_OD;
temp = prescale | pincfg << 24;
if (lpi2c_imx->mode == ULTRA_FAST)
temp |= MCFGR1_IGNACK;
writel(temp, lpi2c_imx->base + LPI2C_MCFGR1);
/* set MCFGR2: FILTSDA, FILTSCL */
temp = (filt << 16) | (filt << 24);
writel(temp, lpi2c_imx->base + LPI2C_MCFGR2);
/* set MCCR: DATAVD, SETHOLD, CLKHI, CLKLO */
sethold = clkhi;
datavd = clkhi >> 1;
temp = datavd << 24 | sethold << 16 | clkhi << 8 | clklo;
if (lpi2c_imx->mode == HS)
writel(temp, lpi2c_imx->base + LPI2C_MCCR1);
else
writel(temp, lpi2c_imx->base + LPI2C_MCCR0);
return 0;
}
static int lpi2c_imx_master_enable(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int temp;
int ret;
ret = pm_runtime_resume_and_get(lpi2c_imx->adapter.dev.parent);
if (ret < 0)
return ret;
temp = MCR_RST;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
writel(0, lpi2c_imx->base + LPI2C_MCR);
ret = lpi2c_imx_config(lpi2c_imx);
if (ret)
goto rpm_put;
temp = readl(lpi2c_imx->base + LPI2C_MCR);
temp |= MCR_MEN;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
return 0;
rpm_put:
pm_runtime_mark_last_busy(lpi2c_imx->adapter.dev.parent);
pm_runtime_put_autosuspend(lpi2c_imx->adapter.dev.parent);
return ret;
}
static int lpi2c_imx_master_disable(struct lpi2c_imx_struct *lpi2c_imx)
{
u32 temp;
temp = readl(lpi2c_imx->base + LPI2C_MCR);
temp &= ~MCR_MEN;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
pm_runtime_mark_last_busy(lpi2c_imx->adapter.dev.parent);
pm_runtime_put_autosuspend(lpi2c_imx->adapter.dev.parent);
return 0;
}
static int lpi2c_imx_pio_msg_complete(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long time_left;
time_left = wait_for_completion_timeout(&lpi2c_imx->complete, HZ);
return time_left ? 0 : -ETIMEDOUT;
}
static int lpi2c_imx_txfifo_empty(struct lpi2c_imx_struct *lpi2c_imx, bool atomic)
{
unsigned int temp;
int err;
err = lpi2c_imx_read_msr_poll_timeout(atomic, temp,
(temp & MSR_NDF) || !lpi2c_imx_txfifo_cnt(lpi2c_imx));
if (temp & MSR_NDF) {
dev_dbg(&lpi2c_imx->adapter.dev, "NDF detected\n");
return -EIO;
}
if (err) {
dev_dbg(&lpi2c_imx->adapter.dev, "txfifo empty timeout\n");
if (lpi2c_imx->adapter.bus_recovery_info)
i2c_recover_bus(&lpi2c_imx->adapter);
return -ETIMEDOUT;
}
return 0;
}
static void lpi2c_imx_set_tx_watermark(struct lpi2c_imx_struct *lpi2c_imx)
{
writel(lpi2c_imx->txfifosize >> 1, lpi2c_imx->base + LPI2C_MFCR);
}
static void lpi2c_imx_set_rx_watermark(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int temp, remaining;
remaining = lpi2c_imx->msglen - lpi2c_imx->delivered;
if (remaining > (lpi2c_imx->rxfifosize >> 1))
temp = lpi2c_imx->rxfifosize >> 1;
else
temp = 0;
writel(temp << 16, lpi2c_imx->base + LPI2C_MFCR);
}
static bool lpi2c_imx_write_txfifo(struct lpi2c_imx_struct *lpi2c_imx, bool atomic)
{
unsigned int data, txcnt;
txcnt = readl(lpi2c_imx->base + LPI2C_MFSR) & 0xff;
while (txcnt < lpi2c_imx->txfifosize) {
if (lpi2c_imx->delivered == lpi2c_imx->msglen)
break;
data = lpi2c_imx->tx_buf[lpi2c_imx->delivered++];
writel(data, lpi2c_imx->base + LPI2C_MTDR);
txcnt++;
}
if (lpi2c_imx->delivered < lpi2c_imx->msglen) {
if (!atomic)
lpi2c_imx_intctrl(lpi2c_imx, MIER_TDIE | MIER_NDIE);
return false;
}
if (!atomic)
complete(&lpi2c_imx->complete);
return true;
}
static bool lpi2c_imx_read_rxfifo(struct lpi2c_imx_struct *lpi2c_imx, bool atomic)
{
unsigned int blocklen, remaining;
unsigned int temp, data;
do {
data = readl(lpi2c_imx->base + LPI2C_MRDR);
if (data & MRDR_RXEMPTY)
break;
lpi2c_imx->rx_buf[lpi2c_imx->delivered++] = data & 0xff;
} while (1);
/*
* First byte is the length of remaining packet in the SMBus block
* data read. Add it to msgs->len.
