linux/drivers/gpu/drm/msm/msm_gem_vma.c
Rob Clark 8290d37ad2 drm/msm: Small function param doc fix
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202507032334.9SCwc952-lkp@intel.com/
Signed-off-by: Rob Clark <robin.clark@oss.qualcomm.com>
2025-07-05 09:59:12 -07:00

1531 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#include "drm/drm_file.h"
#include "drm/msm_drm.h"
#include "linux/file.h"
#include "linux/sync_file.h"
#include "msm_drv.h"
#include "msm_gem.h"
#include "msm_gpu.h"
#include "msm_mmu.h"
#include "msm_syncobj.h"
#define vm_dbg(fmt, ...) pr_debug("%s:%d: "fmt"\n", __func__, __LINE__, ##__VA_ARGS__)
static uint vm_log_shift = 0;
MODULE_PARM_DESC(vm_log_shift, "Length of VM op log");
module_param_named(vm_log_shift, vm_log_shift, uint, 0600);
/**
* struct msm_vm_map_op - create new pgtable mapping
*/
struct msm_vm_map_op {
/** @iova: start address for mapping */
uint64_t iova;
/** @range: size of the region to map */
uint64_t range;
/** @offset: offset into @sgt to map */
uint64_t offset;
/** @sgt: pages to map, or NULL for a PRR mapping */
struct sg_table *sgt;
/** @prot: the mapping protection flags */
int prot;
/**
* @queue_id: The id of the submitqueue the operation is performed
* on, or zero for (in particular) UNMAP ops triggered outside of
* a submitqueue (ie. process cleanup)
*/
int queue_id;
};
/**
* struct msm_vm_unmap_op - unmap a range of pages from pgtable
*/
struct msm_vm_unmap_op {
/** @iova: start address for unmap */
uint64_t iova;
/** @range: size of region to unmap */
uint64_t range;
/** @reason: The reason for the unmap */
const char *reason;
/**
* @queue_id: The id of the submitqueue the operation is performed
* on, or zero for (in particular) UNMAP ops triggered outside of
* a submitqueue (ie. process cleanup)
*/
int queue_id;
};
/**
* struct msm_vma_op - A MAP or UNMAP operation
*/
struct msm_vm_op {
/** @op: The operation type */
enum {
MSM_VM_OP_MAP = 1,
MSM_VM_OP_UNMAP,
} op;
union {
/** @map: Parameters used if op == MSM_VMA_OP_MAP */
struct msm_vm_map_op map;
/** @unmap: Parameters used if op == MSM_VMA_OP_UNMAP */
struct msm_vm_unmap_op unmap;
};
/** @node: list head in msm_vm_bind_job::vm_ops */
struct list_head node;
/**
* @obj: backing object for pages to be mapped/unmapped
*
* Async unmap ops, in particular, must hold a reference to the
* original GEM object backing the mapping that will be unmapped.
* But the same can be required in the map path, for example if
* there is not a corresponding unmap op, such as process exit.
*
* This ensures that the pages backing the mapping are not freed
* before the mapping is torn down.
*/
struct drm_gem_object *obj;
};
/**
* struct msm_vm_bind_job - Tracking for a VM_BIND ioctl
*
* A table of userspace requested VM updates (MSM_VM_BIND_OP_UNMAP/MAP/MAP_NULL)
* gets applied to the vm, generating a list of VM ops (MSM_VM_OP_MAP/UNMAP)
* which are applied to the pgtables asynchronously. For example a userspace
* requested MSM_VM_BIND_OP_MAP could end up generating both an MSM_VM_OP_UNMAP
* to unmap an existing mapping, and a MSM_VM_OP_MAP to apply the new mapping.
*/
struct msm_vm_bind_job {
/** @base: base class for drm_sched jobs */
struct drm_sched_job base;
/** @vm: The VM being operated on */
struct drm_gpuvm *vm;
/** @fence: The fence that is signaled when job completes */
struct dma_fence *fence;
/** @queue: The queue that the job runs on */
struct msm_gpu_submitqueue *queue;
/** @prealloc: Tracking for pre-allocated MMU pgtable pages */
struct msm_mmu_prealloc prealloc;
/** @vm_ops: a list of struct msm_vm_op */
struct list_head vm_ops;
/** @bos_pinned: are the GEM objects being bound pinned? */
bool bos_pinned;
/** @nr_ops: the number of userspace requested ops */
unsigned int nr_ops;
/**
* @ops: the userspace requested ops
*
* The userspace requested ops are copied/parsed and validated
* before we start applying the updates to try to do as much up-
* front error checking as possible, to avoid the VM being in an
* undefined state due to partially executed VM_BIND.
*
* This table also serves to hold a reference to the backing GEM
* objects.
