mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

On Alder Lake and later, it's not possible to disable tiling when DPT is enabled. So this commit implements Y-Tiling support, to still be able to draw the panic screen. Signed-off-by: Jocelyn Falempe <jfalempe@redhat.com> Link: https://lore.kernel.org/r/20250624091501.257661-10-jfalempe@redhat.com Signed-off-by: Maarten Lankhorst <dev@lankhorst.se>
817 lines
21 KiB
C
817 lines
21 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2014-2016 Intel Corporation
|
|
*/
|
|
|
|
#include <drm/drm_cache.h>
|
|
#include <drm/drm_panic.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "display/intel_fb.h"
|
|
#include "display/intel_display_types.h"
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_tlb.h"
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_gem_object.h"
|
|
#include "i915_scatterlist.h"
|
|
#include "i915_gem_lmem.h"
|
|
#include "i915_gem_mman.h"
|
|
|
|
void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
|
|
struct sg_table *pages)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
|
|
bool shrinkable;
|
|
int i;
|
|
|
|
assert_object_held_shared(obj);
|
|
|
|
if (i915_gem_object_is_volatile(obj))
|
|
obj->mm.madv = I915_MADV_DONTNEED;
|
|
|
|
/* Make the pages coherent with the GPU (flushing any swapin). */
|
|
if (obj->cache_dirty) {
|
|
WARN_ON_ONCE(IS_DGFX(i915));
|
|
obj->write_domain = 0;
|
|
if (i915_gem_object_has_struct_page(obj))
|
|
drm_clflush_sg(pages);
|
|
obj->cache_dirty = false;
|
|
}
|
|
|
|
obj->mm.get_page.sg_pos = pages->sgl;
|
|
obj->mm.get_page.sg_idx = 0;
|
|
obj->mm.get_dma_page.sg_pos = pages->sgl;
|
|
obj->mm.get_dma_page.sg_idx = 0;
|
|
|
|
obj->mm.pages = pages;
|
|
|
|
obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl);
|
|
GEM_BUG_ON(!obj->mm.page_sizes.phys);
|
|
|
|
/*
|
|
* Calculate the supported page-sizes which fit into the given
|
|
* sg_page_sizes. This will give us the page-sizes which we may be able
|
|
* to use opportunistically when later inserting into the GTT. For
|
|
* example if phys=2G, then in theory we should be able to use 1G, 2M,
|
|
* 64K or 4K pages, although in practice this will depend on a number of
|
|
* other factors.
|
|
*/
|
|
obj->mm.page_sizes.sg = 0;
|
|
for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
|
|
if (obj->mm.page_sizes.phys & ~0u << i)
|
|
obj->mm.page_sizes.sg |= BIT(i);
|
|
}
|
|
GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
|
|
|
|
shrinkable = i915_gem_object_is_shrinkable(obj);
|
|
|
|
if (i915_gem_object_is_tiled(obj) &&
|
|
i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
|
|
GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
|
|
i915_gem_object_set_tiling_quirk(obj);
|
|
GEM_BUG_ON(!list_empty(&obj->mm.link));
|
|
atomic_inc(&obj->mm.shrink_pin);
|
|
shrinkable = false;
|
|
}
|
|
|
|
if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
|
|
struct list_head *list;
|
|
unsigned long flags;
|
|
|
|
assert_object_held(obj);
|
|
spin_lock_irqsave(&i915->mm.obj_lock, flags);
|
|
|
|
i915->mm.shrink_count++;
|
|
i915->mm.shrink_memory += obj->base.size;
|
|
|
|
if (obj->mm.madv != I915_MADV_WILLNEED)
|
|
list = &i915->mm.purge_list;
|
|
else
|
|
list = &i915->mm.shrink_list;
|
|
list_add_tail(&obj->mm.link, list);
|
|
|
|
atomic_set(&obj->mm.shrink_pin, 0);
|
|
spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
|
|
}
|
|
}
|
|
|
|
int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
int err;
|
|
|
|
assert_object_held_shared(obj);
|
|
|
|
if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
|
|
drm_dbg(&i915->drm,
|
|
"Attempting to obtain a purgeable object\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
err = obj->ops->get_pages(obj);
|
|
GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Ensure that the associated pages are gathered from the backing storage
|
|
* and pinned into our object. i915_gem_object_pin_pages() may be called
|
|
* multiple times before they are released by a single call to
|
|
* i915_gem_object_unpin_pages() - once the pages are no longer referenced
|
|
* either as a result of memory pressure (reaping pages under the shrinker)
|
|
* or as the object is itself released.
