linux/drivers/gpu/drm/msm/msm_gem.h
Rob Clark b74fae5492 drm/msm: Add VM_BIND throttling
A large number of (unsorted or separate) small (<2MB) mappings can cause
a lot of, probably unnecessary, prealloc pages.  Ie. a single 4k page
size mapping will pre-allocate 3 pages (for levels 2-4) for the
pagetable.  Which can chew up a large amount of unneeded memory.  So add
a mechanism to put an upper bound on the # of pre-alloc pages.

Signed-off-by: Rob Clark <robin.clark@oss.qualcomm.com>
Tested-by: Antonino Maniscalco <antomani103@gmail.com>
Reviewed-by: Antonino Maniscalco <antomani103@gmail.com>
Patchwork: https://patchwork.freedesktop.org/patch/661529/
2025-07-04 17:48:39 -07:00

501 lines
16 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#ifndef __MSM_GEM_H__
#define __MSM_GEM_H__
#include "msm_mmu.h"
#include <linux/kref.h>
#include <linux/dma-resv.h>
#include "drm/drm_exec.h"
#include "drm/drm_gpuvm.h"
#include "drm/gpu_scheduler.h"
#include "msm_drv.h"
/* Make all GEM related WARN_ON()s ratelimited.. when things go wrong they
* tend to go wrong 1000s of times in a short timespan.
*/
#define GEM_WARN_ON(x) WARN_RATELIMIT(x, "%s", __stringify(x))
/* Additional internal-use only BO flags: */
#define MSM_BO_STOLEN 0x10000000 /* try to use stolen/splash memory */
#define MSM_BO_MAP_PRIV 0x20000000 /* use IOMMU_PRIV when mapping */
/**
* struct msm_gem_vm_log_entry - An entry in the VM log
*
* For userspace managed VMs, a log of recent VM updates is tracked and
* captured in GPU devcore dumps, to aid debugging issues caused by (for
* example) incorrectly synchronized VM updates
*/
struct msm_gem_vm_log_entry {
const char *op;
uint64_t iova;
uint64_t range;
int queue_id;
};
/**
* struct msm_gem_vm - VM object
*
* A VM object representing a GPU (or display or GMU or ...) virtual address
* space.
*
* In the case of GPU, if per-process address spaces are supported, the address
* space is split into two VMs, which map to TTBR0 and TTBR1 in the SMMU. TTBR0
* is used for userspace objects, and is unique per msm_context/drm_file, while
* TTBR1 is the same for all processes. (The kernel controlled ringbuffer and
* a few other kernel controlled buffers live in TTBR1.)
*
* The GPU TTBR0 vm can be managed by userspace or by the kernel, depending on
* whether userspace supports VM_BIND. All other vm's are managed by the kernel.
* (Managed by kernel means the kernel is responsible for VA allocation.)
*
* Note that because VM_BIND allows a given BO to be mapped multiple times in
* a VM, and therefore have multiple VMA's in a VM, there is an extra object
* provided by drm_gpuvm infrastructure.. the drm_gpuvm_bo, which is not
* embedded in any larger driver structure. The GEM object holds a list of
* drm_gpuvm_bo, which in turn holds a list of msm_gem_vma. A linked vma
* holds a reference to the vm_bo, and drops it when the vma is unlinked.
* So we just need to call drm_gpuvm_bo_obtain() to return a ref to an
* existing vm_bo, or create a new one. Once the vma is linked, the ref
* to the vm_bo can be dropped (since the vma is holding one).
*/
struct msm_gem_vm {
/** @base: Inherit from drm_gpuvm. */
struct drm_gpuvm base;
/**
* @sched: Scheduler used for asynchronous VM_BIND request.
*
* Unused for kernel managed VMs (where all operations are synchronous).
*/
struct drm_gpu_scheduler sched;
/**
* @prealloc_throttle: Used to throttle VM_BIND ops if too much pre-
* allocated memory is in flight.
*
* Because we have to pre-allocate pgtable pages for the worst case
* (ie. new mappings do not share any PTEs with existing mappings)
* we could end up consuming a lot of resources transiently. The
* prealloc_throttle puts an upper bound on that.
*/
struct {
/** @wait: Notified when preallocated resources are released */
wait_queue_head_t wait;
/**
* @in_flight: The # of preallocated pgtable pages in-flight
* for queued VM_BIND jobs.
*/
atomic_t in_flight;
} prealloc_throttle;
/**
* @mm: Memory management for kernel managed VA allocations
*
* Only used for kernel managed VMs, unused for user managed VMs.