*/
if (lpi2c_imx->block_data) {
blocklen = lpi2c_imx->rx_buf[0];
lpi2c_imx->msglen += blocklen;
}
remaining = lpi2c_imx->msglen - lpi2c_imx->delivered;
if (!remaining) {
if (!atomic)
complete(&lpi2c_imx->complete);
return true;
}
/* not finished, still waiting for rx data */
lpi2c_imx_set_rx_watermark(lpi2c_imx);
/* multiple receive commands */
if (lpi2c_imx->block_data) {
lpi2c_imx->block_data = 0;
temp = remaining;
temp |= (RECV_DATA << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
} else if (!(lpi2c_imx->delivered & 0xff)) {
temp = (remaining > CHUNK_DATA ? CHUNK_DATA : remaining) - 1;
temp |= (RECV_DATA << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
}
if (!atomic)
lpi2c_imx_intctrl(lpi2c_imx, MIER_RDIE);
return false;
}
static void lpi2c_imx_write(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
lpi2c_imx->tx_buf = msgs->buf;
lpi2c_imx_set_tx_watermark(lpi2c_imx);
lpi2c_imx_write_txfifo(lpi2c_imx, false);
}
static int lpi2c_imx_write_atomic(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
u32 temp;
int err;
lpi2c_imx->tx_buf = msgs->buf;
err = lpi2c_imx_read_msr_poll_timeout(true, temp,
(temp & MSR_NDF) ||
lpi2c_imx_write_txfifo(lpi2c_imx, true));
if (temp & MSR_NDF)
return -EIO;
return err;
}
static void lpi2c_imx_read_init(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
unsigned int temp;
lpi2c_imx->rx_buf = msgs->buf;
lpi2c_imx->block_data = msgs->flags & I2C_M_RECV_LEN;
lpi2c_imx_set_rx_watermark(lpi2c_imx);
temp = msgs->len > CHUNK_DATA ? CHUNK_DATA - 1 : msgs->len - 1;
temp |= (RECV_DATA << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
}
static bool lpi2c_imx_read_chunk_atomic(struct lpi2c_imx_struct *lpi2c_imx)
{
u32 rxcnt;
rxcnt = (readl(lpi2c_imx->base + LPI2C_MFSR) >> 16) & 0xFF;
if (!rxcnt)
return false;
if (!lpi2c_imx_read_rxfifo(lpi2c_imx, true))
return false;
return true;
}
static int lpi2c_imx_read_atomic(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
u32 temp;
int tmo_us;
tmo_us = 1000000;
do {
if (lpi2c_imx_read_chunk_atomic(lpi2c_imx))
return 0;
temp = readl(lpi2c_imx->base + LPI2C_MSR);
if (temp & MSR_NDF)
return -EIO;
udelay(100);
tmo_us -= 100;
} while (tmo_us > 0);
return -ETIMEDOUT;
}
static bool is_use_dma(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msg)
{
if (!lpi2c_imx->can_use_dma)
return false;
/*
* When the length of data is less than I2C_DMA_THRESHOLD,
* cpu mode is used directly to avoid low performance.
*/
return !(msg->len < I2C_DMA_THRESHOLD);
}
static int lpi2c_imx_pio_xfer(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msg)
{
reinit_completion(&lpi2c_imx->complete);
if (msg->flags & I2C_M_RD) {
lpi2c_imx_read_init(lpi2c_imx, msg);
lpi2c_imx_intctrl(lpi2c_imx, MIER_RDIE | MIER_NDIE);
} else {
lpi2c_imx_write(lpi2c_imx, msg);
}
return lpi2c_imx_pio_msg_complete(lpi2c_imx);
}
static int lpi2c_imx_pio_xfer_atomic(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msg)
{
if (msg->flags & I2C_M_RD) {
lpi2c_imx_read_init(lpi2c_imx, msg);
return lpi2c_imx_read_atomic(lpi2c_imx, msg);
}
return lpi2c_imx_write_atomic(lpi2c_imx, msg);
}
static int lpi2c_imx_dma_timeout_calculate(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long time = 0;
time = 8 * lpi2c_imx->dma->dma_len * 1000 / lpi2c_imx->bitrate;
/* Add extra second for scheduler related activities */
time += 1;
/* Double calculated time */
return secs_to_jiffies(time);
}
static int lpi2c_imx_alloc_rx_cmd_buf(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
u16 rx_remain = dma->dma_len;
int cmd_num;
u16 temp;
/*
* Calculate the number of rx command words via the DMA TX channel
* writing into command register based on the i2c msg len, and build
* the rx command words buffer.
