linux/drivers/gpu/drm/rockchip/inno_hdmi.c
Andy Yan 6a1b9229ec drm/rockchip: inno_hdmi: Simpify clk get/enable by devm_clk_get_enabled api
Make use of devm_clk_get_enabled() to replace devm_clk_get() and
clk_prepare_enable(), which will make the cleanup of clk code simpler.

Signed-off-by: Andy Yan <andy.yan@rock-chips.com>
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Link: https://lore.kernel.org/r/20250512124615.2848731-9-andyshrk@163.com
2025-07-08 17:44:08 +02:00

1370 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Rockchip Electronics Co., Ltd.
* Zheng Yang <zhengyang@rock-chips.com>
* Yakir Yang <ykk@rock-chips.com>
*/
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/hdmi.h>
#include <linux/mfd/syscon.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include <drm/display/drm_hdmi_helper.h>
#include <drm/display/drm_hdmi_state_helper.h>
#include "rockchip_drm_drv.h"
#define INNO_HDMI_MIN_TMDS_CLOCK 25000000U
#define DDC_SEGMENT_ADDR 0x30
#define HDMI_SCL_RATE (100 * 1000)
#define DDC_BUS_FREQ_L 0x4b
#define DDC_BUS_FREQ_H 0x4c
#define HDMI_SYS_CTRL 0x00
#define m_RST_ANALOG BIT(6)
#define v_RST_ANALOG (0 << 6)
#define v_NOT_RST_ANALOG BIT(6)
#define m_RST_DIGITAL BIT(5)
#define v_RST_DIGITAL (0 << 5)
#define v_NOT_RST_DIGITAL BIT(5)
#define m_REG_CLK_INV BIT(4)
#define v_REG_CLK_NOT_INV (0 << 4)
#define v_REG_CLK_INV BIT(4)
#define m_VCLK_INV BIT(3)
#define v_VCLK_NOT_INV (0 << 3)
#define v_VCLK_INV BIT(3)
#define m_REG_CLK_SOURCE BIT(2)
#define v_REG_CLK_SOURCE_TMDS (0 << 2)
#define v_REG_CLK_SOURCE_SYS BIT(2)
#define m_POWER BIT(1)
#define v_PWR_ON (0 << 1)
#define v_PWR_OFF BIT(1)
#define m_INT_POL BIT(0)
#define v_INT_POL_HIGH 1
#define v_INT_POL_LOW 0
#define HDMI_VIDEO_CONTRL1 0x01
#define m_VIDEO_INPUT_FORMAT (7 << 1)
#define m_DE_SOURCE BIT(0)
#define v_VIDEO_INPUT_FORMAT(n) ((n) << 1)
#define v_DE_EXTERNAL 1
#define v_DE_INTERNAL 0
enum {
VIDEO_INPUT_SDR_RGB444 = 0,
VIDEO_INPUT_DDR_RGB444 = 5,
VIDEO_INPUT_DDR_YCBCR422 = 6
};
#define HDMI_VIDEO_CONTRL2 0x02
#define m_VIDEO_OUTPUT_COLOR (3 << 6)
#define m_VIDEO_INPUT_BITS (3 << 4)
#define m_VIDEO_INPUT_CSP BIT(0)
#define v_VIDEO_OUTPUT_COLOR(n) (((n) & 0x3) << 6)
#define v_VIDEO_INPUT_BITS(n) ((n) << 4)
#define v_VIDEO_INPUT_CSP(n) ((n) << 0)
enum {
VIDEO_INPUT_12BITS = 0,
VIDEO_INPUT_10BITS = 1,
VIDEO_INPUT_REVERT = 2,
VIDEO_INPUT_8BITS = 3,
};
#define HDMI_VIDEO_CONTRL 0x03
#define m_VIDEO_AUTO_CSC BIT(7)
#define v_VIDEO_AUTO_CSC(n) ((n) << 7)
#define m_VIDEO_C0_C2_SWAP BIT(0)
#define v_VIDEO_C0_C2_SWAP(n) ((n) << 0)
enum {
C0_C2_CHANGE_ENABLE = 0,
C0_C2_CHANGE_DISABLE = 1,
AUTO_CSC_DISABLE = 0,
AUTO_CSC_ENABLE = 1,
};
#define HDMI_VIDEO_CONTRL3 0x04
#define m_COLOR_DEPTH_NOT_INDICATED BIT(4)
#define m_SOF BIT(3)
#define m_COLOR_RANGE BIT(2)
#define m_CSC BIT(0)
#define v_COLOR_DEPTH_NOT_INDICATED(n) ((n) << 4)
#define v_SOF_ENABLE (0 << 3)
#define v_SOF_DISABLE BIT(3)
#define v_COLOR_RANGE_FULL BIT(2)
#define v_COLOR_RANGE_LIMITED (0 << 2)
#define v_CSC_ENABLE 1
#define v_CSC_DISABLE 0
#define HDMI_AV_MUTE 0x05
#define m_AVMUTE_CLEAR BIT(7)
#define m_AVMUTE_ENABLE BIT(6)
#define m_AUDIO_MUTE BIT(1)
#define m_VIDEO_BLACK BIT(0)
#define v_AVMUTE_CLEAR(n) ((n) << 7)
#define v_AVMUTE_ENABLE(n) ((n) << 6)
#define v_AUDIO_MUTE(n) ((n) << 1)
#define v_VIDEO_MUTE(n) ((n) << 0)
#define HDMI_VIDEO_TIMING_CTL 0x08
#define v_HSYNC_POLARITY(n) ((n) << 3)
#define v_VSYNC_POLARITY(n) ((n) << 2)
#define v_INETLACE(n) ((n) << 1)
#define v_EXTERANL_VIDEO(n) ((n) << 0)
#define HDMI_VIDEO_EXT_HTOTAL_L 0x09
#define HDMI_VIDEO_EXT_HTOTAL_H 0x0a
#define HDMI_VIDEO_EXT_HBLANK_L 0x0b
#define HDMI_VIDEO_EXT_HBLANK_H 0x0c
#define HDMI_VIDEO_EXT_HDELAY_L 0x0d
#define HDMI_VIDEO_EXT_HDELAY_H 0x0e
#define HDMI_VIDEO_EXT_HDURATION_L 0x0f
#define HDMI_VIDEO_EXT_HDURATION_H 0x10
#define HDMI_VIDEO_EXT_VTOTAL_L 0x11
#define HDMI_VIDEO_EXT_VTOTAL_H 0x12
#define HDMI_VIDEO_EXT_VBLANK 0x13
