linux/drivers/gpu/nova-core/falcon.rs
Joel Fernandes 0b980688f6 gpu: nova-core: Clarify falcon code
Add documentation strings, comments and AES mode for completeness
to the Falcon signatures.

Signed-off-by: Joel Fernandes <joelagnelf@nvidia.com>
Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Link: https://lore.kernel.org/r/20250708-nova-docs-v4-3-9d188772c4c7@nvidia.com
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
2025-07-09 00:17:29 +02:00

588 lines
18 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Falcon microprocessor base support
use core::ops::Deref;
use hal::FalconHal;
use kernel::bindings;
use kernel::device;
use kernel::prelude::*;
use kernel::time::Delta;
use kernel::types::ARef;
use crate::dma::DmaObject;
use crate::driver::Bar0;
use crate::gpu::Chipset;
use crate::regs;
use crate::util;
pub(crate) mod gsp;
mod hal;
pub(crate) mod sec2;
// TODO[FPRI]: Replace with `ToPrimitive`.
macro_rules! impl_from_enum_to_u32 {
($enum_type:ty) => {
impl From<$enum_type> for u32 {
fn from(value: $enum_type) -> Self {
value as u32
}
}
};
}
/// Revision number of a falcon core, used in the [`crate::regs::NV_PFALCON_FALCON_HWCFG1`]
/// register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum FalconCoreRev {
#[default]
Rev1 = 1,
Rev2 = 2,
Rev3 = 3,
Rev4 = 4,
Rev5 = 5,
Rev6 = 6,
Rev7 = 7,
}
impl_from_enum_to_u32!(FalconCoreRev);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconCoreRev {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
use FalconCoreRev::*;
let rev = match value {
1 => Rev1,
2 => Rev2,
3 => Rev3,
4 => Rev4,
5 => Rev5,
6 => Rev6,
7 => Rev7,
_ => return Err(EINVAL),
};
Ok(rev)
}
}
/// Revision subversion number of a falcon core, used in the
/// [`crate::regs::NV_PFALCON_FALCON_HWCFG1`] register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum FalconCoreRevSubversion {
#[default]
Subversion0 = 0,
Subversion1 = 1,
Subversion2 = 2,
Subversion3 = 3,
}
impl_from_enum_to_u32!(FalconCoreRevSubversion);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconCoreRevSubversion {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
use FalconCoreRevSubversion::*;
let sub_version = match value & 0b11 {
0 => Subversion0,
1 => Subversion1,
2 => Subversion2,
3 => Subversion3,
_ => return Err(EINVAL),
};
Ok(sub_version)
}
}
/// Security model of a falcon core, used in the [`crate::regs::NV_PFALCON_FALCON_HWCFG1`]
/// register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone)]
/// Security mode of the Falcon microprocessor.
///
/// See `falcon.rst` for more details.
pub(crate) enum FalconSecurityModel {
/// Non-Secure: runs unsigned code without privileges.
#[default]
None = 0,
/// Light-Secured (LS): Runs signed code with some privileges.
/// Entry into this mode is only possible from 'Heavy-secure' mode, which verifies the code's
/// signature.
///
/// Also known as Low-Secure, Privilege Level 2 or PL2.
Light = 2,
/// Heavy-Secured (HS): Runs signed code with full privileges.
/// The code's signature is verified by the Falcon Boot ROM (BROM).
///
/// Also known as High-Secure, Privilege Level 3 or PL3.
Heavy = 3,
}
impl_from_enum_to_u32!(FalconSecurityModel);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconSecurityModel {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
use FalconSecurityModel::*;
let sec_model = match value {
0 => None,
2 => Light,
3 => Heavy,
_ => return Err(EINVAL),
};
Ok(sec_model)
}
}
/// Signing algorithm for a given firmware, used in the [`crate::regs::NV_PFALCON2_FALCON_MOD_SEL`]
/// register. It is passed to the Falcon Boot ROM (BROM) as a parameter.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
pub(crate) enum FalconModSelAlgo {
/// AES.
#[expect(dead_code)]
Aes = 0,
/// RSA3K.
#[default]
Rsa3k = 1,
}
impl_from_enum_to_u32!(FalconModSelAlgo);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconModSelAlgo {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
match value {
1 => Ok(FalconModSelAlgo::Rsa3k),
_ => Err(EINVAL),
}
}
}
/// Valid values for the `size` field of the [`crate::regs::NV_PFALCON_FALCON_DMATRFCMD`] register.