|
|
*/
|
|
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
int err;
|
|
|
|
assert_object_held(obj);
|
|
|
|
assert_object_held_shared(obj);
|
|
|
|
if (unlikely(!i915_gem_object_has_pages(obj))) {
|
|
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
|
|
|
|
err = ____i915_gem_object_get_pages(obj);
|
|
if (err)
|
|
return err;
|
|
|
|
smp_mb__before_atomic();
|
|
}
|
|
atomic_inc(&obj->mm.pages_pin_count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_gem_ww_ctx ww;
|
|
int err;
|
|
|
|
i915_gem_ww_ctx_init(&ww, true);
|
|
retry:
|
|
err = i915_gem_object_lock(obj, &ww);
|
|
if (!err)
|
|
err = i915_gem_object_pin_pages(obj);
|
|
|
|
if (err == -EDEADLK) {
|
|
err = i915_gem_ww_ctx_backoff(&ww);
|
|
if (!err)
|
|
goto retry;
|
|
}
|
|
i915_gem_ww_ctx_fini(&ww);
|
|
return err;
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->ops->truncate)
|
|
return obj->ops->truncate(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct radix_tree_iter iter;
|
|
void __rcu **slot;
|
|
|
|
rcu_read_lock();
|
|
radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
|
|
radix_tree_delete(&obj->mm.get_page.radix, iter.index);
|
|
radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
|
|
radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
|
|
{
|
|
if (is_vmalloc_addr(ptr))
|
|
vunmap(ptr);
|
|
}
|
|
|
|
static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct intel_gt *gt;
|
|
int id;
|
|
|
|
for_each_gt(gt, i915, id) {
|
|
if (!obj->mm.tlb[id])
|
|
continue;
|
|
|
|
intel_gt_invalidate_tlb_full(gt, obj->mm.tlb[id]);
|
|
obj->mm.tlb[id] = 0;
|
|
}
|
|
}
|
|
|
|
struct sg_table *
|
|
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_table *pages;
|
|
|
|
assert_object_held_shared(obj);
|
|
|
|
pages = fetch_and_zero(&obj->mm.pages);
|
|
if (IS_ERR_OR_NULL(pages))
|
|
return pages;
|
|
|
|
if (i915_gem_object_is_volatile(obj))
|
|
obj->mm.madv = I915_MADV_WILLNEED;
|
|
|
|
if (!i915_gem_object_has_self_managed_shrink_list(obj))
|
|
i915_gem_object_make_unshrinkable(obj);
|
|
|
|
if (obj->mm.mapping) {
|
|
unmap_object(obj, page_mask_bits(obj->mm.mapping));
|
|
obj->mm.mapping = NULL;
|
|
}
|
|
|
|
__i915_gem_object_reset_page_iter(obj);
|
|
obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
|
|
|
|
flush_tlb_invalidate(obj);
|
|
|
|
return pages;
|
|
}
|
|
|
|
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_table *pages;
|
|
|
|
if (i915_gem_object_has_pinned_pages(obj))
|
|
return -EBUSY;
|
|
|
|
/* May be called by shrinker from within get_pages() (on another bo) */
|
|
assert_object_held_shared(obj);
|
|
|
|
i915_gem_object_release_mmap_offset(obj);
|
|
|
|
/*
|
|
* ->put_pages might need to allocate memory for the bit17 swizzle
|
|
* array, hence protect them from being reaped by removing them from gtt
|
|
* lists early.
|
|
*/
|
|
pages = __i915_gem_object_unset_pages(obj);
|
|
|
|
/*
|
|
* XXX Temporary hijinx to avoid updating all backends to handle
|
|
* NULL pages. In the future, when we have more asynchronous
|
|
* get_pages backends we should be better able to handle the
|
|
* cancellation of the async task in a more uniform manner.
|
|
*/
|
|
if (!IS_ERR_OR_NULL(pages))
|
|
obj->ops->put_pages(obj, pages);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The 'mapping' part of i915_gem_object_pin_map() below */
|
|
static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
|
|
enum i915_map_type type)
|
|
{
|
|
unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
|
|
struct page *stack[32], **pages = stack, *page;
|
|
struct sgt_iter iter;
|
|
pgprot_t pgprot;
|
|
void *vaddr;
|
|
|
|
switch (type) {
|
|
default:
|
|
MISSING_CASE(type);
|
|
fallthrough; /* to use PAGE_KERNEL anyway */
|
|
case I915_MAP_WB:
|
|
/*
|
|
* On 32b, highmem using a finite set of indirect PTE (i.e.