#define HDMI_VIDEO_EXT_VDELAY 0x14
#define HDMI_VIDEO_EXT_VDURATION 0x15
#define HDMI_VIDEO_CSC_COEF 0x18
#define HDMI_AUDIO_CTRL1 0x35
enum {
CTS_SOURCE_INTERNAL = 0,
CTS_SOURCE_EXTERNAL = 1,
};
#define v_CTS_SOURCE(n) ((n) << 7)
enum {
DOWNSAMPLE_DISABLE = 0,
DOWNSAMPLE_1_2 = 1,
DOWNSAMPLE_1_4 = 2,
};
#define v_DOWN_SAMPLE(n) ((n) << 5)
enum {
AUDIO_SOURCE_IIS = 0,
AUDIO_SOURCE_SPDIF = 1,
};
#define v_AUDIO_SOURCE(n) ((n) << 3)
#define v_MCLK_ENABLE(n) ((n) << 2)
enum {
MCLK_128FS = 0,
MCLK_256FS = 1,
MCLK_384FS = 2,
MCLK_512FS = 3,
};
#define v_MCLK_RATIO(n) (n)
#define AUDIO_SAMPLE_RATE 0x37
enum {
AUDIO_32K = 0x3,
AUDIO_441K = 0x0,
AUDIO_48K = 0x2,
AUDIO_882K = 0x8,
AUDIO_96K = 0xa,
AUDIO_1764K = 0xc,
AUDIO_192K = 0xe,
};
#define AUDIO_I2S_MODE 0x38
enum {
I2S_CHANNEL_1_2 = 1,
I2S_CHANNEL_3_4 = 3,
I2S_CHANNEL_5_6 = 7,
I2S_CHANNEL_7_8 = 0xf
};
#define v_I2S_CHANNEL(n) ((n) << 2)
enum {
I2S_STANDARD = 0,
I2S_LEFT_JUSTIFIED = 1,
I2S_RIGHT_JUSTIFIED = 2,
};
#define v_I2S_MODE(n) (n)
#define AUDIO_I2S_MAP 0x39
#define AUDIO_I2S_SWAPS_SPDIF 0x3a
#define v_SPIDF_FREQ(n) (n)
#define N_32K 0x1000
#define N_441K 0x1880
#define N_882K 0x3100
#define N_1764K 0x6200
#define N_48K 0x1800
#define N_96K 0x3000
#define N_192K 0x6000
#define HDMI_AUDIO_CHANNEL_STATUS 0x3e
#define m_AUDIO_STATUS_NLPCM BIT(7)
#define m_AUDIO_STATUS_USE BIT(6)
#define m_AUDIO_STATUS_COPYRIGHT BIT(5)
#define m_AUDIO_STATUS_ADDITION (3 << 2)
#define m_AUDIO_STATUS_CLK_ACCURACY (2 << 0)
#define v_AUDIO_STATUS_NLPCM(n) (((n) & 1) << 7)
#define AUDIO_N_H 0x3f
#define AUDIO_N_M 0x40
#define AUDIO_N_L 0x41
#define HDMI_AUDIO_CTS_H 0x45
#define HDMI_AUDIO_CTS_M 0x46
#define HDMI_AUDIO_CTS_L 0x47
#define HDMI_DDC_CLK_L 0x4b
#define HDMI_DDC_CLK_H 0x4c
#define HDMI_EDID_SEGMENT_POINTER 0x4d
#define HDMI_EDID_WORD_ADDR 0x4e
#define HDMI_EDID_FIFO_OFFSET 0x4f
#define HDMI_EDID_FIFO_ADDR 0x50
#define HDMI_PACKET_SEND_MANUAL 0x9c
#define HDMI_PACKET_SEND_AUTO 0x9d
#define m_PACKET_GCP_EN BIT(7)
#define m_PACKET_MSI_EN BIT(6)
#define m_PACKET_SDI_EN BIT(5)
#define m_PACKET_VSI_EN BIT(4)
#define v_PACKET_GCP_EN(n) (((n) & 1) << 7)
#define v_PACKET_MSI_EN(n) (((n) & 1) << 6)
#define v_PACKET_SDI_EN(n) (((n) & 1) << 5)
#define v_PACKET_VSI_EN(n) (((n) & 1) << 4)
#define HDMI_CONTROL_PACKET_BUF_INDEX 0x9f
enum {
INFOFRAME_VSI = 0x05,
INFOFRAME_AVI = 0x06,
INFOFRAME_AAI = 0x08,
};
#define HDMI_CONTROL_PACKET_ADDR 0xa0
#define HDMI_MAXIMUM_INFO_FRAME_SIZE 0x11
enum {
AVI_COLOR_MODE_RGB = 0,
AVI_COLOR_MODE_YCBCR422 = 1,
AVI_COLOR_MODE_YCBCR444 = 2,
AVI_COLORIMETRY_NO_DATA = 0,
AVI_COLORIMETRY_SMPTE_170M = 1,
AVI_COLORIMETRY_ITU709 = 2,
AVI_COLORIMETRY_EXTENDED = 3,
AVI_CODED_FRAME_ASPECT_NO_DATA = 0,
AVI_CODED_FRAME_ASPECT_4_3 = 1,
AVI_CODED_FRAME_ASPECT_16_9 = 2,
ACTIVE_ASPECT_RATE_SAME_AS_CODED_FRAME = 0x08,
ACTIVE_ASPECT_RATE_4_3 = 0x09,
ACTIVE_ASPECT_RATE_16_9 = 0x0A,
ACTIVE_ASPECT_RATE_14_9 = 0x0B,
};
#define HDMI_HDCP_CTRL 0x52
#define m_HDMI_DVI BIT(1)
#define v_HDMI_DVI(n) ((n) << 1)
#define HDMI_INTERRUPT_MASK1 0xc0
#define HDMI_INTERRUPT_STATUS1 0xc1
#define m_INT_ACTIVE_VSYNC BIT(5)
#define m_INT_EDID_READY BIT(2)
#define HDMI_INTERRUPT_MASK2 0xc2
#define HDMI_INTERRUPT_STATUS2 0xc3
#define m_INT_HDCP_ERR BIT(7)
#define m_INT_BKSV_FLAG BIT(6)
#define m_INT_HDCP_OK BIT(4)
#define HDMI_STATUS 0xc8
#define m_HOTPLUG BIT(7)
#define m_MASK_INT_HOTPLUG BIT(5)
#define m_INT_HOTPLUG BIT(1)
#define v_MASK_INT_HOTPLUG(n) (((n) & 0x1) << 5)
#define HDMI_COLORBAR 0xc9
#define HDMI_PHY_SYNC 0xce
#define HDMI_PHY_SYS_CTL 0xe0
#define m_TMDS_CLK_SOURCE BIT(5)
#define v_TMDS_FROM_PLL (0 << 5)
#define v_TMDS_FROM_GEN BIT(5)
#define m_PHASE_CLK BIT(4)
#define v_DEFAULT_PHASE (0 << 4)
#define v_SYNC_PHASE BIT(4)
#define m_TMDS_CURRENT_PWR BIT(3)
#define v_TURN_ON_CURRENT (0 << 3)
#define v_CAT_OFF_CURRENT BIT(3)
#define m_BANDGAP_PWR BIT(2)
#define v_BANDGAP_PWR_UP (0 << 2)