#[repr(u8)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
pub(crate) enum DmaTrfCmdSize {
/// 256 bytes transfer.
#[default]
Size256B = 0x6,
}
impl_from_enum_to_u32!(DmaTrfCmdSize);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for DmaTrfCmdSize {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
match value {
0x6 => Ok(Self::Size256B),
_ => Err(EINVAL),
}
}
}
/// Currently active core on a dual falcon/riscv (Peregrine) controller.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub(crate) enum PeregrineCoreSelect {
/// Falcon core is active.
#[default]
Falcon = 0,
/// RISC-V core is active.
Riscv = 1,
}
impl_from_enum_to_u32!(PeregrineCoreSelect);
impl From<bool> for PeregrineCoreSelect {
fn from(value: bool) -> Self {
match value {
false => PeregrineCoreSelect::Falcon,
true => PeregrineCoreSelect::Riscv,
}
}
}
/// Different types of memory present in a falcon core.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum FalconMem {
/// Instruction Memory.
Imem,
/// Data Memory.
Dmem,
}
/// Defines the Framebuffer Interface (FBIF) aperture type.
/// This determines the memory type for external memory access during a DMA transfer, which is
/// performed by the Falcon's Framebuffer DMA (FBDMA) engine. See falcon.rst for more details.
#[derive(Debug, Clone, Default)]
pub(crate) enum FalconFbifTarget {
/// VRAM.
#[default]
/// Local Framebuffer (GPU's VRAM memory).
LocalFb = 0,
/// Coherent system memory (System DRAM).
CoherentSysmem = 1,
/// Non-coherent system memory (System DRAM).
NoncoherentSysmem = 2,
}
impl_from_enum_to_u32!(FalconFbifTarget);
// TODO[FPRI]: replace with `FromPrimitive`.
impl TryFrom<u8> for FalconFbifTarget {
type Error = Error;
fn try_from(value: u8) -> Result<Self> {
let res = match value {
0 => Self::LocalFb,
1 => Self::CoherentSysmem,
2 => Self::NoncoherentSysmem,
_ => return Err(EINVAL),
};
Ok(res)
}
}
/// Type of memory addresses to use.
#[derive(Debug, Clone, Default)]
pub(crate) enum FalconFbifMemType {
/// Virtual memory addresses.
#[default]
Virtual = 0,
/// Physical memory addresses.
Physical = 1,
}
impl_from_enum_to_u32!(FalconFbifMemType);
/// Conversion from a single-bit register field.
impl From<bool> for FalconFbifMemType {
fn from(value: bool) -> Self {
match value {
false => Self::Virtual,
true => Self::Physical,
}
}
}
/// Trait defining the parameters of a given Falcon instance.
pub(crate) trait FalconEngine: Sync {
/// Base I/O address for the falcon, relative from which its registers are accessed.
const BASE: usize;
}
/// Represents a portion of the firmware to be loaded into a particular memory (e.g. IMEM or DMEM).
#[derive(Debug)]
pub(crate) struct FalconLoadTarget {
/// Offset from the start of the source object to copy from.
pub(crate) src_start: u32,
/// Offset from the start of the destination memory to copy into.
pub(crate) dst_start: u32,
/// Number of bytes to copy.
pub(crate) len: u32,
}
/// Parameters for the falcon boot ROM.
#[derive(Debug)]
pub(crate) struct FalconBromParams {
/// Offset in `DMEM`` of the firmware's signature.
pub(crate) pkc_data_offset: u32,
/// Mask of engines valid for this firmware.
pub(crate) engine_id_mask: u16,
/// ID of the ucode used to infer a fuse register to validate the signature.
pub(crate) ucode_id: u8,
}
/// Trait for providing load parameters of falcon firmwares.
pub(crate) trait FalconLoadParams {
/// Returns the load parameters for `IMEM`.
fn imem_load_params(&self) -> FalconLoadTarget;
/// Returns the load parameters for `DMEM`.
fn dmem_load_params(&self) -> FalconLoadTarget;
/// Returns the parameters to write into the BROM registers.
fn brom_params(&self) -> FalconBromParams;
/// Returns the start address of the firmware.
fn boot_addr(&self) -> u32;
}
/// Trait for a falcon firmware.
///
/// A falcon firmware can be loaded on a given engine, and is presented in the form of a DMA
/// object.
pub(crate) trait FalconFirmware: FalconLoadParams + Deref<Target = DmaObject> {
/// Engine on which this firmware is to be loaded.
type Target: FalconEngine;
}
/// Contains the base parameters common to all Falcon instances.
pub(crate) struct Falcon<E: FalconEngine> {
hal: KBox<dyn FalconHal<E>>,
dev: ARef<device::Device>,
}
impl<E: FalconEngine + 'static> Falcon<E> {
/// Create a new falcon instance.