*/
struct msm_vm_bind_op {
uint32_t op;
uint32_t flags;
union {
struct drm_gem_object *obj;
uint32_t handle;
};
uint64_t obj_offset;
uint64_t iova;
uint64_t range;
} ops[];
};
#define job_foreach_bo(obj, _job) \
for (unsigned i = 0; i < (_job)->nr_ops; i++) \
if ((obj = (_job)->ops[i].obj))
static inline struct msm_vm_bind_job *to_msm_vm_bind_job(struct drm_sched_job *job)
{
return container_of(job, struct msm_vm_bind_job, base);
}
static void
msm_gem_vm_free(struct drm_gpuvm *gpuvm)
{
struct msm_gem_vm *vm = container_of(gpuvm, struct msm_gem_vm, base);
drm_mm_takedown(&vm->mm);
if (vm->mmu)
vm->mmu->funcs->destroy(vm->mmu);
dma_fence_put(vm->last_fence);
put_pid(vm->pid);
kfree(vm->log);
kfree(vm);
}
/**
* msm_gem_vm_unusable() - Mark a VM as unusable
* @gpuvm: the VM to mark unusable
*/
void
msm_gem_vm_unusable(struct drm_gpuvm *gpuvm)
{
struct msm_gem_vm *vm = to_msm_vm(gpuvm);
uint32_t vm_log_len = (1 << vm->log_shift);
uint32_t vm_log_mask = vm_log_len - 1;
uint32_t nr_vm_logs;
int first;
vm->unusable = true;
/* Bail if no log, or empty log: */
if (!vm->log || !vm->log[0].op)
return;
mutex_lock(&vm->mmu_lock);
/*
* log_idx is the next entry to overwrite, meaning it is the oldest, or
* first, entry (other than the special case handled below where the
* log hasn't wrapped around yet)
*/
first = vm->log_idx;
if (!vm->log[first].op) {
/*
* If the next log entry has not been written yet, then only
* entries 0 to idx-1 are valid (ie. we haven't wrapped around
* yet)
*/
nr_vm_logs = MAX(0, first - 1);
first = 0;
} else {
nr_vm_logs = vm_log_len;
}
pr_err("vm-log:\n");
for (int i = 0; i < nr_vm_logs; i++) {
int idx = (i + first) & vm_log_mask;
struct msm_gem_vm_log_entry *e = &vm->log[idx];
pr_err(" - %s:%d: 0x%016llx-0x%016llx\n",
e->op, e->queue_id, e->iova,
e->iova + e->range);
}
mutex_unlock(&vm->mmu_lock);
}
static void
vm_log(struct msm_gem_vm *vm, const char *op, uint64_t iova, uint64_t range, int queue_id)
{
int idx;
if (!vm->managed)
lockdep_assert_held(&vm->mmu_lock);
vm_dbg("%s:%p:%d: %016llx %016llx", op, vm, queue_id, iova, iova + range);
if (!vm->log)
return;
idx = vm->log_idx;
vm->log[idx].op = op;
vm->log[idx].iova = iova;
vm->log[idx].range = range;
vm->log[idx].queue_id = queue_id;
vm->log_idx = (vm->log_idx + 1) & ((1 << vm->log_shift) - 1);
}
static void
vm_unmap_op(struct msm_gem_vm *vm, const struct msm_vm_unmap_op *op)
{
const char *reason = op->reason;
if (!reason)
reason = "unmap";
vm_log(vm, reason, op->iova, op->range, op->queue_id);
vm->mmu->funcs->unmap(vm->mmu, op->iova, op->range);
}
static int
vm_map_op(struct msm_gem_vm *vm, const struct msm_vm_map_op *op)
{
vm_log(vm, "map", op->iova, op->range, op->queue_id);
return vm->mmu->funcs->map(vm->mmu, op->iova, op->sgt, op->offset,
op->range, op->prot);
}
/* Actually unmap memory for the vma */
void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason)
{
struct msm_gem_vm *vm = to_msm_vm(vma->vm);
struct msm_gem_vma *msm_vma = to_msm_vma(vma);
/* Don't do anything if the memory isn't mapped */
if (!msm_vma->mapped)
return;
/*
* The mmu_lock is only needed when preallocation is used. But
* in that case we don't need to worry about recursion into
* shrinker
*/
if (!vm->managed)
mutex_lock(&vm->mmu_lock);
vm_unmap_op(vm, &(struct msm_vm_unmap_op){
.iova = vma->va.addr,
.range = vma->va.range,
.reason = reason,
});
if (!vm->managed)
mutex_unlock(&vm->mmu_lock);
msm_vma->mapped = false;
}
/* Map and pin vma: */
int
msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt)
{
struct msm_gem_vm *vm = to_msm_vm(vma->vm);
struct msm_gem_vma *msm_vma = to_msm_vma(vma);
int ret;
if (GEM_WARN_ON(!vma->va.addr))
return -EINVAL;
if (msm_vma->mapped)
return 0;
msm_vma->mapped = true;
/*
* The mmu_lock is only needed when preallocation is used. But
* in that case we don't need to worry about recursion into
* shrinker
*/
if (!vm->managed)
mutex_lock(&vm->mmu_lock);
/*
* NOTE: iommu/io-pgtable can allocate pages, so we cannot hold
* a lock across map/unmap which is also used in the job_run()
* path, as this can cause deadlock in job_run() vs shrinker/
* reclaim.
*
* Revisit this if we can come up with a scheme to pre-alloc pages
* for the pgtable in map/unmap ops.