#define v_BANDGAP_PWR_DOWN BIT(2)
#define m_PLL_PWR BIT(1)
#define v_PLL_PWR_UP (0 << 1)
#define v_PLL_PWR_DOWN BIT(1)
#define m_TMDS_CHG_PWR BIT(0)
#define v_TMDS_CHG_PWR_UP (0 << 0)
#define v_TMDS_CHG_PWR_DOWN BIT(0)
#define HDMI_PHY_CHG_PWR 0xe1
#define v_CLK_CHG_PWR(n) (((n) & 1) << 3)
#define v_DATA_CHG_PWR(n) (((n) & 7) << 0)
#define HDMI_PHY_DRIVER 0xe2
#define v_CLK_MAIN_DRIVER(n) ((n) << 4)
#define v_DATA_MAIN_DRIVER(n) ((n) << 0)
#define HDMI_PHY_PRE_EMPHASIS 0xe3
#define v_PRE_EMPHASIS(n) (((n) & 7) << 4)
#define v_CLK_PRE_DRIVER(n) (((n) & 3) << 2)
#define v_DATA_PRE_DRIVER(n) (((n) & 3) << 0)
#define HDMI_PHY_FEEDBACK_DIV_RATIO_LOW 0xe7
#define v_FEEDBACK_DIV_LOW(n) ((n) & 0xff)
#define HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH 0xe8
#define v_FEEDBACK_DIV_HIGH(n) ((n) & 1)
#define HDMI_PHY_PRE_DIV_RATIO 0xed
#define v_PRE_DIV_RATIO(n) ((n) & 0x1f)
#define HDMI_CEC_CTRL 0xd0
#define m_ADJUST_FOR_HISENSE BIT(6)
#define m_REJECT_RX_BROADCAST BIT(5)
#define m_BUSFREETIME_ENABLE BIT(2)
#define m_REJECT_RX BIT(1)
#define m_START_TX BIT(0)
#define HDMI_CEC_DATA 0xd1
#define HDMI_CEC_TX_OFFSET 0xd2
#define HDMI_CEC_RX_OFFSET 0xd3
#define HDMI_CEC_CLK_H 0xd4
#define HDMI_CEC_CLK_L 0xd5
#define HDMI_CEC_TX_LENGTH 0xd6
#define HDMI_CEC_RX_LENGTH 0xd7
#define HDMI_CEC_TX_INT_MASK 0xd8
#define m_TX_DONE BIT(3)
#define m_TX_NOACK BIT(2)
#define m_TX_BROADCAST_REJ BIT(1)
#define m_TX_BUSNOTFREE BIT(0)
#define HDMI_CEC_RX_INT_MASK 0xd9
#define m_RX_LA_ERR BIT(4)
#define m_RX_GLITCH BIT(3)
#define m_RX_DONE BIT(0)
#define HDMI_CEC_TX_INT 0xda
#define HDMI_CEC_RX_INT 0xdb
#define HDMI_CEC_BUSFREETIME_L 0xdc
#define HDMI_CEC_BUSFREETIME_H 0xdd
#define HDMI_CEC_LOGICADDR 0xde
#define HIWORD_UPDATE(val, mask) ((val) | (mask) << 16)
#define RK3036_GRF_SOC_CON2 0x148
#define RK3036_HDMI_PHSYNC BIT(4)
#define RK3036_HDMI_PVSYNC BIT(5)
enum inno_hdmi_dev_type {
RK3036_HDMI,
RK3128_HDMI,
};
struct inno_hdmi_phy_config {
unsigned long pixelclock;
u8 pre_emphasis;
u8 voltage_level_control;
};
struct inno_hdmi_variant {
enum inno_hdmi_dev_type dev_type;
struct inno_hdmi_phy_config *phy_configs;
struct inno_hdmi_phy_config *default_phy_config;
};
struct inno_hdmi_i2c {
struct i2c_adapter adap;
u8 ddc_addr;
u8 segment_addr;
struct mutex lock;
struct completion cmp;
};
struct inno_hdmi {
struct device *dev;
struct clk *pclk;
struct clk *refclk;
void __iomem *regs;
struct regmap *grf;
struct drm_connector connector;
struct rockchip_encoder encoder;
struct inno_hdmi_i2c *i2c;
struct i2c_adapter *ddc;
const struct inno_hdmi_variant *variant;
};
struct inno_hdmi_connector_state {
struct drm_connector_state base;
unsigned int colorimetry;
};
static struct inno_hdmi *encoder_to_inno_hdmi(struct drm_encoder *encoder)
{
struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder);
return container_of(rkencoder, struct inno_hdmi, encoder);
}
static struct inno_hdmi *connector_to_inno_hdmi(struct drm_connector *connector)
{
return container_of(connector, struct inno_hdmi, connector);
}
#define to_inno_hdmi_conn_state(conn_state) \
container_of_const(conn_state, struct inno_hdmi_connector_state, base)
enum {
CSC_RGB_0_255_TO_ITU601_16_235_8BIT,
CSC_RGB_0_255_TO_ITU709_16_235_8BIT,
CSC_RGB_0_255_TO_RGB_16_235_8BIT,
};
static const char coeff_csc[][24] = {
/*
* RGB2YUV:601 SD mode:
* Cb = -0.291G - 0.148R + 0.439B + 128
* Y = 0.504G + 0.257R + 0.098B + 16
* Cr = -0.368G + 0.439R - 0.071B + 128
*/
{
0x11, 0x5f, 0x01, 0x82, 0x10, 0x23, 0x00, 0x80,
0x02, 0x1c, 0x00, 0xa1, 0x00, 0x36, 0x00, 0x1e,
0x11, 0x29, 0x10, 0x59, 0x01, 0x82, 0x00, 0x80
},
/*
* RGB2YUV:709 HD mode:
* Cb = - 0.338G - 0.101R + 0.439B + 128
* Y = 0.614G + 0.183R + 0.062B + 16
* Cr = - 0.399G + 0.439R - 0.040B + 128
*/
{
0x11, 0x98, 0x01, 0xc1, 0x10, 0x28, 0x00, 0x80,
0x02, 0x74, 0x00, 0xbb, 0x00, 0x3f, 0x00, 0x10,
0x11, 0x5a, 0x10, 0x67, 0x01, 0xc1, 0x00, 0x80
},
/*