*/
cmd_num = DIV_ROUND_UP(rx_remain, CHUNK_DATA);
dma->rx_cmd_buf = kcalloc(cmd_num, sizeof(u16), GFP_KERNEL);
dma->rx_cmd_buf_len = cmd_num * sizeof(u16);
if (!dma->rx_cmd_buf) {
dev_err(&lpi2c_imx->adapter.dev, "Alloc RX cmd buffer failed\n");
return -ENOMEM;
}
for (int i = 0; i < cmd_num ; i++) {
temp = rx_remain > CHUNK_DATA ? CHUNK_DATA - 1 : rx_remain - 1;
temp |= (RECV_DATA << 8);
rx_remain -= CHUNK_DATA;
dma->rx_cmd_buf[i] = temp;
}
return 0;
}
static int lpi2c_imx_dma_msg_complete(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long time_left, time;
time = lpi2c_imx_dma_timeout_calculate(lpi2c_imx);
time_left = wait_for_completion_timeout(&lpi2c_imx->complete, time);
if (time_left == 0) {
dev_err(&lpi2c_imx->adapter.dev, "I/O Error in DMA Data Transfer\n");
return -ETIMEDOUT;
}
return 0;
}
static void lpi2c_dma_unmap(struct lpi2c_imx_dma *dma)
{
struct dma_chan *chan = dma->dma_data_dir == DMA_FROM_DEVICE
? dma->chan_rx : dma->chan_tx;
dma_unmap_single(chan->device->dev, dma->dma_addr,
dma->dma_len, dma->dma_data_dir);
dma->dma_data_dir = DMA_NONE;
}
static void lpi2c_cleanup_rx_cmd_dma(struct lpi2c_imx_dma *dma)
{
dmaengine_terminate_sync(dma->chan_tx);
dma_unmap_single(dma->chan_tx->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
}
static void lpi2c_cleanup_dma(struct lpi2c_imx_dma *dma)
{
if (dma->dma_data_dir == DMA_FROM_DEVICE)
dmaengine_terminate_sync(dma->chan_rx);
else if (dma->dma_data_dir == DMA_TO_DEVICE)
dmaengine_terminate_sync(dma->chan_tx);
lpi2c_dma_unmap(dma);
}
static void lpi2c_dma_callback(void *data)
{
struct lpi2c_imx_struct *lpi2c_imx = (struct lpi2c_imx_struct *)data;
complete(&lpi2c_imx->complete);
}
static int lpi2c_dma_rx_cmd_submit(struct lpi2c_imx_struct *lpi2c_imx)
{
struct dma_async_tx_descriptor *rx_cmd_desc;
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
struct dma_chan *txchan = dma->chan_tx;
dma_cookie_t cookie;
dma->dma_tx_addr = dma_map_single(txchan->device->dev,
dma->rx_cmd_buf, dma->rx_cmd_buf_len,
DMA_TO_DEVICE);
if (dma_mapping_error(txchan->device->dev, dma->dma_tx_addr)) {
dev_err(&lpi2c_imx->adapter.dev, "DMA map failed, use pio\n");
return -EINVAL;
}
rx_cmd_desc = dmaengine_prep_slave_single(txchan, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rx_cmd_desc) {
dev_err(&lpi2c_imx->adapter.dev, "DMA prep slave sg failed, use pio\n");
goto desc_prepare_err_exit;
}
cookie = dmaengine_submit(rx_cmd_desc);
if (dma_submit_error(cookie)) {
dev_err(&lpi2c_imx->adapter.dev, "submitting DMA failed, use pio\n");
goto submit_err_exit;
}
dma_async_issue_pending(txchan);
return 0;
desc_prepare_err_exit:
dma_unmap_single(txchan->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
return -EINVAL;
submit_err_exit:
dma_unmap_single(txchan->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
dmaengine_desc_free(rx_cmd_desc);
return -EINVAL;
}
static int lpi2c_dma_submit(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan;
dma_cookie_t cookie;
if (dma->dma_msg_flag & I2C_M_RD) {
chan = dma->chan_rx;
dma->dma_data_dir = DMA_FROM_DEVICE;
dma->dma_transfer_dir = DMA_DEV_TO_MEM;
} else {
chan = dma->chan_tx;
dma->dma_data_dir = DMA_TO_DEVICE;
dma->dma_transfer_dir = DMA_MEM_TO_DEV;
}
dma->dma_addr = dma_map_single(chan->device->dev,
dma->dma_buf, dma->dma_len, dma->dma_data_dir);
if (dma_mapping_error(chan->device->dev, dma->dma_addr)) {
dev_err(&lpi2c_imx->adapter.dev, "DMA map failed, use pio\n");
return -EINVAL;
}
desc = dmaengine_prep_slave_single(chan, dma->dma_addr,
dma->dma_len, dma->dma_transfer_dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(&lpi2c_imx->adapter.dev, "DMA prep slave sg failed, use pio\n");
goto desc_prepare_err_exit;
}
reinit_completion(&lpi2c_imx->complete);
desc->callback = lpi2c_dma_callback;
desc->callback_param = lpi2c_imx;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie)) {
dev_err(&lpi2c_imx->adapter.dev, "submitting DMA failed, use pio\n");
goto submit_err_exit;
}
/* Can't switch to PIO mode when DMA have started transfer */
dma->using_pio_mode = false;
dma_async_issue_pending(chan);
return 0;
desc_prepare_err_exit:
lpi2c_dma_unmap(dma);
return -EINVAL;
submit_err_exit:
lpi2c_dma_unmap(dma);
dmaengine_desc_free(desc);
return -EINVAL;
}
static int lpi2c_imx_find_max_burst_num(unsigned int fifosize, unsigned int len)
{
unsigned int i;
for (i = fifosize / 2; i > 0; i--)
if (!(len % i))
break;
return i;
}
/*
* For a highest DMA efficiency, tx/rx burst number should be calculated according
* to the FIFO depth.