*/
ret = vm_map_op(vm, &(struct msm_vm_map_op){
.iova = vma->va.addr,
.range = vma->va.range,
.offset = vma->gem.offset,
.sgt = sgt,
.prot = prot,
});
if (!vm->managed)
mutex_unlock(&vm->mmu_lock);
if (ret)
msm_vma->mapped = false;
return ret;
}
/* Close an iova. Warn if it is still in use */
void msm_gem_vma_close(struct drm_gpuva *vma)
{
struct msm_gem_vm *vm = to_msm_vm(vma->vm);
struct msm_gem_vma *msm_vma = to_msm_vma(vma);
GEM_WARN_ON(msm_vma->mapped);
drm_gpuvm_resv_assert_held(&vm->base);
if (vma->gem.obj)
msm_gem_assert_locked(vma->gem.obj);
if (vma->va.addr && vm->managed)
drm_mm_remove_node(&msm_vma->node);
drm_gpuva_remove(vma);
drm_gpuva_unlink(vma);
kfree(vma);
}
/* Create a new vma and allocate an iova for it */
struct drm_gpuva *
msm_gem_vma_new(struct drm_gpuvm *gpuvm, struct drm_gem_object *obj,
u64 offset, u64 range_start, u64 range_end)
{
struct msm_gem_vm *vm = to_msm_vm(gpuvm);
struct drm_gpuvm_bo *vm_bo;
struct msm_gem_vma *vma;
int ret;
drm_gpuvm_resv_assert_held(&vm->base);
vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (!vma)
return ERR_PTR(-ENOMEM);
if (vm->managed) {
BUG_ON(offset != 0);
BUG_ON(!obj); /* NULL mappings not valid for kernel managed VM */
ret = drm_mm_insert_node_in_range(&vm->mm, &vma->node,
obj->size, PAGE_SIZE, 0,
range_start, range_end, 0);
if (ret)
goto err_free_vma;
range_start = vma->node.start;
range_end = range_start + obj->size;
}
if (obj)
GEM_WARN_ON((range_end - range_start) > obj->size);
drm_gpuva_init(&vma->base, range_start, range_end - range_start, obj, offset);
vma->mapped = false;
ret = drm_gpuva_insert(&vm->base, &vma->base);
if (ret)
goto err_free_range;
if (!obj)
return &vma->base;
vm_bo = drm_gpuvm_bo_obtain(&vm->base, obj);
if (IS_ERR(vm_bo)) {
ret = PTR_ERR(vm_bo);
goto err_va_remove;
}
drm_gpuvm_bo_extobj_add(vm_bo);
drm_gpuva_link(&vma->base, vm_bo);
GEM_WARN_ON(drm_gpuvm_bo_put(vm_bo));
return &vma->base;
err_va_remove:
drm_gpuva_remove(&vma->base);
err_free_range:
if (vm->managed)
drm_mm_remove_node(&vma->node);
err_free_vma:
kfree(vma);
return ERR_PTR(ret);
}
static int
msm_gem_vm_bo_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
{
struct drm_gem_object *obj = vm_bo->obj;
struct drm_gpuva *vma;
int ret;
vm_dbg("validate: %p", obj);
msm_gem_assert_locked(obj);
drm_gpuvm_bo_for_each_va (vma, vm_bo) {
ret = msm_gem_pin_vma_locked(obj, vma);
if (ret)
return ret;
}
return 0;
}
struct op_arg {
unsigned flags;
struct msm_vm_bind_job *job;
};
static void
vm_op_enqueue(struct op_arg *arg, struct msm_vm_op _op)
{
struct msm_vm_op *op = kmalloc(sizeof(*op), GFP_KERNEL);
*op = _op;
list_add_tail(&op->node, &arg->job->vm_ops);
if (op->obj)
drm_gem_object_get(op->obj);
}
static struct drm_gpuva *
vma_from_op(struct op_arg *arg, struct drm_gpuva_op_map *op)
{
return msm_gem_vma_new(arg->job->vm, op->gem.obj, op->gem.offset,
op->va.addr, op->va.addr + op->va.range);
}
static int
msm_gem_vm_sm_step_map(struct drm_gpuva_op *op, void *arg)
{
struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
struct drm_gem_object *obj = op->map.gem.obj;
struct drm_gpuva *vma;
struct sg_table *sgt;
unsigned prot;
vma = vma_from_op(arg, &op->map);
if (WARN_ON(IS_ERR(vma)))
return PTR_ERR(vma);
vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
vma->va.addr, vma->va.range);
vma->flags = ((struct op_arg *)arg)->flags;
if (obj) {
sgt = to_msm_bo(obj)->sgt;
prot = msm_gem_prot(obj);
} else {
sgt = NULL;
prot = IOMMU_READ | IOMMU_WRITE;
}
vm_op_enqueue(arg, (struct msm_vm_op){
.op = MSM_VM_OP_MAP,
.map = {
.sgt = sgt,
.iova = vma->va.addr,
.range = vma->va.range,
.offset = vma->gem.offset,
.prot = prot,
.queue_id = job->queue->id,
},
.obj = vma->gem.obj,
});
to_msm_vma(vma)->mapped = true;
return 0;
}
static int
msm_gem_vm_sm_step_remap(struct drm_gpuva_op *op, void *arg)
{
struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
struct drm_gpuvm *vm = job->vm;
struct drm_gpuva *orig_vma = op->remap.unmap->va;
struct drm_gpuva *prev_vma = NULL, *next_vma = NULL;
struct drm_gpuvm_bo *vm_bo = orig_vma->vm_bo;
bool mapped = to_msm_vma(orig_vma)->mapped;
unsigned flags;
vm_dbg("orig_vma: %p:%p:%p: %016llx %016llx", vm, orig_vma,
orig_vma->gem.obj, orig_vma->va.addr, orig_vma->va.range);
if (mapped) {
uint64_t unmap_start, unmap_range;
drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
vm_op_enqueue(arg, (struct msm_vm_op){
.op = MSM_VM_OP_UNMAP,
.unmap = {
.iova = unmap_start,
.range = unmap_range,
.queue_id = job->queue->id,
},
.obj = orig_vma->gem.obj,
});
/*
* Part of this GEM obj is still mapped, but we're going to kill the
* existing VMA and replace it with one or two new ones (ie. two if
* the unmapped range is in the middle of the existing (unmap) VMA).