|
|
* vmap) to provide virtual mappings of the high pages.
|
|
* As these are finite, map_new_virtual() must wait for some
|
|
* other kmap() to finish when it runs out. If we map a large
|
|
* number of objects, there is no method for it to tell us
|
|
* to release the mappings, and we deadlock.
|
|
*
|
|
* However, if we make an explicit vmap of the page, that
|
|
* uses a larger vmalloc arena, and also has the ability
|
|
* to tell us to release unwanted mappings. Most importantly,
|
|
* it will fail and propagate an error instead of waiting
|
|
* forever.
|
|
*
|
|
* So if the page is beyond the 32b boundary, make an explicit
|
|
* vmap.
|
|
*/
|
|
if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
|
|
return page_address(sg_page(obj->mm.pages->sgl));
|
|
pgprot = PAGE_KERNEL;
|
|
break;
|
|
case I915_MAP_WC:
|
|
pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
|
|
break;
|
|
}
|
|
|
|
if (n_pages > ARRAY_SIZE(stack)) {
|
|
/* Too big for stack -- allocate temporary array instead */
|
|
pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
|
|
if (!pages)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
i = 0;
|
|
for_each_sgt_page(page, iter, obj->mm.pages)
|
|
pages[i++] = page;
|
|
vaddr = vmap(pages, n_pages, 0, pgprot);
|
|
if (pages != stack)
|
|
kvfree(pages);
|
|
|
|
return vaddr ?: ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
|
|
enum i915_map_type type)
|
|
{
|
|
resource_size_t iomap = obj->mm.region->iomap.base -
|
|
obj->mm.region->region.start;
|
|
unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
|
|
unsigned long stack[32], *pfns = stack, i;
|
|
struct sgt_iter iter;
|
|
dma_addr_t addr;
|
|
void *vaddr;
|
|
|
|
GEM_BUG_ON(type != I915_MAP_WC);
|
|
|
|
if (n_pfn > ARRAY_SIZE(stack)) {
|
|
/* Too big for stack -- allocate temporary array instead */
|
|
pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
|
|
if (!pfns)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
i = 0;
|
|
for_each_sgt_daddr(addr, iter, obj->mm.pages)
|
|
pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
|
|
vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
|
|
if (pfns != stack)
|
|
kvfree(pfns);
|
|
|
|
return vaddr ?: ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
struct i915_panic_data {
|
|
struct page **pages;
|
|
int page;
|
|
void *vaddr;
|
|
};
|
|
|
|
struct i915_framebuffer {
|
|
struct intel_framebuffer base;
|
|
struct i915_panic_data panic;
|
|
};
|
|
|
|
static inline struct i915_panic_data *to_i915_panic_data(struct intel_framebuffer *fb)
|
|
{
|
|
return &container_of_const(fb, struct i915_framebuffer, base)->panic;
|
|
}
|
|
|
|
static void i915_panic_kunmap(struct i915_panic_data *panic)
|
|
{
|
|
if (panic->vaddr) {
|
|
drm_clflush_virt_range(panic->vaddr, PAGE_SIZE);
|
|
kunmap_local(panic->vaddr);
|
|
panic->vaddr = NULL;
|
|
}
|
|
}
|
|
|
|
static struct page **i915_gem_object_panic_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
|
|
struct page *page;
|
|
struct page **pages;
|
|
struct sgt_iter iter;
|
|
|
|
/* For a 3840x2160 32 bits Framebuffer, this should require ~64K */
|
|
pages = kmalloc_array(n_pages, sizeof(*pages), GFP_ATOMIC);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
i = 0;
|
|
for_each_sgt_page(page, iter, obj->mm.pages)
|
|
pages[i++] = page;
|
|
return pages;
|
|
}
|
|
|
|
static void i915_gem_object_panic_map_set_pixel(struct drm_scanout_buffer *sb, unsigned int x,
|
|
unsigned int y, u32 color)
|
|
{
|
|
struct intel_framebuffer *fb = (struct intel_framebuffer *)sb->private;
|
|
unsigned int offset = fb->panic_tiling(sb->width, x, y);
|
|
|
|
iosys_map_wr(&sb->map[0], offset, u32, color);
|
|
}
|
|
|
|
/*
|
|
* The scanout buffer pages are not mapped, so for each pixel,
|
|
* use kmap_local_page_try_from_panic() to map the page, and write the pixel.