///
/// `need_riscv` is set to `true` if the caller expects the falcon to be a dual falcon/riscv
/// controller.
pub(crate) fn new(
dev: &device::Device,
chipset: Chipset,
bar: &Bar0,
need_riscv: bool,
) -> Result<Self> {
let hwcfg1 = regs::NV_PFALCON_FALCON_HWCFG1::read(bar, E::BASE);
// Check that the revision and security model contain valid values.
let _ = hwcfg1.core_rev()?;
let _ = hwcfg1.security_model()?;
if need_riscv {
let hwcfg2 = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
if !hwcfg2.riscv() {
dev_err!(
dev,
"riscv support requested on a controller that does not support it\n"
);
return Err(EINVAL);
}
}
Ok(Self {
hal: hal::falcon_hal(chipset)?,
dev: dev.into(),
})
}
/// Wait for memory scrubbing to complete.
fn reset_wait_mem_scrubbing(&self, bar: &Bar0) -> Result {
// TIMEOUT: memory scrubbing should complete in less than 20ms.
util::wait_on(Delta::from_millis(20), || {
if regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE).mem_scrubbing_done() {
Some(())
} else {
None
}
})
}
/// Reset the falcon engine.
fn reset_eng(&self, bar: &Bar0) -> Result {
let _ = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
// According to OpenRM's `kflcnPreResetWait_GA102` documentation, HW sometimes does not set
// RESET_READY so a non-failing timeout is used.
let _ = util::wait_on(Delta::from_micros(150), || {
let r = regs::NV_PFALCON_FALCON_HWCFG2::read(bar, E::BASE);
if r.reset_ready() {
Some(())
} else {
None
}
});
regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(true));
// TODO[DLAY]: replace with udelay() or equivalent once available.
// TIMEOUT: falcon engine should not take more than 10us to reset.
let _: Result = util::wait_on(Delta::from_micros(10), || None);
regs::NV_PFALCON_FALCON_ENGINE::alter(bar, E::BASE, |v| v.set_reset(false));
self.reset_wait_mem_scrubbing(bar)?;
Ok(())
}
/// Reset the controller, select the falcon core, and wait for memory scrubbing to complete.
pub(crate) fn reset(&self, bar: &Bar0) -> Result {
self.reset_eng(bar)?;
self.hal.select_core(self, bar)?;
self.reset_wait_mem_scrubbing(bar)?;
regs::NV_PFALCON_FALCON_RM::default()
.set_value(regs::NV_PMC_BOOT_0::read(bar).into())
.write(bar, E::BASE);
Ok(())
}
/// Perform a DMA write according to `load_offsets` from `dma_handle` into the falcon's
/// `target_mem`.
///
/// `sec` is set if the loaded firmware is expected to run in secure mode.
fn dma_wr<F: FalconFirmware<Target = E>>(
&self,
bar: &Bar0,
fw: &F,
target_mem: FalconMem,
load_offsets: FalconLoadTarget,
sec: bool,
) -> Result {
const DMA_LEN: u32 = 256;
// For IMEM, we want to use the start offset as a virtual address tag for each page, since
// code addresses in the firmware (and the boot vector) are virtual.
//
// For DMEM we can fold the start offset into the DMA handle.
let (src_start, dma_start) = match target_mem {
FalconMem::Imem => (load_offsets.src_start, fw.dma_handle()),
FalconMem::Dmem => (
0,
fw.dma_handle_with_offset(load_offsets.src_start as usize)?,
),
};
if dma_start % bindings::dma_addr_t::from(DMA_LEN) > 0 {
dev_err!(
self.dev,
"DMA transfer start addresses must be a multiple of {}",
DMA_LEN
);
return Err(EINVAL);
}
if load_offsets.len % DMA_LEN > 0 {
dev_err!(
self.dev,
"DMA transfer length must be a multiple of {}",
DMA_LEN
);
return Err(EINVAL);
}
// Set up the base source DMA address.