* So just set the state to unmapped:
*/
to_msm_vma(orig_vma)->mapped = false;
}
/*
* Hold a ref to the vm_bo between the msm_gem_vma_close() and the
* creation of the new prev/next vma's, in case the vm_bo is tracked
* in the VM's evict list:
*/
if (vm_bo)
drm_gpuvm_bo_get(vm_bo);
/*
* The prev_vma and/or next_vma are replacing the unmapped vma, and
* therefore should preserve it's flags:
*/
flags = orig_vma->flags;
msm_gem_vma_close(orig_vma);
if (op->remap.prev) {
prev_vma = vma_from_op(arg, op->remap.prev);
if (WARN_ON(IS_ERR(prev_vma)))
return PTR_ERR(prev_vma);
vm_dbg("prev_vma: %p:%p: %016llx %016llx", vm, prev_vma, prev_vma->va.addr, prev_vma->va.range);
to_msm_vma(prev_vma)->mapped = mapped;
prev_vma->flags = flags;
}
if (op->remap.next) {
next_vma = vma_from_op(arg, op->remap.next);
if (WARN_ON(IS_ERR(next_vma)))
return PTR_ERR(next_vma);
vm_dbg("next_vma: %p:%p: %016llx %016llx", vm, next_vma, next_vma->va.addr, next_vma->va.range);
to_msm_vma(next_vma)->mapped = mapped;
next_vma->flags = flags;
}
if (!mapped)
drm_gpuvm_bo_evict(vm_bo, true);
/* Drop the previous ref: */
drm_gpuvm_bo_put(vm_bo);
return 0;
}
static int
msm_gem_vm_sm_step_unmap(struct drm_gpuva_op *op, void *arg)
{
struct msm_vm_bind_job *job = ((struct op_arg *)arg)->job;
struct drm_gpuva *vma = op->unmap.va;
struct msm_gem_vma *msm_vma = to_msm_vma(vma);
vm_dbg("%p:%p:%p: %016llx %016llx", vma->vm, vma, vma->gem.obj,
vma->va.addr, vma->va.range);
if (!msm_vma->mapped)
goto out_close;
vm_op_enqueue(arg, (struct msm_vm_op){
.op = MSM_VM_OP_UNMAP,
.unmap = {
.iova = vma->va.addr,
.range = vma->va.range,
.queue_id = job->queue->id,
},
.obj = vma->gem.obj,
});
msm_vma->mapped = false;
out_close:
msm_gem_vma_close(vma);
return 0;
}
static const struct drm_gpuvm_ops msm_gpuvm_ops = {
.vm_free = msm_gem_vm_free,
.vm_bo_validate = msm_gem_vm_bo_validate,
.sm_step_map = msm_gem_vm_sm_step_map,
.sm_step_remap = msm_gem_vm_sm_step_remap,
.sm_step_unmap = msm_gem_vm_sm_step_unmap,
};
static struct dma_fence *
msm_vma_job_run(struct drm_sched_job *_job)
{
struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
struct msm_gem_vm *vm = to_msm_vm(job->vm);
struct drm_gem_object *obj;
int ret = vm->unusable ? -EINVAL : 0;
vm_dbg("");
mutex_lock(&vm->mmu_lock);
vm->mmu->prealloc = &job->prealloc;
while (!list_empty(&job->vm_ops)) {
struct msm_vm_op *op =
list_first_entry(&job->vm_ops, struct msm_vm_op, node);
switch (op->op) {
case MSM_VM_OP_MAP:
/*
* On error, stop trying to map new things.. but we
* still want to process the unmaps (or in particular,
* the drm_gem_object_put()s)
*/
if (!ret)
ret = vm_map_op(vm, &op->map);
break;
case MSM_VM_OP_UNMAP:
vm_unmap_op(vm, &op->unmap);
break;
}
drm_gem_object_put(op->obj);
list_del(&op->node);
kfree(op);
}
vm->mmu->prealloc = NULL;
mutex_unlock(&vm->mmu_lock);
/*
* We failed to perform at least _some_ of the pgtable updates, so
* now the VM is in an undefined state. Game over!
*/
if (ret)
msm_gem_vm_unusable(job->vm);
job_foreach_bo (obj, job) {
msm_gem_lock(obj);
msm_gem_unpin_locked(obj);
msm_gem_unlock(obj);
}
/* VM_BIND ops are synchronous, so no fence to wait on: */
return NULL;
}
static void
msm_vma_job_free(struct drm_sched_job *_job)
{
struct msm_vm_bind_job *job = to_msm_vm_bind_job(_job);
struct msm_gem_vm *vm = to_msm_vm(job->vm);
struct drm_gem_object *obj;
vm->mmu->funcs->prealloc_cleanup(vm->mmu, &job->prealloc);
atomic_sub(job->prealloc.count, &vm->prealloc_throttle.in_flight);
drm_sched_job_cleanup(_job);
job_foreach_bo (obj, job)
drm_gem_object_put(obj);
msm_submitqueue_put(job->queue);
dma_fence_put(job->fence);
/* In error paths, we could have unexecuted ops: */
while (!list_empty(&job->vm_ops)) {
struct msm_vm_op *op =
list_first_entry(&job->vm_ops, struct msm_vm_op, node);
list_del(&op->node);
kfree(op);
}
wake_up(&vm->prealloc_throttle.wait);
kfree(job);
}
static const struct drm_sched_backend_ops msm_vm_bind_ops = {
.run_job = msm_vma_job_run,
.free_job = msm_vma_job_free
};
/**
* msm_gem_vm_create() - Create and initialize a &msm_gem_vm
* @drm: the drm device
* @mmu: the backing MMU objects handling mapping/unmapping
* @name: the name of the VM
* @va_start: the start offset of the VA space
* @va_size: the size of the VA space
* @managed: is it a kernel managed VM?
*
* In a kernel managed VM, the kernel handles address allocation, and only
* synchronous operations are supported. In a user managed VM, userspace
* handles virtual address allocation, and both async and sync operations
* are supported.