|
|
* Try to keep the map from the previous pixel, to avoid too much map/unmap.
|
|
*/
|
|
static void i915_gem_object_panic_page_set_pixel(struct drm_scanout_buffer *sb, unsigned int x,
|
|
unsigned int y, u32 color)
|
|
{
|
|
unsigned int new_page;
|
|
unsigned int offset;
|
|
struct intel_framebuffer *fb = (struct intel_framebuffer *)sb->private;
|
|
struct i915_panic_data *panic = to_i915_panic_data(fb);
|
|
|
|
if (fb->panic_tiling)
|
|
offset = fb->panic_tiling(sb->width, x, y);
|
|
else
|
|
offset = y * sb->pitch[0] + x * sb->format->cpp[0];
|
|
|
|
new_page = offset >> PAGE_SHIFT;
|
|
offset = offset % PAGE_SIZE;
|
|
if (new_page != panic->page) {
|
|
i915_panic_kunmap(panic);
|
|
panic->page = new_page;
|
|
panic->vaddr =
|
|
kmap_local_page_try_from_panic(panic->pages[panic->page]);
|
|
}
|
|
if (panic->vaddr) {
|
|
u32 *pix = panic->vaddr + offset;
|
|
*pix = color;
|
|
}
|
|
}
|
|
|
|
struct intel_framebuffer *i915_gem_object_alloc_framebuffer(void)
|
|
{
|
|
struct i915_framebuffer *i915_fb;
|
|
|
|
i915_fb = kzalloc(sizeof(*i915_fb), GFP_KERNEL);
|
|
if (i915_fb)
|
|
return &i915_fb->base;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Setup the gem framebuffer for drm_panic access.
|
|
* Use current vaddr if it exists, or setup a list of pages.
|
|
* pfn is not supported yet.
|
|
*/
|
|
int i915_gem_object_panic_setup(struct drm_scanout_buffer *sb)
|
|
{
|
|
enum i915_map_type has_type;
|
|
struct intel_framebuffer *fb = (struct intel_framebuffer *)sb->private;
|
|
struct i915_panic_data *panic = to_i915_panic_data(fb);
|
|
struct drm_i915_gem_object *obj = to_intel_bo(intel_fb_bo(&fb->base));
|
|
void *ptr;
|
|
|
|
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
|
|
if (ptr) {
|
|
if (i915_gem_object_has_iomem(obj))
|
|
iosys_map_set_vaddr_iomem(&sb->map[0], (void __iomem *)ptr);
|
|
else
|
|
iosys_map_set_vaddr(&sb->map[0], ptr);
|
|
|
|
if (fb->panic_tiling)
|
|
sb->set_pixel = i915_gem_object_panic_map_set_pixel;
|
|
return 0;
|
|
}
|
|
if (i915_gem_object_has_struct_page(obj)) {
|
|
panic->pages = i915_gem_object_panic_pages(obj);
|
|
if (!panic->pages)
|
|
return -ENOMEM;
|
|
panic->page = -1;
|
|
sb->set_pixel = i915_gem_object_panic_page_set_pixel;
|
|
return 0;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
void i915_gem_object_panic_finish(struct intel_framebuffer *fb)
|
|
{
|
|
struct i915_panic_data *panic = to_i915_panic_data(fb);
|
|
|
|
i915_panic_kunmap(panic);
|
|
panic->page = -1;
|
|
kfree(panic->pages);
|
|
panic->pages = NULL;
|
|
}
|
|
|
|
/* get, pin, and map the pages of the object into kernel space */
|
|
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
|
|
enum i915_map_type type)
|
|
{
|
|
enum i915_map_type has_type;
|
|
bool pinned;
|
|
void *ptr;
|
|
int err;
|
|
|
|
if (!i915_gem_object_has_struct_page(obj) &&
|
|
!i915_gem_object_has_iomem(obj))
|
|
return ERR_PTR(-ENXIO);
|
|
|
|
if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
assert_object_held(obj);
|
|
|
|
pinned = !(type & I915_MAP_OVERRIDE);
|
|
type &= ~I915_MAP_OVERRIDE;
|
|
|
|
if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
|
|
if (unlikely(!i915_gem_object_has_pages(obj))) {
|
|
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
|
|
|
|
err = ____i915_gem_object_get_pages(obj);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
smp_mb__before_atomic();
|
|
}
|
|
atomic_inc(&obj->mm.pages_pin_count);
|
|
pinned = false;
|
|
}
|
|
GEM_BUG_ON(!i915_gem_object_has_pages(obj));
|
|
|
|
/*
|
|
* For discrete our CPU mappings needs to be consistent in order to
|
|
* function correctly on !x86. When mapping things through TTM, we use
|
|
* the same rules to determine the caching type.