regs::NV_PFALCON_FALCON_DMATRFBASE::default()
.set_base((dma_start >> 8) as u32)
.write(bar, E::BASE);
regs::NV_PFALCON_FALCON_DMATRFBASE1::default()
.set_base((dma_start >> 40) as u16)
.write(bar, E::BASE);
let cmd = regs::NV_PFALCON_FALCON_DMATRFCMD::default()
.set_size(DmaTrfCmdSize::Size256B)
.set_imem(target_mem == FalconMem::Imem)
.set_sec(if sec { 1 } else { 0 });
for pos in (0..load_offsets.len).step_by(DMA_LEN as usize) {
// Perform a transfer of size `DMA_LEN`.
regs::NV_PFALCON_FALCON_DMATRFMOFFS::default()
.set_offs(load_offsets.dst_start + pos)
.write(bar, E::BASE);
regs::NV_PFALCON_FALCON_DMATRFFBOFFS::default()
.set_offs(src_start + pos)
.write(bar, E::BASE);
cmd.write(bar, E::BASE);
// Wait for the transfer to complete.
// TIMEOUT: arbitrarily large value, no DMA transfer to the falcon's small memories
// should ever take that long.
util::wait_on(Delta::from_secs(2), || {
let r = regs::NV_PFALCON_FALCON_DMATRFCMD::read(bar, E::BASE);
if r.idle() {
Some(())
} else {
None
}
})?;
}
Ok(())
}
/// Perform a DMA load into `IMEM` and `DMEM` of `fw`, and prepare the falcon to run it.
pub(crate) fn dma_load<F: FalconFirmware<Target = E>>(&self, bar: &Bar0, fw: &F) -> Result {
regs::NV_PFALCON_FBIF_CTL::alter(bar, E::BASE, |v| v.set_allow_phys_no_ctx(true));
regs::NV_PFALCON_FALCON_DMACTL::default().write(bar, E::BASE);
regs::NV_PFALCON_FBIF_TRANSCFG::alter(bar, E::BASE, |v| {
v.set_target(FalconFbifTarget::CoherentSysmem)
.set_mem_type(FalconFbifMemType::Physical)
});
self.dma_wr(bar, fw, FalconMem::Imem, fw.imem_load_params(), true)?;
self.dma_wr(bar, fw, FalconMem::Dmem, fw.dmem_load_params(), true)?;
self.hal.program_brom(self, bar, &fw.brom_params())?;
// Set `BootVec` to start of non-secure code.
regs::NV_PFALCON_FALCON_BOOTVEC::default()
.set_value(fw.boot_addr())
.write(bar, E::BASE);
Ok(())
}
/// Runs the loaded firmware and waits for its completion.
///
/// `mbox0` and `mbox1` are optional parameters to write into the `MBOX0` and `MBOX1` registers
/// prior to running.
///
/// Wait up to two seconds for the firmware to complete, and return its exit status read from
/// the `MBOX0` and `MBOX1` registers.
pub(crate) fn boot(
&self,
bar: &Bar0,
mbox0: Option<u32>,
mbox1: Option<u32>,
) -> Result<(u32, u32)> {
if let Some(mbox0) = mbox0 {
regs::NV_PFALCON_FALCON_MAILBOX0::default()
.set_value(mbox0)
.write(bar, E::BASE);
}
if let Some(mbox1) = mbox1 {
regs::NV_PFALCON_FALCON_MAILBOX1::default()
.set_value(mbox1)
.write(bar, E::BASE);
}
match regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE).alias_en() {
true => regs::NV_PFALCON_FALCON_CPUCTL_ALIAS::default()
.set_startcpu(true)
.write(bar, E::BASE),
false => regs::NV_PFALCON_FALCON_CPUCTL::default()
.set_startcpu(true)
.write(bar, E::BASE),
}
// TIMEOUT: arbitrarily large value, firmwares should complete in less than 2 seconds.
util::wait_on(Delta::from_secs(2), || {
let r = regs::NV_PFALCON_FALCON_CPUCTL::read(bar, E::BASE);
if r.halted() {
Some(())
} else {
None
}
})?;
let (mbox0, mbox1) = (
regs::NV_PFALCON_FALCON_MAILBOX0::read(bar, E::BASE).value(),
regs::NV_PFALCON_FALCON_MAILBOX1::read(bar, E::BASE).value(),
);
Ok((mbox0, mbox1))
}
/// Returns the fused version of the signature to use in order to run a HS firmware on this
/// falcon instance. `engine_id_mask` and `ucode_id` are obtained from the firmware header.
pub(crate) fn signature_reg_fuse_version(
&self,
bar: &Bar0,
engine_id_mask: u16,
ucode_id: u8,
) -> Result<u32> {
self.hal
.signature_reg_fuse_version(self, bar, engine_id_mask, ucode_id)
}
}