*/
struct drm_gpuvm *
msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name,
u64 va_start, u64 va_size, bool managed)
{
/*
* We mostly want to use DRM_GPUVM_RESV_PROTECTED, except that
* makes drm_gpuvm_bo_evict() a no-op for extobjs (ie. we loose
* tracking that an extobj is evicted) :facepalm:
*/
enum drm_gpuvm_flags flags = 0;
struct msm_gem_vm *vm;
struct drm_gem_object *dummy_gem;
int ret = 0;
if (IS_ERR(mmu))
return ERR_CAST(mmu);
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
if (!vm)
return ERR_PTR(-ENOMEM);
dummy_gem = drm_gpuvm_resv_object_alloc(drm);
if (!dummy_gem) {
ret = -ENOMEM;
goto err_free_vm;
}
if (!managed) {
struct drm_sched_init_args args = {
.ops = &msm_vm_bind_ops,
.num_rqs = 1,
.credit_limit = 1,
.timeout = MAX_SCHEDULE_TIMEOUT,
.name = "msm-vm-bind",
.dev = drm->dev,
};
ret = drm_sched_init(&vm->sched, &args);
if (ret)
goto err_free_dummy;
init_waitqueue_head(&vm->prealloc_throttle.wait);
}
drm_gpuvm_init(&vm->base, name, flags, drm, dummy_gem,
va_start, va_size, 0, 0, &msm_gpuvm_ops);
drm_gem_object_put(dummy_gem);
vm->mmu = mmu;
mutex_init(&vm->mmu_lock);
vm->managed = managed;
drm_mm_init(&vm->mm, va_start, va_size);
/*
* We don't really need vm log for kernel managed VMs, as the kernel
* is responsible for ensuring that GEM objs are mapped if they are
* used by a submit. Furthermore we piggyback on mmu_lock to serialize
* access to the log.
*
* Limit the max log_shift to 8 to prevent userspace from asking us
* for an unreasonable log size.
*/
if (!managed)
vm->log_shift = MIN(vm_log_shift, 8);
if (vm->log_shift) {
vm->log = kmalloc_array(1 << vm->log_shift, sizeof(vm->log[0]),
GFP_KERNEL | __GFP_ZERO);
}
return &vm->base;
err_free_dummy:
drm_gem_object_put(dummy_gem);
err_free_vm:
kfree(vm);
return ERR_PTR(ret);
}
/**
* msm_gem_vm_close() - Close a VM
* @gpuvm: The VM to close
*
* Called when the drm device file is closed, to tear down VM related resources
* (which will drop refcounts to GEM objects that were still mapped into the
* VM at the time).
*/
void
msm_gem_vm_close(struct drm_gpuvm *gpuvm)
{
struct msm_gem_vm *vm = to_msm_vm(gpuvm);
struct drm_gpuva *vma, *tmp;
struct drm_exec exec;
/*
* For kernel managed VMs, the VMAs are torn down when the handle is
* closed, so nothing more to do.
*/
if (vm->managed)
return;
if (vm->last_fence)
dma_fence_wait(vm->last_fence, false);
/* Kill the scheduler now, so we aren't racing with it for cleanup: */
drm_sched_stop(&vm->sched, NULL);
drm_sched_fini(&vm->sched);
/* Tear down any remaining mappings: */
drm_exec_init(&exec, 0, 2);
drm_exec_until_all_locked (&exec) {
drm_exec_lock_obj(&exec, drm_gpuvm_resv_obj(gpuvm));
drm_exec_retry_on_contention(&exec);
drm_gpuvm_for_each_va_safe (vma, tmp, gpuvm) {
struct drm_gem_object *obj = vma->gem.obj;
/*
* MSM_BO_NO_SHARE objects share the same resv as the
* VM, in which case the obj is already locked:
*/
if (obj && (obj->resv == drm_gpuvm_resv(gpuvm)))
obj = NULL;
if (obj) {
drm_exec_lock_obj(&exec, obj);
drm_exec_retry_on_contention(&exec);
}
msm_gem_vma_unmap(vma, "close");
msm_gem_vma_close(vma);
if (obj) {
drm_exec_unlock_obj(&exec, obj);
}
}
}
drm_exec_fini(&exec);
}
static struct msm_vm_bind_job *
vm_bind_job_create(struct drm_device *dev, struct drm_file *file,
struct msm_gpu_submitqueue *queue, uint32_t nr_ops)
{
struct msm_vm_bind_job *job;
uint64_t sz;
int ret;
sz = struct_size(job, ops, nr_ops);
if (sz > SIZE_MAX)
return ERR_PTR(-ENOMEM);
job = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
if (!job)
return ERR_PTR(-ENOMEM);
ret = drm_sched_job_init(&job->base, queue->entity, 1, queue,
file->client_id);
if (ret) {
kfree(job);
return ERR_PTR(ret);
}
job->vm = msm_context_vm(dev, queue->ctx);
job->queue = queue;
INIT_LIST_HEAD(&job->vm_ops);
return job;
}
static bool invalid_alignment(uint64_t addr)
{
/*
* Technically this is about GPU alignment, not CPU alignment. But
* I've not seen any qcom SoC where the SMMU does not support the
* CPU's smallest page size.