*
* Protected by @mm_lock.
*/
struct drm_mm mm;
/** @mmu: The mmu object which manages the pgtables */
struct msm_mmu *mmu;
/** @mmu_lock: Protects access to the mmu */
struct mutex mmu_lock;
/**
* @pid: For address spaces associated with a specific process, this
* will be non-NULL:
*/
struct pid *pid;
/** @last_fence: Fence for last pending work scheduled on the VM */
struct dma_fence *last_fence;
/** @log: A log of recent VM updates */
struct msm_gem_vm_log_entry *log;
/** @log_shift: length of @log is (1 << @log_shift) */
uint32_t log_shift;
/** @log_idx: index of next @log entry to write */
uint32_t log_idx;
/** @faults: the number of GPU hangs associated with this address space */
int faults;
/** @managed: is this a kernel managed VM? */
bool managed;
/**
* @unusable: True if the VM has turned unusable because something
* bad happened during an asynchronous request.
*
* We don't try to recover from such failures, because this implies
* informing userspace about the specific operation that failed, and
* hoping the userspace driver can replay things from there. This all
* sounds very complicated for little gain.
*
* Instead, we should just flag the VM as unusable, and fail any
* further request targeting this VM.
*
* As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
* situation, where the logical device needs to be re-created.
*/
bool unusable;
};
#define to_msm_vm(x) container_of(x, struct msm_gem_vm, base)
struct drm_gpuvm *
msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name,
u64 va_start, u64 va_size, bool managed);
void msm_gem_vm_close(struct drm_gpuvm *gpuvm);
void msm_gem_vm_unusable(struct drm_gpuvm *gpuvm);
struct msm_fence_context;
#define MSM_VMA_DUMP (DRM_GPUVA_USERBITS << 0)
/**
* struct msm_gem_vma - a VMA mapping
*
* Represents a combination of a GEM object plus a VM.
*/
struct msm_gem_vma {
/** @base: inherit from drm_gpuva */
struct drm_gpuva base;
/**
* @node: mm node for VA allocation
*
* Only used by kernel managed VMs
*/
struct drm_mm_node node;
/** @mapped: Is this VMA mapped? */
bool mapped;
};
#define to_msm_vma(x) container_of(x, struct msm_gem_vma, base)
struct drm_gpuva *
msm_gem_vma_new(struct drm_gpuvm *vm, struct drm_gem_object *obj,
u64 offset, u64 range_start, u64 range_end);
void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason);
int msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt);
void msm_gem_vma_close(struct drm_gpuva *vma);
struct msm_gem_object {
struct drm_gem_object base;
uint32_t flags;
/**
* madv: are the backing pages purgeable?
*
* Protected by obj lock and LRU lock
*/
uint8_t madv;
/**
* count of active vmap'ing
*/
uint8_t vmap_count;
/**
* Node in list of all objects (mainly for debugfs, protected by
* priv->obj_lock
*/
struct list_head node;
struct page **pages;
struct sg_table *sgt;
void *vaddr;
char name[32]; /* Identifier to print for the debugfs files */
/* userspace metadata backchannel */
void *metadata;
u32 metadata_size;
/**
* pin_count: Number of times the pages are pinned
*
* Protected by LRU lock.
*/
int pin_count;
/**
* @vma_ref: Reference count of VMA users.
*
* With the vm_bo/vma holding a reference to the GEM object, we'd
* otherwise have to actively tear down a VMA when, for example,
* a buffer is unpinned for scanout, vs. the pre-drm_gpuvm approach
* where a VMA did not hold a reference to the BO, but instead was
* implicitly torn down when the BO was freed.
*
* To regain the lazy VMA teardown, we use the @vma_ref. It is
* incremented for any of the following:
*
* 1) the BO is exported as a dma_buf
* 2) the BO has open userspace handle
*
* All of those conditions will hold an reference to the BO,
* preventing it from being freed. So lazily keeping around the
* VMA will not prevent the BO from being freed. (Or rather, the
* reference loop is harmless in this case.)
*
* When the @vma_ref drops to zero, then kms->vm VMA will be
* torn down.