*/
static void lpi2c_imx_dma_burst_num_calculate(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
unsigned int cmd_num;
if (dma->dma_msg_flag & I2C_M_RD) {
/*
* One RX cmd word can trigger DMA receive no more than 256 bytes.
* The number of RX cmd words should be calculated based on the data
* length.
*/
cmd_num = DIV_ROUND_UP(dma->dma_len, CHUNK_DATA);
dma->tx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->txfifosize,
cmd_num);
dma->rx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->rxfifosize,
dma->dma_len);
} else {
dma->tx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->txfifosize,
dma->dma_len);
}
}
static int lpi2c_dma_config(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
struct dma_slave_config rx = {}, tx = {};
int ret;
lpi2c_imx_dma_burst_num_calculate(lpi2c_imx);
if (dma->dma_msg_flag & I2C_M_RD) {
tx.dst_addr = dma->phy_addr + LPI2C_MTDR;
tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
tx.dst_maxburst = dma->tx_burst_num;
tx.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &tx);
if (ret < 0)
return ret;
rx.src_addr = dma->phy_addr + LPI2C_MRDR;
rx.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
rx.src_maxburst = dma->rx_burst_num;
rx.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(dma->chan_rx, &rx);
if (ret < 0)
return ret;
} else {
tx.dst_addr = dma->phy_addr + LPI2C_MTDR;
tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
tx.dst_maxburst = dma->tx_burst_num;
tx.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &tx);
if (ret < 0)
return ret;
}
return 0;
}
static void lpi2c_dma_enable(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
/*
* TX interrupt will be triggered when the number of words in
* the transmit FIFO is equal or less than TX watermark.
* RX interrupt will be triggered when the number of words in
* the receive FIFO is greater than RX watermark.
* In order to trigger the DMA interrupt, TX watermark should be
* set equal to the DMA TX burst number but RX watermark should
* be set less than the DMA RX burst number.
*/
if (dma->dma_msg_flag & I2C_M_RD) {
/* Set I2C TX/RX watermark */
writel(dma->tx_burst_num | (dma->rx_burst_num - 1) << 16,
lpi2c_imx->base + LPI2C_MFCR);
/* Enable I2C DMA TX/RX function */
writel(MDER_TDDE | MDER_RDDE, lpi2c_imx->base + LPI2C_MDER);
} else {
/* Set I2C TX watermark */
writel(dma->tx_burst_num, lpi2c_imx->base + LPI2C_MFCR);
/* Enable I2C DMA TX function */
writel(MDER_TDDE, lpi2c_imx->base + LPI2C_MDER);
}
/* Enable NACK detected */
lpi2c_imx_intctrl(lpi2c_imx, MIER_NDIE);
};
/*
* When lpi2c is in TX DMA mode we can use one DMA TX channel to write
* data word into TXFIFO, but in RX DMA mode it is different.
*
* The LPI2C MTDR register is a command data and transmit data register.
* Bits 8-10 are the command data field and Bits 0-7 are the transmit
* data field. When the LPI2C master needs to read data, the number of
* bytes to read should be set in the command field and RECV_DATA should
* be set into the command data field to receive (DATA[7:0] + 1) bytes.
* The recv data command word is made of RECV_DATA in the command data
* field and the number of bytes to read in transmit data field. When the
* length of data to be read exceeds 256 bytes, recv data command word
* needs to be written to TXFIFO multiple times.
*
* So when in RX DMA mode, the TX channel also must to be configured to
* send RX command words and the RX command word must be set in advance
* before transmitting.