* RGB[0:255]2RGB[16:235]:
* R' = R x (235-16)/255 + 16;
* G' = G x (235-16)/255 + 16;
* B' = B x (235-16)/255 + 16;
*/
{
0x00, 0x00, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x10,
0x03, 0x6F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
0x00, 0x00, 0x00, 0x00, 0x03, 0x6F, 0x00, 0x10
},
};
static struct inno_hdmi_phy_config rk3036_hdmi_phy_configs[] = {
{ 74250000, 0x3f, 0xbb },
{ 165000000, 0x6f, 0xbb },
{ ~0UL, 0x00, 0x00 }
};
static struct inno_hdmi_phy_config rk3128_hdmi_phy_configs[] = {
{ 74250000, 0x3f, 0xaa },
{ 165000000, 0x5f, 0xaa },
{ ~0UL, 0x00, 0x00 }
};
static int inno_hdmi_find_phy_config(struct inno_hdmi *hdmi,
unsigned long pixelclk)
{
const struct inno_hdmi_phy_config *phy_configs =
hdmi->variant->phy_configs;
int i;
for (i = 0; phy_configs[i].pixelclock != ~0UL; i++) {
if (pixelclk <= phy_configs[i].pixelclock)
return i;
}
DRM_DEV_DEBUG(hdmi->dev, "No phy configuration for pixelclock %lu\n",
pixelclk);
return -EINVAL;
}
static inline u8 hdmi_readb(struct inno_hdmi *hdmi, u16 offset)
{
return readl_relaxed(hdmi->regs + (offset) * 0x04);
}
static inline void hdmi_writeb(struct inno_hdmi *hdmi, u16 offset, u32 val)
{
writel_relaxed(val, hdmi->regs + (offset) * 0x04);
}
static inline void hdmi_modb(struct inno_hdmi *hdmi, u16 offset,
u32 msk, u32 val)
{
u8 temp = hdmi_readb(hdmi, offset) & ~msk;
temp |= val & msk;
hdmi_writeb(hdmi, offset, temp);
}
static void inno_hdmi_i2c_init(struct inno_hdmi *hdmi, unsigned long long rate)
{
unsigned long long ddc_bus_freq = rate >> 2;
do_div(ddc_bus_freq, HDMI_SCL_RATE);
hdmi_writeb(hdmi, DDC_BUS_FREQ_L, ddc_bus_freq & 0xFF);
hdmi_writeb(hdmi, DDC_BUS_FREQ_H, (ddc_bus_freq >> 8) & 0xFF);
/* Clear the EDID interrupt flag and mute the interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0);
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
}
static void inno_hdmi_sys_power(struct inno_hdmi *hdmi, bool enable)
{
if (enable)
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_ON);
else
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_OFF);
}
static void inno_hdmi_standby(struct inno_hdmi *hdmi)
{
inno_hdmi_sys_power(hdmi, false);
hdmi_writeb(hdmi, HDMI_PHY_DRIVER, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15);
};
static void inno_hdmi_power_up(struct inno_hdmi *hdmi,
unsigned long mpixelclock)
{
struct inno_hdmi_phy_config *phy_config;
int ret = inno_hdmi_find_phy_config(hdmi, mpixelclock);
if (ret < 0) {
phy_config = hdmi->variant->default_phy_config;
DRM_DEV_ERROR(hdmi->dev,
"Using default phy configuration for TMDS rate %lu",
mpixelclock);
} else {
phy_config = &hdmi->variant->phy_configs[ret];
}
inno_hdmi_sys_power(hdmi, false);
hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, phy_config->pre_emphasis);
hdmi_writeb(hdmi, HDMI_PHY_DRIVER, phy_config->voltage_level_control);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x14);
hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x10);
hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x0f);
hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x00);
hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x01);
inno_hdmi_sys_power(hdmi, true);
};
static void inno_hdmi_init_hw(struct inno_hdmi *hdmi)
{
u32 val;
u32 msk;
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_DIGITAL, v_NOT_RST_DIGITAL);
usleep_range(100, 150);
hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_ANALOG, v_NOT_RST_ANALOG);
usleep_range(100, 150);
msk = m_REG_CLK_INV | m_REG_CLK_SOURCE | m_POWER | m_INT_POL;
val = v_REG_CLK_INV | v_REG_CLK_SOURCE_SYS | v_PWR_ON | v_INT_POL_HIGH;
hdmi_modb(hdmi, HDMI_SYS_CTRL, msk, val);
inno_hdmi_standby(hdmi);
/*
* When the controller isn't configured to an accurate
* video timing and there is no reference clock available,
* then the TMDS clock source would be switched to PCLK_HDMI,
* so we need to init the TMDS rate to PCLK rate, and
* reconfigure the DDC clock.