*/
atomic_t vma_ref;
};
#define to_msm_bo(x) container_of(x, struct msm_gem_object, base)
void msm_gem_vma_get(struct drm_gem_object *obj);
void msm_gem_vma_put(struct drm_gem_object *obj);
uint64_t msm_gem_mmap_offset(struct drm_gem_object *obj);
int msm_gem_prot(struct drm_gem_object *obj);
int msm_gem_pin_vma_locked(struct drm_gem_object *obj, struct drm_gpuva *vma);
void msm_gem_unpin_locked(struct drm_gem_object *obj);
void msm_gem_unpin_active(struct drm_gem_object *obj);
struct drm_gpuva *msm_gem_get_vma_locked(struct drm_gem_object *obj,
struct drm_gpuvm *vm);
int msm_gem_get_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm,
uint64_t *iova);
int msm_gem_set_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm,
uint64_t iova);
int msm_gem_get_and_pin_iova_range(struct drm_gem_object *obj,
struct drm_gpuvm *vm, uint64_t *iova,
u64 range_start, u64 range_end);
int msm_gem_get_and_pin_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm,
uint64_t *iova);
void msm_gem_unpin_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm);
void msm_gem_pin_obj_locked(struct drm_gem_object *obj);
struct page **msm_gem_get_pages_locked(struct drm_gem_object *obj, unsigned madv);
struct page **msm_gem_pin_pages_locked(struct drm_gem_object *obj);
void msm_gem_unpin_pages_locked(struct drm_gem_object *obj);
int msm_gem_dumb_create(struct drm_file *file, struct drm_device *dev,
struct drm_mode_create_dumb *args);
int msm_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev,
uint32_t handle, uint64_t *offset);
void *msm_gem_get_vaddr_locked(struct drm_gem_object *obj);
void *msm_gem_get_vaddr(struct drm_gem_object *obj);
void *msm_gem_get_vaddr_active(struct drm_gem_object *obj);
void msm_gem_put_vaddr_locked(struct drm_gem_object *obj);
void msm_gem_put_vaddr(struct drm_gem_object *obj);
int msm_gem_madvise(struct drm_gem_object *obj, unsigned madv);
bool msm_gem_active(struct drm_gem_object *obj);
int msm_gem_cpu_prep(struct drm_gem_object *obj, uint32_t op, ktime_t *timeout);
int msm_gem_cpu_fini(struct drm_gem_object *obj);
int msm_gem_new_handle(struct drm_device *dev, struct drm_file *file,
uint32_t size, uint32_t flags, uint32_t *handle, char *name);
struct drm_gem_object *msm_gem_new(struct drm_device *dev,
uint32_t size, uint32_t flags);
void *msm_gem_kernel_new(struct drm_device *dev, uint32_t size, uint32_t flags,
struct drm_gpuvm *vm, struct drm_gem_object **bo,
uint64_t *iova);
void msm_gem_kernel_put(struct drm_gem_object *bo, struct drm_gpuvm *vm);
struct drm_gem_object *msm_gem_import(struct drm_device *dev,
struct dma_buf *dmabuf, struct sg_table *sgt);
__printf(2, 3)
void msm_gem_object_set_name(struct drm_gem_object *bo, const char *fmt, ...);
#ifdef CONFIG_DEBUG_FS
struct msm_gem_stats {
struct {
unsigned count;
size_t size;
} all, active, resident, purgeable, purged;
};
void msm_gem_describe(struct drm_gem_object *obj, struct seq_file *m,
struct msm_gem_stats *stats);
void msm_gem_describe_objects(struct list_head *list, struct seq_file *m);
#endif
static inline void
msm_gem_lock(struct drm_gem_object *obj)
{
dma_resv_lock(obj->resv, NULL);
}
static inline bool __must_check
msm_gem_trylock(struct drm_gem_object *obj)
{
return dma_resv_trylock(obj->resv);
}
static inline int
msm_gem_lock_interruptible(struct drm_gem_object *obj)
{
return dma_resv_lock_interruptible(obj->resv, NULL);
}
static inline void
msm_gem_unlock(struct drm_gem_object *obj)
{
dma_resv_unlock(obj->resv);
}
/**
* msm_gem_lock_vm_and_obj() - Helper to lock an obj + VM
* @exec: the exec context helper which will be initalized
* @obj: the GEM object to lock
* @vm: the VM to lock
*
* Operations which modify a VM frequently need to lock both the VM and
* the object being mapped/unmapped/etc. This helper uses drm_exec to
* acquire both locks, dealing with potential deadlock/backoff scenarios
* which arise when multiple locks are involved.