|
|
*
|
|
* The caching rules, starting from DG1:
|
|
*
|
|
* - If the object can be placed in device local-memory, then the
|
|
* pages should be allocated and mapped as write-combined only.
|
|
*
|
|
* - Everything else is always allocated and mapped as write-back,
|
|
* with the guarantee that everything is also coherent with the
|
|
* GPU.
|
|
*
|
|
* Internal users of lmem are already expected to get this right, so no
|
|
* fudging needed there.
|
|
*/
|
|
if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
|
|
if (type != I915_MAP_WC && !obj->mm.n_placements) {
|
|
ptr = ERR_PTR(-ENODEV);
|
|
goto err_unpin;
|
|
}
|
|
|
|
type = I915_MAP_WC;
|
|
} else if (IS_DGFX(to_i915(obj->base.dev))) {
|
|
type = I915_MAP_WB;
|
|
}
|
|
|
|
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
|
|
if (ptr && has_type != type) {
|
|
if (pinned) {
|
|
ptr = ERR_PTR(-EBUSY);
|
|
goto err_unpin;
|
|
}
|
|
|
|
unmap_object(obj, ptr);
|
|
|
|
ptr = obj->mm.mapping = NULL;
|
|
}
|
|
|
|
if (!ptr) {
|
|
err = i915_gem_object_wait_moving_fence(obj, true);
|
|
if (err) {
|
|
ptr = ERR_PTR(err);
|
|
goto err_unpin;
|
|
}
|
|
|
|
if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
|
|
ptr = ERR_PTR(-ENODEV);
|
|
else if (i915_gem_object_has_struct_page(obj))
|
|
ptr = i915_gem_object_map_page(obj, type);
|
|
else
|
|
ptr = i915_gem_object_map_pfn(obj, type);
|
|
if (IS_ERR(ptr))
|
|
goto err_unpin;
|
|
|
|
obj->mm.mapping = page_pack_bits(ptr, type);
|
|
}
|
|
|
|
return ptr;
|
|
|
|
err_unpin:
|
|
atomic_dec(&obj->mm.pages_pin_count);
|
|
return ptr;
|
|
}
|
|
|
|
void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
|
|
enum i915_map_type type)
|
|
{
|
|
void *ret;
|
|
|
|
i915_gem_object_lock(obj, NULL);
|
|
ret = i915_gem_object_pin_map(obj, type);
|
|
i915_gem_object_unlock(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
|
|
unsigned long offset,
|
|
unsigned long size)
|
|
{
|
|
enum i915_map_type has_type;
|
|
void *ptr;
|
|
|
|
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
|
|
GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
|
|
offset, size, obj->base.size));
|
|
|
|
wmb(); /* let all previous writes be visible to coherent partners */
|
|
obj->mm.dirty = true;
|
|
|
|
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
|
|
return;
|
|
|
|
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
|
|
if (has_type == I915_MAP_WC)
|
|
return;
|
|
|
|
drm_clflush_virt_range(ptr + offset, size);
|
|
if (size == obj->base.size) {
|
|
obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
|
|
obj->cache_dirty = false;
|
|
}
|
|
}
|
|
|
|
void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
|
|
{
|
|
GEM_BUG_ON(!obj->mm.mapping);
|
|
|
|
/*
|
|
* We allow removing the mapping from underneath pinned pages!
|
|
*
|
|
* Furthermore, since this is an unsafe operation reserved only
|
|
* for construction time manipulation, we ignore locking prudence.
|
|
*/
|
|
unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
|
|
|
|
i915_gem_object_unpin_map(obj);
|
|
}
|
|
|
|
struct scatterlist *
|
|
__i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object *obj,
|
|
struct i915_gem_object_page_iter *iter,
|
|
pgoff_t n,
|
|
unsigned int *offset)
|
|
|
|
{
|
|
const bool dma = iter == &obj->mm.get_dma_page ||
|
|
iter == &obj->ttm.get_io_page;
|
|
unsigned int idx, count;
|
|
struct scatterlist *sg;
|
|
|
|
might_sleep();
|
|
GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
|
|
if (!i915_gem_object_has_pinned_pages(obj))
|
|
assert_object_held(obj);
|
|
|
|
/* As we iterate forward through the sg, we record each entry in a
|
|
* radixtree for quick repeated (backwards) lookups. If we have seen
|
|
* this index previously, we will have an entry for it.