*/
if (hdmi->refclk)
inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->refclk));
else
inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->pclk));
/* Unmute hotplug interrupt */
hdmi_modb(hdmi, HDMI_STATUS, m_MASK_INT_HOTPLUG, v_MASK_INT_HOTPLUG(1));
}
static int inno_hdmi_disable_frame(struct drm_connector *connector,
enum hdmi_infoframe_type type)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
if (type != HDMI_INFOFRAME_TYPE_AVI) {
drm_err(connector->dev,
"Unsupported infoframe type: %u\n", type);
return 0;
}
hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_BUF_INDEX, INFOFRAME_AVI);
return 0;
}
static int inno_hdmi_upload_frame(struct drm_connector *connector,
enum hdmi_infoframe_type type,
const u8 *buffer, size_t len)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
ssize_t i;
if (type != HDMI_INFOFRAME_TYPE_AVI) {
drm_err(connector->dev,
"Unsupported infoframe type: %u\n", type);
return 0;
}
inno_hdmi_disable_frame(connector, type);
for (i = 0; i < len; i++)
hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_ADDR + i, buffer[i]);
return 0;
}
static const struct drm_connector_hdmi_funcs inno_hdmi_hdmi_connector_funcs = {
.clear_infoframe = inno_hdmi_disable_frame,
.write_infoframe = inno_hdmi_upload_frame,
};
static int inno_hdmi_config_video_csc(struct inno_hdmi *hdmi)
{
struct drm_connector *connector = &hdmi->connector;
struct drm_connector_state *conn_state = connector->state;
struct inno_hdmi_connector_state *inno_conn_state =
to_inno_hdmi_conn_state(conn_state);
int c0_c2_change = 0;
int csc_enable = 0;
int csc_mode = 0;
int auto_csc = 0;
int value;
int i;
/* Input video mode is SDR RGB24bit, data enable signal from external */
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL1, v_DE_EXTERNAL |
v_VIDEO_INPUT_FORMAT(VIDEO_INPUT_SDR_RGB444));
/* Input color hardcode to RGB, and output color hardcode to RGB888 */
value = v_VIDEO_INPUT_BITS(VIDEO_INPUT_8BITS) |
v_VIDEO_OUTPUT_COLOR(0) |
v_VIDEO_INPUT_CSP(0);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL2, value);
if (conn_state->hdmi.output_format == HDMI_COLORSPACE_RGB) {
if (conn_state->hdmi.is_limited_range) {
csc_mode = CSC_RGB_0_255_TO_RGB_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
} else {
value = v_SOF_DISABLE | v_COLOR_DEPTH_NOT_INDICATED(1);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value);
hdmi_modb(hdmi, HDMI_VIDEO_CONTRL,
m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP,
v_VIDEO_AUTO_CSC(AUTO_CSC_DISABLE) |
v_VIDEO_C0_C2_SWAP(C0_C2_CHANGE_DISABLE));
return 0;
}
} else {
if (inno_conn_state->colorimetry == HDMI_COLORIMETRY_ITU_601) {
if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) {
csc_mode = CSC_RGB_0_255_TO_ITU601_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
}
} else {
if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) {
csc_mode = CSC_RGB_0_255_TO_ITU709_16_235_8BIT;
auto_csc = AUTO_CSC_DISABLE;
c0_c2_change = C0_C2_CHANGE_DISABLE;
csc_enable = v_CSC_ENABLE;
}
}
}
for (i = 0; i < 24; i++)
hdmi_writeb(hdmi, HDMI_VIDEO_CSC_COEF + i,
coeff_csc[csc_mode][i]);
value = v_SOF_DISABLE | csc_enable | v_COLOR_DEPTH_NOT_INDICATED(1);
hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value);
hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC |
m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(auto_csc) |
v_VIDEO_C0_C2_SWAP(c0_c2_change));
return 0;
}
static int inno_hdmi_config_video_timing(struct inno_hdmi *hdmi,
struct drm_display_mode *mode)
{
int value, psync;
if (hdmi->variant->dev_type == RK3036_HDMI) {
psync = mode->flags & DRM_MODE_FLAG_PHSYNC ? RK3036_HDMI_PHSYNC : 0;
value = HIWORD_UPDATE(psync, RK3036_HDMI_PHSYNC);
psync = mode->flags & DRM_MODE_FLAG_PVSYNC ? RK3036_HDMI_PVSYNC : 0;
value |= HIWORD_UPDATE(psync, RK3036_HDMI_PVSYNC);
regmap_write(hdmi->grf, RK3036_GRF_SOC_CON2, value);
}
/* Set detail external video timing polarity and interlace mode */
value = v_EXTERANL_VIDEO(1);
value |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
v_HSYNC_POLARITY(1) : v_HSYNC_POLARITY(0);
value |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
v_VSYNC_POLARITY(1) : v_VSYNC_POLARITY(0);
value |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
v_INETLACE(1) : v_INETLACE(0);
hdmi_writeb(hdmi, HDMI_VIDEO_TIMING_CTL, value);
/* Set detail external video timing */
value = mode->htotal;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_H, (value >> 8) & 0xFF);