*/
return !PAGE_ALIGNED(addr);
}
static int
lookup_op(struct msm_vm_bind_job *job, const struct drm_msm_vm_bind_op *op)
{
struct drm_device *dev = job->vm->drm;
int i = job->nr_ops++;
int ret = 0;
job->ops[i].op = op->op;
job->ops[i].handle = op->handle;
job->ops[i].obj_offset = op->obj_offset;
job->ops[i].iova = op->iova;
job->ops[i].range = op->range;
job->ops[i].flags = op->flags;
if (op->flags & ~MSM_VM_BIND_OP_FLAGS)
ret = UERR(EINVAL, dev, "invalid flags: %x\n", op->flags);
if (invalid_alignment(op->iova))
ret = UERR(EINVAL, dev, "invalid address: %016llx\n", op->iova);
if (invalid_alignment(op->obj_offset))
ret = UERR(EINVAL, dev, "invalid bo_offset: %016llx\n", op->obj_offset);
if (invalid_alignment(op->range))
ret = UERR(EINVAL, dev, "invalid range: %016llx\n", op->range);
if (!drm_gpuvm_range_valid(job->vm, op->iova, op->range))
ret = UERR(EINVAL, dev, "invalid range: %016llx, %016llx\n", op->iova, op->range);
/*
* MAP must specify a valid handle. But the handle MBZ for
* UNMAP or MAP_NULL.
*/
if (op->op == MSM_VM_BIND_OP_MAP) {
if (!op->handle)
ret = UERR(EINVAL, dev, "invalid handle\n");
} else if (op->handle) {
ret = UERR(EINVAL, dev, "handle must be zero\n");
}
switch (op->op) {
case MSM_VM_BIND_OP_MAP:
case MSM_VM_BIND_OP_MAP_NULL:
case MSM_VM_BIND_OP_UNMAP:
break;
default:
ret = UERR(EINVAL, dev, "invalid op: %u\n", op->op);
break;
}
return ret;
}
/*
* ioctl parsing, parameter validation, and GEM handle lookup
*/
static int
vm_bind_job_lookup_ops(struct msm_vm_bind_job *job, struct drm_msm_vm_bind *args,
struct drm_file *file, int *nr_bos)
{
struct drm_device *dev = job->vm->drm;
int ret = 0;
int cnt = 0;
if (args->nr_ops == 1) {
/* Single op case, the op is inlined: */
ret = lookup_op(job, &args->op);
} else {
for (unsigned i = 0; i < args->nr_ops; i++) {
struct drm_msm_vm_bind_op op;
void __user *userptr =
u64_to_user_ptr(args->ops + (i * sizeof(op)));
/* make sure we don't have garbage flags, in case we hit
* error path before flags is initialized:
*/
job->ops[i].flags = 0;
if (copy_from_user(&op, userptr, sizeof(op))) {
ret = -EFAULT;
break;
}
ret = lookup_op(job, &op);
if (ret)
break;
}
}
if (ret) {
job->nr_ops = 0;
goto out;
}
spin_lock(&file->table_lock);
for (unsigned i = 0; i < args->nr_ops; i++) {
struct drm_gem_object *obj;
if (!job->ops[i].handle) {
job->ops[i].obj = NULL;
continue;
}
/*
* normally use drm_gem_object_lookup(), but for bulk lookup
* all under single table_lock just hit object_idr directly:
*/
obj = idr_find(&file->object_idr, job->ops[i].handle);
if (!obj) {
ret = UERR(EINVAL, dev, "invalid handle %u at index %u\n", job->ops[i].handle, i);
goto out_unlock;
}
drm_gem_object_get(obj);
job->ops[i].obj = obj;
cnt++;
}
*nr_bos = cnt;
out_unlock:
spin_unlock(&file->table_lock);
out:
return ret;
}
static void
prealloc_count(struct msm_vm_bind_job *job,
struct msm_vm_bind_op *first,
struct msm_vm_bind_op *last)
{
struct msm_mmu *mmu = to_msm_vm(job->vm)->mmu;
if (!first)
return;
uint64_t start_iova = first->iova;
uint64_t end_iova = last->iova + last->range;
mmu->funcs->prealloc_count(mmu, &job->prealloc, start_iova, end_iova - start_iova);
}
static bool
ops_are_same_pte(struct msm_vm_bind_op *first, struct msm_vm_bind_op *next)
{
/*
* Last level pte covers 2MB.. so we should merge two ops, from
* the PoV of figuring out how much pgtable pages to pre-allocate
* if they land in the same 2MB range:
*/
uint64_t pte_mask = ~(SZ_2M - 1);
return ((first->iova + first->range) & pte_mask) == (next->iova & pte_mask);
}
/*
* Determine the amount of memory to prealloc for pgtables. For sparse images,
* in particular, userspace plays some tricks with the order of page mappings
* to get the desired swizzle pattern, resulting in a large # of tiny MAP ops.
* So detect when multiple MAP operations are physically contiguous, and count
* them as a single mapping. Otherwise the prealloc_count() will not realize
* they can share pagetable pages and vastly overcount.