*/
static int lpi2c_imx_dma_xfer(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msg)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
int ret;
/* When DMA mode fails before transferring, CPU mode can be used. */
dma->using_pio_mode = true;
dma->dma_len = msg->len;
dma->dma_msg_flag = msg->flags;
dma->dma_buf = i2c_get_dma_safe_msg_buf(msg, I2C_DMA_THRESHOLD);
if (!dma->dma_buf)
return -ENOMEM;
ret = lpi2c_dma_config(lpi2c_imx);
if (ret) {
dev_err(&lpi2c_imx->adapter.dev, "Failed to configure DMA (%d)\n", ret);
goto disable_dma;
}
lpi2c_dma_enable(lpi2c_imx);
ret = lpi2c_dma_submit(lpi2c_imx);
if (ret) {
dev_err(&lpi2c_imx->adapter.dev, "DMA submission failed (%d)\n", ret);
goto disable_dma;
}
if (dma->dma_msg_flag & I2C_M_RD) {
ret = lpi2c_imx_alloc_rx_cmd_buf(lpi2c_imx);
if (ret)
goto disable_cleanup_data_dma;
ret = lpi2c_dma_rx_cmd_submit(lpi2c_imx);
if (ret)
goto disable_cleanup_data_dma;
}
ret = lpi2c_imx_dma_msg_complete(lpi2c_imx);
if (ret)
goto disable_cleanup_all_dma;
/* When encountering NACK in transfer, clean up all DMA transfers */
if ((readl(lpi2c_imx->base + LPI2C_MSR) & MSR_NDF) && !ret) {
ret = -EIO;
goto disable_cleanup_all_dma;
}
if (dma->dma_msg_flag & I2C_M_RD)
dma_unmap_single(dma->chan_tx->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
lpi2c_dma_unmap(dma);
goto disable_dma;
disable_cleanup_all_dma:
if (dma->dma_msg_flag & I2C_M_RD)
lpi2c_cleanup_rx_cmd_dma(dma);
disable_cleanup_data_dma:
lpi2c_cleanup_dma(dma);
disable_dma:
/* Disable I2C DMA function */
writel(0, lpi2c_imx->base + LPI2C_MDER);
if (dma->dma_msg_flag & I2C_M_RD)
kfree(dma->rx_cmd_buf);
if (ret)
i2c_put_dma_safe_msg_buf(dma->dma_buf, msg, false);
else
i2c_put_dma_safe_msg_buf(dma->dma_buf, msg, true);
return ret;
}
static int lpi2c_imx_xfer_common(struct i2c_adapter *adapter,
struct i2c_msg *msgs, int num, bool atomic)
{
struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(adapter);
unsigned int temp;
int i, result;
result = lpi2c_imx_master_enable(lpi2c_imx);
if (result)
return result;
for (i = 0; i < num; i++) {
result = lpi2c_imx_start(lpi2c_imx, &msgs[i], atomic);
if (result)
goto disable;
/* quick smbus */
if (num == 1 && msgs[0].len == 0)
goto stop;
lpi2c_imx->rx_buf = NULL;
lpi2c_imx->tx_buf = NULL;
lpi2c_imx->delivered = 0;
lpi2c_imx->msglen = msgs[i].len;
if (atomic) {
result = lpi2c_imx_pio_xfer_atomic(lpi2c_imx, &msgs[i]);
} else {
init_completion(&lpi2c_imx->complete);
if (is_use_dma(lpi2c_imx, &msgs[i])) {
result = lpi2c_imx_dma_xfer(lpi2c_imx, &msgs[i]);
if (result && lpi2c_imx->dma->using_pio_mode)
result = lpi2c_imx_pio_xfer(lpi2c_imx, &msgs[i]);
} else {
result = lpi2c_imx_pio_xfer(lpi2c_imx, &msgs[i]);
}
}
if (result)
goto stop;
if (!(msgs[i].flags & I2C_M_RD)) {
result = lpi2c_imx_txfifo_empty(lpi2c_imx, atomic);
if (result)
goto stop;
}
}
stop:
lpi2c_imx_stop(lpi2c_imx, atomic);
temp = readl(lpi2c_imx->base + LPI2C_MSR);
if ((temp & MSR_NDF) && !result)
result = -EIO;
disable:
lpi2c_imx_master_disable(lpi2c_imx);
dev_dbg(&lpi2c_imx->adapter.dev, "<%s> exit with: %s: %d\n", __func__,
(result < 0) ? "error" : "success msg",
(result < 0) ? result : num);
return (result < 0) ? result : num;
}
static int lpi2c_imx_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num)
{
return lpi2c_imx_xfer_common(adapter, msgs, num, false);
}
static int lpi2c_imx_xfer_atomic(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num)
{
return lpi2c_imx_xfer_common(adapter, msgs, num, true);
}
static irqreturn_t lpi2c_imx_target_isr(struct lpi2c_imx_struct *lpi2c_imx,
u32 ssr, u32 sier_filter)
{
u8 value;
u32 sasr;
/* Arbitration lost */
if (sier_filter & SSR_BEF) {
writel(0, lpi2c_imx->base + LPI2C_SIER);
return IRQ_HANDLED;
}
/* Address detected */