*/
static inline int
msm_gem_lock_vm_and_obj(struct drm_exec *exec,
struct drm_gem_object *obj,
struct drm_gpuvm *vm)
{
int ret = 0;
drm_exec_init(exec, 0, 2);
drm_exec_until_all_locked (exec) {
ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(vm));
if (!ret && (obj->resv != drm_gpuvm_resv(vm)))
ret = drm_exec_lock_obj(exec, obj);
drm_exec_retry_on_contention(exec);
if (GEM_WARN_ON(ret))
break;
}
return ret;
}
static inline void
msm_gem_assert_locked(struct drm_gem_object *obj)
{
/*
* Destroying the object is a special case.. msm_gem_free_object()
* calls many things that WARN_ON if the obj lock is not held. But
* acquiring the obj lock in msm_gem_free_object() can cause a
* locking order inversion between reservation_ww_class_mutex and
* fs_reclaim.
*
* This deadlock is not actually possible, because no one should
* be already holding the lock when msm_gem_free_object() is called.
* Unfortunately lockdep is not aware of this detail. So when the
* refcount drops to zero, we pretend it is already locked.
*/
lockdep_assert_once(
(kref_read(&obj->refcount) == 0) ||
(lockdep_is_held(&obj->resv->lock.base) != LOCK_STATE_NOT_HELD)
);
}
/* imported/exported objects are not purgeable: */
static inline bool is_unpurgeable(struct msm_gem_object *msm_obj)
{
return drm_gem_is_imported(&msm_obj->base) || msm_obj->pin_count;
}
static inline bool is_purgeable(struct msm_gem_object *msm_obj)
{
return (msm_obj->madv == MSM_MADV_DONTNEED) && msm_obj->sgt &&
!is_unpurgeable(msm_obj);
}
static inline bool is_vunmapable(struct msm_gem_object *msm_obj)
{
msm_gem_assert_locked(&msm_obj->base);
return (msm_obj->vmap_count == 0) && msm_obj->vaddr;
}
static inline bool is_unevictable(struct msm_gem_object *msm_obj)
{
return is_unpurgeable(msm_obj) || msm_obj->vaddr;
}
void msm_gem_purge(struct drm_gem_object *obj);
void msm_gem_evict(struct drm_gem_object *obj);
void msm_gem_vunmap(struct drm_gem_object *obj);
/* Created per submit-ioctl, to track bo's and cmdstream bufs, etc,
* associated with the cmdstream submission for synchronization (and
* make it easier to unwind when things go wrong, etc).
*/
struct msm_gem_submit {
struct drm_sched_job base;
struct kref ref;
struct drm_device *dev;
struct msm_gpu *gpu;
struct drm_gpuvm *vm;
struct list_head node; /* node in ring submit list */
struct drm_exec exec;
uint32_t seqno; /* Sequence number of the submit on the ring */
/* Hw fence, which is created when the scheduler executes the job, and
* is signaled when the hw finishes (via seqno write from cmdstream)
*/
struct dma_fence *hw_fence;
/* Userspace visible fence, which is signaled by the scheduler after
* the hw_fence is signaled.
*/
struct dma_fence *user_fence;
int fence_id; /* key into queue->fence_idr */
struct msm_gpu_submitqueue *queue;
struct pid *pid; /* submitting process */
bool bos_pinned : 1;
bool fault_dumped:1;/* Limit devcoredump dumping to one per submit */
bool in_rb : 1; /* "sudo" mode, copy cmds into RB */
struct msm_ringbuffer *ring;
unsigned int nr_cmds;
unsigned int nr_bos;
u32 ident; /* A "identifier" for the submit for logging */
struct {
uint32_t type;
uint32_t size; /* in dwords */
uint64_t iova;
uint32_t offset;/* in dwords */
uint32_t idx; /* cmdstream buffer idx in bos[] */
uint32_t nr_relocs;
struct drm_msm_gem_submit_reloc *relocs;
} *cmd; /* array of size nr_cmds */
struct {
uint32_t flags;
union {
struct drm_gem_object *obj;
uint32_t handle;
};
struct drm_gpuvm_bo *vm_bo;
uint64_t iova;
} bos[];
};
static inline struct msm_gem_submit *to_msm_submit(struct drm_sched_job *job)
{
return container_of(job, struct msm_gem_submit, base);
}
void __msm_gem_submit_destroy(struct kref *kref);
static inline void msm_gem_submit_get(struct msm_gem_submit *submit)
{
kref_get(&submit->ref);
}
static inline void msm_gem_submit_put(struct msm_gem_submit *submit)
{
kref_put(&submit->ref, __msm_gem_submit_destroy);
}
void msm_submit_retire(struct msm_gem_submit *submit);
#endif /* __MSM_GEM_H__ */