value = mode->htotal - mode->hdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_H, (value >> 8) & 0xFF);
value = mode->htotal - mode->hsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_H, (value >> 8) & 0xFF);
value = mode->hsync_end - mode->hsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_H, (value >> 8) & 0xFF);
value = mode->vtotal;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_L, value & 0xFF);
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_H, (value >> 8) & 0xFF);
value = mode->vtotal - mode->vdisplay;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VBLANK, value & 0xFF);
value = mode->vtotal - mode->vsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDELAY, value & 0xFF);
value = mode->vsync_end - mode->vsync_start;
hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDURATION, value & 0xFF);
hdmi_writeb(hdmi, HDMI_PHY_PRE_DIV_RATIO, 0x1e);
hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_LOW, 0x2c);
hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH, 0x01);
return 0;
}
static int inno_hdmi_setup(struct inno_hdmi *hdmi,
struct drm_atomic_state *state)
{
struct drm_connector *connector = &hdmi->connector;
struct drm_display_info *display = &connector->display_info;
struct drm_connector_state *new_conn_state;
struct drm_crtc_state *new_crtc_state;
new_conn_state = drm_atomic_get_new_connector_state(state, connector);
if (WARN_ON(!new_conn_state))
return -EINVAL;
new_crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
if (WARN_ON(!new_crtc_state))
return -EINVAL;
/* Mute video and audio output */
hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK,
v_AUDIO_MUTE(1) | v_VIDEO_MUTE(1));
/* Set HDMI Mode */
hdmi_writeb(hdmi, HDMI_HDCP_CTRL,
v_HDMI_DVI(display->is_hdmi));
inno_hdmi_config_video_timing(hdmi, &new_crtc_state->adjusted_mode);
inno_hdmi_config_video_csc(hdmi);
drm_atomic_helper_connector_hdmi_update_infoframes(connector, state);
/*
* When IP controller have configured to an accurate video
* timing, then the TMDS clock source would be switched to
* DCLK_LCDC, so we need to init the TMDS rate to mode pixel
* clock rate, and reconfigure the DDC clock.
*/
inno_hdmi_i2c_init(hdmi, new_conn_state->hdmi.tmds_char_rate);
/* Unmute video and audio output */
hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK,
v_AUDIO_MUTE(0) | v_VIDEO_MUTE(0));
inno_hdmi_power_up(hdmi, new_conn_state->hdmi.tmds_char_rate);
return 0;
}
static enum drm_mode_status inno_hdmi_display_mode_valid(struct inno_hdmi *hdmi,
const struct drm_display_mode *mode)
{
unsigned long mpixelclk, max_tolerance;
long rounded_refclk;
/* No support for double-clock modes */
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_BAD;
mpixelclk = mode->clock * 1000;
if (mpixelclk < INNO_HDMI_MIN_TMDS_CLOCK)
return MODE_CLOCK_LOW;
if (inno_hdmi_find_phy_config(hdmi, mpixelclk) < 0)
return MODE_CLOCK_HIGH;
if (hdmi->refclk) {
rounded_refclk = clk_round_rate(hdmi->refclk, mpixelclk);
if (rounded_refclk < 0)
return MODE_BAD;
/* Vesa DMT standard mentions +/- 0.5% max tolerance */
max_tolerance = mpixelclk / 200;
if (abs_diff((unsigned long)rounded_refclk, mpixelclk) > max_tolerance)
return MODE_NOCLOCK;
}
return MODE_OK;
}
static void inno_hdmi_encoder_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder);
inno_hdmi_setup(hdmi, state);
}
static void inno_hdmi_encoder_disable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder);
inno_hdmi_standby(hdmi);
}
static int
inno_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state);
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
u8 vic = drm_match_cea_mode(mode);
struct inno_hdmi_connector_state *inno_conn_state =
to_inno_hdmi_conn_state(conn_state);
s->output_mode = ROCKCHIP_OUT_MODE_P888;
s->output_type = DRM_MODE_CONNECTOR_HDMIA;
if (vic == 6 || vic == 7 ||
vic == 21 || vic == 22 ||
vic == 2 || vic == 3 ||
vic == 17 || vic == 18)
inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_601;
else
inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709;
return 0;
}
static const struct drm_encoder_helper_funcs inno_hdmi_encoder_helper_funcs = {
.atomic_check = inno_hdmi_encoder_atomic_check,
.atomic_enable = inno_hdmi_encoder_enable,
.atomic_disable = inno_hdmi_encoder_disable,
};
static enum drm_connector_status
inno_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
return (hdmi_readb(hdmi, HDMI_STATUS) & m_HOTPLUG) ?