*/
static int
vm_bind_prealloc_count(struct msm_vm_bind_job *job)
{
struct msm_vm_bind_op *first = NULL, *last = NULL;
struct msm_gem_vm *vm = to_msm_vm(job->vm);
int ret;
for (int i = 0; i < job->nr_ops; i++) {
struct msm_vm_bind_op *op = &job->ops[i];
/* We only care about MAP/MAP_NULL: */
if (op->op == MSM_VM_BIND_OP_UNMAP)
continue;
/*
* If op is contiguous with last in the current range, then
* it becomes the new last in the range and we continue
* looping:
*/
if (last && ops_are_same_pte(last, op)) {
last = op;
continue;
}
/*
* If op is not contiguous with the current range, flush
* the current range and start anew:
*/
prealloc_count(job, first, last);
first = last = op;
}
/* Flush the remaining range: */
prealloc_count(job, first, last);
/*
* Now that we know the needed amount to pre-alloc, throttle on pending
* VM_BIND jobs if we already have too much pre-alloc memory in flight
*/
ret = wait_event_interruptible(
vm->prealloc_throttle.wait,
atomic_read(&vm->prealloc_throttle.in_flight) <= 1024);
if (ret)
return ret;
atomic_add(job->prealloc.count, &vm->prealloc_throttle.in_flight);
return 0;
}
/*
* Lock VM and GEM objects
*/
static int
vm_bind_job_lock_objects(struct msm_vm_bind_job *job, struct drm_exec *exec)
{
int ret;
/* Lock VM and objects: */
drm_exec_until_all_locked (exec) {
ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(job->vm));
drm_exec_retry_on_contention(exec);
if (ret)
return ret;
for (unsigned i = 0; i < job->nr_ops; i++) {
const struct msm_vm_bind_op *op = &job->ops[i];
switch (op->op) {
case MSM_VM_BIND_OP_UNMAP:
ret = drm_gpuvm_sm_unmap_exec_lock(job->vm, exec,
op->iova,
op->obj_offset);
break;
case MSM_VM_BIND_OP_MAP:
case MSM_VM_BIND_OP_MAP_NULL:
ret = drm_gpuvm_sm_map_exec_lock(job->vm, exec, 1,
op->iova, op->range,
op->obj, op->obj_offset);
break;
default:
/*
* lookup_op() should have already thrown an error for
* invalid ops
*/
WARN_ON("unreachable");
}
drm_exec_retry_on_contention(exec);
if (ret)
return ret;
}
}
return 0;
}
/*
* Pin GEM objects, ensuring that we have backing pages. Pinning will move
* the object to the pinned LRU so that the shrinker knows to first consider
* other objects for evicting.
*/
static int
vm_bind_job_pin_objects(struct msm_vm_bind_job *job)
{
struct drm_gem_object *obj;
/*
* First loop, before holding the LRU lock, avoids holding the
* LRU lock while calling msm_gem_pin_vma_locked (which could
* trigger get_pages())
*/
job_foreach_bo (obj, job) {
struct page **pages;
pages = msm_gem_get_pages_locked(obj, MSM_MADV_WILLNEED);
if (IS_ERR(pages))
return PTR_ERR(pages);
}
struct msm_drm_private *priv = job->vm->drm->dev_private;
/*
* A second loop while holding the LRU lock (a) avoids acquiring/dropping
* the LRU lock for each individual bo, while (b) avoiding holding the
* LRU lock while calling msm_gem_pin_vma_locked() (which could trigger
* get_pages() which could trigger reclaim.. and if we held the LRU lock
* could trigger deadlock with the shrinker).
*/
mutex_lock(&priv->lru.lock);
job_foreach_bo (obj, job)
msm_gem_pin_obj_locked(obj);
mutex_unlock(&priv->lru.lock);
job->bos_pinned = true;
return 0;
}
/*
* Unpin GEM objects. Normally this is done after the bind job is run.
*/
static void
vm_bind_job_unpin_objects(struct msm_vm_bind_job *job)
{
struct drm_gem_object *obj;
if (!job->bos_pinned)
return;
job_foreach_bo (obj, job)
msm_gem_unpin_locked(obj);
job->bos_pinned = false;
}
/*
* Pre-allocate pgtable memory, and translate the VM bind requests into a
* sequence of pgtable updates to be applied asynchronously.
*/
static int
vm_bind_job_prepare(struct msm_vm_bind_job *job)
{
struct msm_gem_vm *vm = to_msm_vm(job->vm);
struct msm_mmu *mmu = vm->mmu;
int ret;
ret = mmu->funcs->prealloc_allocate(mmu, &job->prealloc);
if (ret)
return ret;
for (unsigned i = 0; i < job->nr_ops; i++) {
const struct msm_vm_bind_op *op = &job->ops[i];
struct op_arg arg = {
.job = job,
};
switch (op->op) {
case MSM_VM_BIND_OP_UNMAP:
ret = drm_gpuvm_sm_unmap(job->vm, &arg, op->iova,
op->range);
break;
case MSM_VM_BIND_OP_MAP:
if (op->flags & MSM_VM_BIND_OP_DUMP)
arg.flags |= MSM_VMA_DUMP;
fallthrough;
case MSM_VM_BIND_OP_MAP_NULL:
ret = drm_gpuvm_sm_map(job->vm, &arg, op->iova,
op->range, op->obj, op->obj_offset);
break;
default:
/*
* lookup_op() should have already thrown an error for
* invalid ops
*/
BUG_ON("unreachable");
}
if (ret) {
/*
* If we've already started modifying the vm, we can't
* adequetly describe to userspace the intermediate
* state the vm is in. So throw up our hands!
*/
if (i > 0)
msm_gem_vm_unusable(job->vm);
return ret;
}
}
return 0;
}
/*
* Attach fences to the GEM objects being bound. This will signify to
* the shrinker that they are busy even after dropping the locks (ie.
* drm_exec_fini())
*/
static void
vm_bind_job_attach_fences(struct msm_vm_bind_job *job)
{
for (unsigned i = 0; i < job->nr_ops; i++) {
struct drm_gem_object *obj = job->ops[i].obj;
if (!obj)
continue;
dma_resv_add_fence(obj->resv, job->fence,
DMA_RESV_USAGE_KERNEL);
}
}
int
msm_ioctl_vm_bind(struct drm_device *dev, void *data, struct drm_file *file)
{
struct msm_drm_private *priv = dev->dev_private;
struct drm_msm_vm_bind *args = data;
struct msm_context *ctx = file->driver_priv;
struct msm_vm_bind_job *job = NULL;
struct msm_gpu *gpu = priv->gpu;
struct msm_gpu_submitqueue *queue;
struct msm_syncobj_post_dep *post_deps = NULL;
struct drm_syncobj **syncobjs_to_reset = NULL;
struct sync_file *sync_file = NULL;
struct dma_fence *fence;
int out_fence_fd = -1;
int ret, nr_bos = 0;
unsigned i;
if (!gpu)
return -ENXIO;
/*
* Maybe we could allow just UNMAP ops? OTOH userspace should just
* immediately close the device file and all will be torn down.