if (sier_filter & SSR_AVF) {
sasr = readl(lpi2c_imx->base + LPI2C_SASR);
if (SASR_READ_REQ & sasr) {
/* Read request */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_READ_REQUESTED, &value);
writel(value, lpi2c_imx->base + LPI2C_STDR);
goto ret;
} else {
/* Write request */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_WRITE_REQUESTED, &value);
}
}
if (sier_filter & SSR_SDF)
/* STOP */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_STOP, &value);
if (sier_filter & SSR_TDF) {
/* Target send data */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_READ_PROCESSED, &value);
writel(value, lpi2c_imx->base + LPI2C_STDR);
}
if (sier_filter & SSR_RDF) {
/* Target receive data */
value = readl(lpi2c_imx->base + LPI2C_SRDR);
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_WRITE_RECEIVED, &value);
}
ret:
/* Clear SSR */
writel(ssr & SSR_CLEAR_BITS, lpi2c_imx->base + LPI2C_SSR);
return IRQ_HANDLED;
}
static irqreturn_t lpi2c_imx_master_isr(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int enabled;
unsigned int temp;
enabled = readl(lpi2c_imx->base + LPI2C_MIER);
lpi2c_imx_intctrl(lpi2c_imx, 0);
temp = readl(lpi2c_imx->base + LPI2C_MSR);
temp &= enabled;
if (temp & MSR_NDF)
complete(&lpi2c_imx->complete);
else if (temp & MSR_RDF)
lpi2c_imx_read_rxfifo(lpi2c_imx, false);
else if (temp & MSR_TDF)
lpi2c_imx_write_txfifo(lpi2c_imx, false);
return IRQ_HANDLED;
}
static irqreturn_t lpi2c_imx_isr(int irq, void *dev_id)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_id;
if (lpi2c_imx->target) {
u32 scr = readl(lpi2c_imx->base + LPI2C_SCR);
u32 ssr = readl(lpi2c_imx->base + LPI2C_SSR);
u32 sier_filter = ssr & readl(lpi2c_imx->base + LPI2C_SIER);
/*
* The target is enabled and an interrupt has been triggered.
* Enter the target's irq handler.
*/
if ((scr & SCR_SEN) && sier_filter)
return lpi2c_imx_target_isr(lpi2c_imx, ssr, sier_filter);
}
/*
* Otherwise the interrupt has been triggered by the master.
* Enter the master's irq handler.
*/
return lpi2c_imx_master_isr(lpi2c_imx);
}
static void lpi2c_imx_target_init(struct lpi2c_imx_struct *lpi2c_imx)
{
u32 temp;
/* reset target module */
writel(SCR_RST, lpi2c_imx->base + LPI2C_SCR);
writel(0, lpi2c_imx->base + LPI2C_SCR);
/* Set target address */
writel((lpi2c_imx->target->addr << 1), lpi2c_imx->base + LPI2C_SAMR);
writel(SCFGR1_RXSTALL | SCFGR1_TXDSTALL, lpi2c_imx->base + LPI2C_SCFGR1);
/*
* set SCFGR2: FILTSDA, FILTSCL and CLKHOLD
*
* FILTSCL/FILTSDA can eliminate signal skew. It should generally be
* set to the same value and should be set >= 50ns.
*
* CLKHOLD is only used when clock stretching is enabled, but it will
* extend the clock stretching to ensure there is an additional delay
* between the target driving SDA and the target releasing the SCL pin.
*
* CLKHOLD setting is crucial for lpi2c target. When master read data
* from target, if there is a delay caused by cpu idle, excessive load,
* or other delays between two bytes in one message transmission, it
* will cause a short interval time between the driving SDA signal and
* releasing SCL signal. The lpi2c master will mistakenly think it is a stop
* signal resulting in an arbitration failure. This issue can be avoided
* by setting CLKHOLD.
*
* In order to ensure lpi2c function normally when the lpi2c speed is as
* low as 100kHz, CLKHOLD should be set to 3 and it is also compatible with
* higher clock frequency like 400kHz and 1MHz.
*/
temp = SCFGR2_FILTSDA(2) | SCFGR2_FILTSCL(2) | SCFGR2_CLKHOLD(3);
writel(temp, lpi2c_imx->base + LPI2C_SCFGR2);
/*
* Enable module:
* SCR_FILTEN can enable digital filter and output delay counter for LPI2C
* target mode. So SCR_FILTEN need be asserted when enable SDA/SCL FILTER
* and CLKHOLD.