connector_status_connected : connector_status_disconnected;
}
static int inno_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
const struct drm_edid *drm_edid;
int ret = 0;
if (!hdmi->ddc)
return 0;
drm_edid = drm_edid_read_ddc(connector, hdmi->ddc);
drm_edid_connector_update(connector, drm_edid);
ret = drm_edid_connector_add_modes(connector);
drm_edid_free(drm_edid);
return ret;
}
static enum drm_mode_status
inno_hdmi_connector_mode_valid(struct drm_connector *connector,
const struct drm_display_mode *mode)
{
struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector);
return inno_hdmi_display_mode_valid(hdmi, mode);
}
static void
inno_hdmi_connector_destroy_state(struct drm_connector *connector,
struct drm_connector_state *state)
{
struct inno_hdmi_connector_state *inno_conn_state =
to_inno_hdmi_conn_state(state);
__drm_atomic_helper_connector_destroy_state(&inno_conn_state->base);
kfree(inno_conn_state);
}
static void inno_hdmi_connector_reset(struct drm_connector *connector)
{
struct inno_hdmi_connector_state *inno_conn_state;
if (connector->state) {
inno_hdmi_connector_destroy_state(connector, connector->state);
connector->state = NULL;
}
inno_conn_state = kzalloc(sizeof(*inno_conn_state), GFP_KERNEL);
if (!inno_conn_state)
return;
__drm_atomic_helper_connector_reset(connector, &inno_conn_state->base);
__drm_atomic_helper_connector_hdmi_reset(connector, connector->state);
inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709;
}
static struct drm_connector_state *
inno_hdmi_connector_duplicate_state(struct drm_connector *connector)
{
struct inno_hdmi_connector_state *inno_conn_state;
if (WARN_ON(!connector->state))
return NULL;
inno_conn_state = kmemdup(to_inno_hdmi_conn_state(connector->state),
sizeof(*inno_conn_state), GFP_KERNEL);
if (!inno_conn_state)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector,
&inno_conn_state->base);
return &inno_conn_state->base;
}
static const struct drm_connector_funcs inno_hdmi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = inno_hdmi_connector_detect,
.reset = inno_hdmi_connector_reset,
.atomic_duplicate_state = inno_hdmi_connector_duplicate_state,
.atomic_destroy_state = inno_hdmi_connector_destroy_state,
};
static struct drm_connector_helper_funcs inno_hdmi_connector_helper_funcs = {
.atomic_check = drm_atomic_helper_connector_hdmi_check,
.get_modes = inno_hdmi_connector_get_modes,
.mode_valid = inno_hdmi_connector_mode_valid,
};
static int inno_hdmi_register(struct drm_device *drm, struct inno_hdmi *hdmi)
{
struct drm_encoder *encoder = &hdmi->encoder.encoder;
struct device *dev = hdmi->dev;
encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
/*
* If we failed to find the CRTC(s) which this encoder is
* supposed to be connected to, it's because the CRTC has
* not been registered yet. Defer probing, and hope that
* the required CRTC is added later.
*/
if (encoder->possible_crtcs == 0)
return -EPROBE_DEFER;
drm_encoder_helper_add(encoder, &inno_hdmi_encoder_helper_funcs);
drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS);
hdmi->connector.polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(&hdmi->connector,
&inno_hdmi_connector_helper_funcs);
drmm_connector_hdmi_init(drm, &hdmi->connector,
"Rockchip", "Inno HDMI",
&inno_hdmi_connector_funcs,
&inno_hdmi_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA,
hdmi->ddc,
BIT(HDMI_COLORSPACE_RGB),
8);
drm_connector_attach_encoder(&hdmi->connector, encoder);
return 0;
}
static irqreturn_t inno_hdmi_i2c_irq(struct inno_hdmi *hdmi)
{
struct inno_hdmi_i2c *i2c = hdmi->i2c;
u8 stat;
stat = hdmi_readb(hdmi, HDMI_INTERRUPT_STATUS1);
if (!(stat & m_INT_EDID_READY))
return IRQ_NONE;
/* Clear HDMI EDID interrupt flag */
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
complete(&i2c->cmp);
return IRQ_HANDLED;
}
static irqreturn_t inno_hdmi_hardirq(int irq, void *dev_id)
{
struct inno_hdmi *hdmi = dev_id;
irqreturn_t ret = IRQ_NONE;
u8 interrupt;
if (hdmi->i2c)
ret = inno_hdmi_i2c_irq(hdmi);
interrupt = hdmi_readb(hdmi, HDMI_STATUS);
if (interrupt & m_INT_HOTPLUG) {
hdmi_modb(hdmi, HDMI_STATUS, m_INT_HOTPLUG, m_INT_HOTPLUG);
ret = IRQ_WAKE_THREAD;
}
return ret;
}
static irqreturn_t inno_hdmi_irq(int irq, void *dev_id)
{
struct inno_hdmi *hdmi = dev_id;
drm_helper_hpd_irq_event(hdmi->connector.dev);
return IRQ_HANDLED;
}
static int inno_hdmi_i2c_read(struct inno_hdmi *hdmi, struct i2c_msg *msgs)
{
int length = msgs->len;
u8 *buf = msgs->buf;
int ret;
ret = wait_for_completion_timeout(&hdmi->i2c->cmp, HZ / 10);
if (!ret)
return -EAGAIN;
while (length--)
*buf++ = hdmi_readb(hdmi, HDMI_EDID_FIFO_ADDR);
return 0;
}
static int inno_hdmi_i2c_write(struct inno_hdmi *hdmi, struct i2c_msg *msgs)
{
/*
* The DDC module only support read EDID message, so
* we assume that each word write to this i2c adapter
* should be the offset of EDID word address.