*/
if (to_msm_vm(ctx->vm)->unusable)
return UERR(EPIPE, dev, "context is unusable");
/*
* Technically, you cannot create a VM_BIND submitqueue in the first
* place, if you haven't opted in to VM_BIND context. But it is
* cleaner / less confusing, to check this case directly.
*/
if (!msm_context_is_vmbind(ctx))
return UERR(EINVAL, dev, "context does not support vmbind");
if (args->flags & ~MSM_VM_BIND_FLAGS)
return UERR(EINVAL, dev, "invalid flags");
queue = msm_submitqueue_get(ctx, args->queue_id);
if (!queue)
return -ENOENT;
if (!(queue->flags & MSM_SUBMITQUEUE_VM_BIND)) {
ret = UERR(EINVAL, dev, "Invalid queue type");
goto out_post_unlock;
}
if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
if (out_fence_fd < 0) {
ret = out_fence_fd;
goto out_post_unlock;
}
}
job = vm_bind_job_create(dev, file, queue, args->nr_ops);
if (IS_ERR(job)) {
ret = PTR_ERR(job);
goto out_post_unlock;
}
ret = mutex_lock_interruptible(&queue->lock);
if (ret)
goto out_post_unlock;
if (args->flags & MSM_VM_BIND_FENCE_FD_IN) {
struct dma_fence *in_fence;
in_fence = sync_file_get_fence(args->fence_fd);
if (!in_fence) {
ret = UERR(EINVAL, dev, "invalid in-fence");
goto out_unlock;
}
ret = drm_sched_job_add_dependency(&job->base, in_fence);
if (ret)
goto out_unlock;
}
if (args->in_syncobjs > 0) {
syncobjs_to_reset = msm_syncobj_parse_deps(dev, &job->base,
file, args->in_syncobjs,
args->nr_in_syncobjs,
args->syncobj_stride);
if (IS_ERR(syncobjs_to_reset)) {
ret = PTR_ERR(syncobjs_to_reset);
goto out_unlock;
}
}
if (args->out_syncobjs > 0) {
post_deps = msm_syncobj_parse_post_deps(dev, file,
args->out_syncobjs,
args->nr_out_syncobjs,
args->syncobj_stride);
if (IS_ERR(post_deps)) {
ret = PTR_ERR(post_deps);
goto out_unlock;
}
}
ret = vm_bind_job_lookup_ops(job, args, file, &nr_bos);
if (ret)
goto out_unlock;
ret = vm_bind_prealloc_count(job);
if (ret)
goto out_unlock;
struct drm_exec exec;
unsigned flags = DRM_EXEC_IGNORE_DUPLICATES | DRM_EXEC_INTERRUPTIBLE_WAIT;
drm_exec_init(&exec, flags, nr_bos + 1);
ret = vm_bind_job_lock_objects(job, &exec);
if (ret)
goto out;
ret = vm_bind_job_pin_objects(job);
if (ret)
goto out;
ret = vm_bind_job_prepare(job);
if (ret)
goto out;
drm_sched_job_arm(&job->base);
job->fence = dma_fence_get(&job->base.s_fence->finished);
if (args->flags & MSM_VM_BIND_FENCE_FD_OUT) {
sync_file = sync_file_create(job->fence);
if (!sync_file) {
ret = -ENOMEM;
} else {
fd_install(out_fence_fd, sync_file->file);
args->fence_fd = out_fence_fd;
}
}
if (ret)
goto out;
vm_bind_job_attach_fences(job);
/*
* The job can be free'd (and fence unref'd) at any point after
* drm_sched_entity_push_job(), so we need to hold our own ref
*/
fence = dma_fence_get(job->fence);
drm_sched_entity_push_job(&job->base);
msm_syncobj_reset(syncobjs_to_reset, args->nr_in_syncobjs);
msm_syncobj_process_post_deps(post_deps, args->nr_out_syncobjs, fence);
dma_fence_put(fence);
out:
if (ret)
vm_bind_job_unpin_objects(job);
drm_exec_fini(&exec);
out_unlock:
mutex_unlock(&queue->lock);
out_post_unlock:
if (ret && (out_fence_fd >= 0)) {
put_unused_fd(out_fence_fd);
if (sync_file)
fput(sync_file->file);
}
if (!IS_ERR_OR_NULL(job)) {
if (ret)
msm_vma_job_free(&job->base);
} else {
/*
* If the submit hasn't yet taken ownership of the queue
* then we need to drop the reference ourself:
*/
msm_submitqueue_put(queue);
}
if (!IS_ERR_OR_NULL(post_deps)) {
for (i = 0; i < args->nr_out_syncobjs; ++i) {
kfree(post_deps[i].chain);
drm_syncobj_put(post_deps[i].syncobj);
}
kfree(post_deps);
}
if (!IS_ERR_OR_NULL(syncobjs_to_reset)) {
for (i = 0; i < args->nr_in_syncobjs; ++i) {
if (syncobjs_to_reset[i])
drm_syncobj_put(syncobjs_to_reset[i]);
}
kfree(syncobjs_to_reset);
}
return ret;
}