*/
writel(SCR_SEN | SCR_FILTEN, lpi2c_imx->base + LPI2C_SCR);
/* Enable interrupt from i2c module */
writel(SLAVE_INT_FLAG, lpi2c_imx->base + LPI2C_SIER);
}
static int lpi2c_imx_register_target(struct i2c_client *client)
{
struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(client->adapter);
int ret;
if (lpi2c_imx->target)
return -EBUSY;
lpi2c_imx->target = client;
ret = pm_runtime_resume_and_get(lpi2c_imx->adapter.dev.parent);
if (ret < 0) {
dev_err(&lpi2c_imx->adapter.dev, "failed to resume i2c controller");
return ret;
}
lpi2c_imx_target_init(lpi2c_imx);
return 0;
}
static int lpi2c_imx_unregister_target(struct i2c_client *client)
{
struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(client->adapter);
int ret;
if (!lpi2c_imx->target)
return -EINVAL;
/* Reset target address. */
writel(0, lpi2c_imx->base + LPI2C_SAMR);
writel(SCR_RST, lpi2c_imx->base + LPI2C_SCR);
writel(0, lpi2c_imx->base + LPI2C_SCR);
lpi2c_imx->target = NULL;
ret = pm_runtime_put_sync(lpi2c_imx->adapter.dev.parent);
if (ret < 0)
dev_err(&lpi2c_imx->adapter.dev, "failed to suspend i2c controller");
return ret;
}
static int lpi2c_imx_init_recovery_info(struct lpi2c_imx_struct *lpi2c_imx,
struct platform_device *pdev)
{
struct i2c_bus_recovery_info *bri = &lpi2c_imx->rinfo;
bri->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(bri->pinctrl))
return PTR_ERR(bri->pinctrl);
lpi2c_imx->adapter.bus_recovery_info = bri;
return 0;
}
static void dma_exit(struct device *dev, struct lpi2c_imx_dma *dma)
{
if (dma->chan_rx)
dma_release_channel(dma->chan_rx);
if (dma->chan_tx)
dma_release_channel(dma->chan_tx);
devm_kfree(dev, dma);
}
static int lpi2c_dma_init(struct device *dev, dma_addr_t phy_addr)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
struct lpi2c_imx_dma *dma;
int ret;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->phy_addr = phy_addr;
/* Prepare for TX DMA: */
dma->chan_tx = dma_request_chan(dev, "tx");
if (IS_ERR(dma->chan_tx)) {
ret = PTR_ERR(dma->chan_tx);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(dev, "can't request DMA tx channel (%d)\n", ret);
dma->chan_tx = NULL;
goto dma_exit;
}
/* Prepare for RX DMA: */
dma->chan_rx = dma_request_chan(dev, "rx");
if (IS_ERR(dma->chan_rx)) {
ret = PTR_ERR(dma->chan_rx);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(dev, "can't request DMA rx channel (%d)\n", ret);
dma->chan_rx = NULL;
goto dma_exit;
}
lpi2c_imx->can_use_dma = true;
lpi2c_imx->dma = dma;
return 0;
dma_exit:
dma_exit(dev, dma);
return ret;
}
static u32 lpi2c_imx_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
I2C_FUNC_SMBUS_READ_BLOCK_DATA;
}
static const struct i2c_algorithm lpi2c_imx_algo = {
.xfer = lpi2c_imx_xfer,
.xfer_atomic = lpi2c_imx_xfer_atomic,
.functionality = lpi2c_imx_func,
.reg_target = lpi2c_imx_register_target,
.unreg_target = lpi2c_imx_unregister_target,
};
static const struct of_device_id lpi2c_imx_of_match[] = {
{ .compatible = "fsl,imx7ulp-lpi2c" },
{ }
};
MODULE_DEVICE_TABLE(of, lpi2c_imx_of_match);
static int lpi2c_imx_probe(struct platform_device *pdev)
{
struct lpi2c_imx_struct *lpi2c_imx;
struct resource *res;
dma_addr_t phy_addr;
unsigned int temp;
int irq, ret;
lpi2c_imx = devm_kzalloc(&pdev->dev, sizeof(*lpi2c_imx), GFP_KERNEL);
if (!lpi2c_imx)
return -ENOMEM;
lpi2c_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(lpi2c_imx->base))
return PTR_ERR(lpi2c_imx->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
lpi2c_imx->adapter.owner = THIS_MODULE;
lpi2c_imx->adapter.algo = &lpi2c_imx_algo;
lpi2c_imx->adapter.dev.parent = &pdev->dev;
lpi2c_imx->adapter.dev.of_node = pdev->dev.of_node;
strscpy(lpi2c_imx->adapter.name, pdev->name,
sizeof(lpi2c_imx->adapter.name));
phy_addr = (dma_addr_t)res->start;
ret = devm_clk_bulk_get_all(&pdev->dev, &lpi2c_imx->clks);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "can't get I2C peripheral clock\n");
lpi2c_imx->num_clks = ret;
ret = of_property_read_u32(pdev->dev.of_node,
"clock-frequency", &lpi2c_imx->bitrate);
if (ret)
lpi2c_imx->bitrate = I2C_MAX_STANDARD_MODE_FREQ;
ret = devm_request_irq(&pdev->dev, irq, lpi2c_imx_isr, IRQF_NO_SUSPEND,
pdev->name, lpi2c_imx);
if (ret)
return dev_err_probe(&pdev->dev, ret, "can't claim irq %d\n", irq);
i2c_set_adapdata(&lpi2c_imx->adapter, lpi2c_imx);