*/
if (msgs->len != 1 || (msgs->addr != DDC_ADDR && msgs->addr != DDC_SEGMENT_ADDR))
return -EINVAL;
reinit_completion(&hdmi->i2c->cmp);
if (msgs->addr == DDC_SEGMENT_ADDR)
hdmi->i2c->segment_addr = msgs->buf[0];
if (msgs->addr == DDC_ADDR)
hdmi->i2c->ddc_addr = msgs->buf[0];
/* Set edid fifo first addr */
hdmi_writeb(hdmi, HDMI_EDID_FIFO_OFFSET, 0x00);
/* Set edid word address 0x00/0x80 */
hdmi_writeb(hdmi, HDMI_EDID_WORD_ADDR, hdmi->i2c->ddc_addr);
/* Set edid segment pointer */
hdmi_writeb(hdmi, HDMI_EDID_SEGMENT_POINTER, hdmi->i2c->segment_addr);
return 0;
}
static int inno_hdmi_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct inno_hdmi *hdmi = i2c_get_adapdata(adap);
struct inno_hdmi_i2c *i2c = hdmi->i2c;
int i, ret = 0;
mutex_lock(&i2c->lock);
/* Clear the EDID interrupt flag and unmute the interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, m_INT_EDID_READY);
hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY);
for (i = 0; i < num; i++) {
DRM_DEV_DEBUG(hdmi->dev,
"xfer: num: %d/%d, len: %d, flags: %#x\n",
i + 1, num, msgs[i].len, msgs[i].flags);
if (msgs[i].flags & I2C_M_RD)
ret = inno_hdmi_i2c_read(hdmi, &msgs[i]);
else
ret = inno_hdmi_i2c_write(hdmi, &msgs[i]);
if (ret < 0)
break;
}
if (!ret)
ret = num;
/* Mute HDMI EDID interrupt */
hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0);
mutex_unlock(&i2c->lock);
return ret;
}
static u32 inno_hdmi_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm inno_hdmi_algorithm = {
.master_xfer = inno_hdmi_i2c_xfer,
.functionality = inno_hdmi_i2c_func,
};
static struct i2c_adapter *inno_hdmi_i2c_adapter(struct inno_hdmi *hdmi)
{
struct i2c_adapter *adap;
struct inno_hdmi_i2c *i2c;
int ret;
i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return ERR_PTR(-ENOMEM);
mutex_init(&i2c->lock);
init_completion(&i2c->cmp);
adap = &i2c->adap;
adap->owner = THIS_MODULE;
adap->dev.parent = hdmi->dev;
adap->dev.of_node = hdmi->dev->of_node;
adap->algo = &inno_hdmi_algorithm;
strscpy(adap->name, "Inno HDMI", sizeof(adap->name));
i2c_set_adapdata(adap, hdmi);
ret = devm_i2c_add_adapter(hdmi->dev, adap);
if (ret) {
dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
return ERR_PTR(ret);
}
hdmi->i2c = i2c;
DRM_DEV_INFO(hdmi->dev, "registered %s I2C bus driver\n", adap->name);
return adap;
}
static int inno_hdmi_bind(struct device *dev, struct device *master,
void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = data;
struct inno_hdmi *hdmi;
const struct inno_hdmi_variant *variant;
int irq;
int ret;
hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
if (!hdmi)
return -ENOMEM;
hdmi->dev = dev;
variant = of_device_get_match_data(hdmi->dev);
if (!variant)
return -EINVAL;
hdmi->variant = variant;
hdmi->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hdmi->regs))
return PTR_ERR(hdmi->regs);
hdmi->pclk = devm_clk_get_enabled(hdmi->dev, "pclk");
if (IS_ERR(hdmi->pclk))
return dev_err_probe(dev, PTR_ERR(hdmi->pclk), "Unable to get HDMI pclk\n");
hdmi->refclk = devm_clk_get_optional_enabled(hdmi->dev, "ref");
if (IS_ERR(hdmi->refclk))
return dev_err_probe(dev, PTR_ERR(hdmi->refclk), "Unable to get HDMI refclk\n");
if (hdmi->variant->dev_type == RK3036_HDMI) {
hdmi->grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,grf");
if (IS_ERR(hdmi->grf))
return dev_err_probe(dev,
PTR_ERR(hdmi->grf), "Unable to get rockchip,grf\n");
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
inno_hdmi_init_hw(hdmi);
hdmi->ddc = inno_hdmi_i2c_adapter(hdmi);
if (IS_ERR(hdmi->ddc))
return PTR_ERR(hdmi->ddc);
ret = inno_hdmi_register(drm, hdmi);
if (ret)
return ret;
dev_set_drvdata(dev, hdmi);
ret = devm_request_threaded_irq(dev, irq, inno_hdmi_hardirq,
inno_hdmi_irq, IRQF_SHARED,
dev_name(dev), hdmi);
if (ret < 0)
goto err_cleanup_hdmi;
return 0;
err_cleanup_hdmi:
hdmi->connector.funcs->destroy(&hdmi->connector);
hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder);
return ret;
}
static void inno_hdmi_unbind(struct device *dev, struct device *master,
void *data)
{
struct inno_hdmi *hdmi = dev_get_drvdata(dev);
hdmi->connector.funcs->destroy(&hdmi->connector);
hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder);
}
static const struct component_ops inno_hdmi_ops = {
.bind = inno_hdmi_bind,
.unbind = inno_hdmi_unbind,
};
static int inno_hdmi_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &inno_hdmi_ops);
}
static void inno_hdmi_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &inno_hdmi_ops);
}
static const struct inno_hdmi_variant rk3036_inno_hdmi_variant = {
.dev_type = RK3036_HDMI,
.phy_configs = rk3036_hdmi_phy_configs,
.default_phy_config = &rk3036_hdmi_phy_configs[1],
};
static const struct inno_hdmi_variant rk3128_inno_hdmi_variant = {
.dev_type = RK3128_HDMI,
.phy_configs = rk3128_hdmi_phy_configs,
.default_phy_config = &rk3128_hdmi_phy_configs[1],
};
static const struct of_device_id inno_hdmi_dt_ids[] = {
{ .compatible = "rockchip,rk3036-inno-hdmi",
.data = &rk3036_inno_hdmi_variant,
},
{ .compatible = "rockchip,rk3128-inno-hdmi",
.data = &rk3128_inno_hdmi_variant,
},
{},
};
MODULE_DEVICE_TABLE(of, inno_hdmi_dt_ids);
struct platform_driver inno_hdmi_driver = {
.probe = inno_hdmi_probe,
.remove = inno_hdmi_remove,
.driver = {
.name = "innohdmi-rockchip",
.of_match_table = inno_hdmi_dt_ids,
},
};