platform_set_drvdata(pdev, lpi2c_imx);
ret = clk_bulk_prepare_enable(lpi2c_imx->num_clks, lpi2c_imx->clks);
if (ret)
return ret;
/*
* Lock the parent clock rate to avoid getting parent clock upon
* each transfer
*/
ret = devm_clk_rate_exclusive_get(&pdev->dev, lpi2c_imx->clks[0].clk);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"can't lock I2C peripheral clock rate\n");
lpi2c_imx->rate_per = clk_get_rate(lpi2c_imx->clks[0].clk);
if (!lpi2c_imx->rate_per)
return dev_err_probe(&pdev->dev, -EINVAL,
"can't get I2C peripheral clock rate\n");
pm_runtime_set_autosuspend_delay(&pdev->dev, I2C_PM_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
temp = readl(lpi2c_imx->base + LPI2C_PARAM);
lpi2c_imx->txfifosize = 1 << (temp & 0x0f);
lpi2c_imx->rxfifosize = 1 << ((temp >> 8) & 0x0f);
/* Init optional bus recovery function */
ret = lpi2c_imx_init_recovery_info(lpi2c_imx, pdev);
/* Give it another chance if pinctrl used is not ready yet */
if (ret == -EPROBE_DEFER)
goto rpm_disable;
/* Init DMA */
ret = lpi2c_dma_init(&pdev->dev, phy_addr);
if (ret) {
if (ret == -EPROBE_DEFER)
goto rpm_disable;
dev_info(&pdev->dev, "use pio mode\n");
}
ret = i2c_add_adapter(&lpi2c_imx->adapter);
if (ret)
goto rpm_disable;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
dev_info(&lpi2c_imx->adapter.dev, "LPI2C adapter registered\n");
return 0;
rpm_disable:
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
static void lpi2c_imx_remove(struct platform_device *pdev)
{
struct lpi2c_imx_struct *lpi2c_imx = platform_get_drvdata(pdev);
i2c_del_adapter(&lpi2c_imx->adapter);
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
}
static int __maybe_unused lpi2c_runtime_suspend(struct device *dev)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
clk_bulk_disable(lpi2c_imx->num_clks, lpi2c_imx->clks);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused lpi2c_runtime_resume(struct device *dev)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
ret = clk_bulk_enable(lpi2c_imx->num_clks, lpi2c_imx->clks);
if (ret) {
dev_err(dev, "failed to enable I2C clock, ret=%d\n", ret);
return ret;
}
return 0;
}
static int __maybe_unused lpi2c_suspend_noirq(struct device *dev)
{
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused lpi2c_resume_noirq(struct device *dev)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
/*
* If the I2C module powers down during system suspend,
* the register values will be lost. Therefore, reinitialize
* the target when the system resumes.
*/
if (lpi2c_imx->target)
lpi2c_imx_target_init(lpi2c_imx);
return 0;
}
static int lpi2c_suspend(struct device *dev)
{
/*
* Some I2C devices may need the I2C controller to remain active
* during resume_noirq() or suspend_noirq(). If the controller is
* autosuspended, there is no way to wake it up once runtime PM is
* disabled (in suspend_late()).
*
* During system resume, the I2C controller will be available only
* after runtime PM is re-enabled (in resume_early()). However, this
* may be too late for some devices.
*
* Wake up the controller in the suspend() callback while runtime PM
* is still enabled. The I2C controller will remain available until
* the suspend_noirq() callback (pm_runtime_force_suspend()) is
* called. During resume, the I2C controller can be restored by the
* resume_noirq() callback (pm_runtime_force_resume()).
*
* Finally, the resume() callback re-enables autosuspend, ensuring
* the I2C controller remains available until the system enters
* suspend_noirq() and from resume_noirq().
*/
return pm_runtime_resume_and_get(dev);
}
static int lpi2c_resume(struct device *dev)
{
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static const struct dev_pm_ops lpi2c_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(lpi2c_suspend_noirq,
lpi2c_resume_noirq)
SYSTEM_SLEEP_PM_OPS(lpi2c_suspend, lpi2c_resume)
SET_RUNTIME_PM_OPS(lpi2c_runtime_suspend,
lpi2c_runtime_resume, NULL)
};
static struct platform_driver lpi2c_imx_driver = {
.probe = lpi2c_imx_probe,
.remove = lpi2c_imx_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = lpi2c_imx_of_match,
.pm = &lpi2c_pm_ops,
},
};
module_platform_driver(lpi2c_imx_driver);
MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
MODULE_DESCRIPTION("I2C adapter driver for LPI2C bus");
MODULE_LICENSE("GPL");