|
|
*
|
|
* Initial lookup is O(N), but this is amortized to O(1) for
|
|
* sequential page access (where each new request is consecutive
|
|
* to the previous one). Repeated lookups are O(lg(obj->base.size)),
|
|
* i.e. O(1) with a large constant!
|
|
*/
|
|
if (n < READ_ONCE(iter->sg_idx))
|
|
goto lookup;
|
|
|
|
mutex_lock(&iter->lock);
|
|
|
|
/* We prefer to reuse the last sg so that repeated lookup of this
|
|
* (or the subsequent) sg are fast - comparing against the last
|
|
* sg is faster than going through the radixtree.
|
|
*/
|
|
|
|
sg = iter->sg_pos;
|
|
idx = iter->sg_idx;
|
|
count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
|
|
|
|
while (idx + count <= n) {
|
|
void *entry;
|
|
unsigned long i;
|
|
int ret;
|
|
|
|
/* If we cannot allocate and insert this entry, or the
|
|
* individual pages from this range, cancel updating the
|
|
* sg_idx so that on this lookup we are forced to linearly
|
|
* scan onwards, but on future lookups we will try the
|
|
* insertion again (in which case we need to be careful of
|
|
* the error return reporting that we have already inserted
|
|
* this index).
|
|
*/
|
|
ret = radix_tree_insert(&iter->radix, idx, sg);
|
|
if (ret && ret != -EEXIST)
|
|
goto scan;
|
|
|
|
entry = xa_mk_value(idx);
|
|
for (i = 1; i < count; i++) {
|
|
ret = radix_tree_insert(&iter->radix, idx + i, entry);
|
|
if (ret && ret != -EEXIST)
|
|
goto scan;
|
|
}
|
|
|
|
idx += count;
|
|
sg = ____sg_next(sg);
|
|
count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
|
|
}
|
|
|
|
scan:
|
|
iter->sg_pos = sg;
|
|
iter->sg_idx = idx;
|
|
|
|
mutex_unlock(&iter->lock);
|
|
|
|
if (unlikely(n < idx)) /* insertion completed by another thread */
|
|
goto lookup;
|
|
|
|
/* In case we failed to insert the entry into the radixtree, we need
|
|
* to look beyond the current sg.
|
|
*/
|
|
while (idx + count <= n) {
|
|
idx += count;
|
|
sg = ____sg_next(sg);
|
|
count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
|
|
}
|
|
|
|
*offset = n - idx;
|
|
return sg;
|
|
|
|
lookup:
|
|
rcu_read_lock();
|
|
|
|
sg = radix_tree_lookup(&iter->radix, n);
|
|
GEM_BUG_ON(!sg);
|
|
|
|
/* If this index is in the middle of multi-page sg entry,
|
|
* the radix tree will contain a value entry that points
|
|
* to the start of that range. We will return the pointer to
|
|
* the base page and the offset of this page within the
|
|
* sg entry's range.
|
|
*/
|
|
*offset = 0;
|
|
if (unlikely(xa_is_value(sg))) {
|
|
unsigned long base = xa_to_value(sg);
|
|
|
|
sg = radix_tree_lookup(&iter->radix, base);
|
|
GEM_BUG_ON(!sg);
|
|
|
|
*offset = n - base;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return sg;
|
|
}
|
|
|
|
struct page *
|
|
__i915_gem_object_get_page(struct drm_i915_gem_object *obj, pgoff_t n)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int offset;
|
|
|
|
GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
|
|
|
|
sg = i915_gem_object_get_sg(obj, n, &offset);
|
|
return nth_page(sg_page(sg), offset);
|
|
}
|
|
|
|
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
|
|
struct page *
|
|
__i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, pgoff_t n)
|
|
{
|
|
struct page *page;
|
|
|
|
page = i915_gem_object_get_page(obj, n);
|
|
if (!obj->mm.dirty)
|
|
set_page_dirty(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
dma_addr_t
|
|
__i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
|
|
pgoff_t n, unsigned int *len)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int offset;
|
|
|
|
sg = i915_gem_object_get_sg_dma(obj, n, &offset);
|
|
|
|
if (len)
|
|
*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
|
|
|
|
return sg_dma_address(sg) + (offset << PAGE_SHIFT);
|
|
}
|
|
|
|
dma_addr_t
|
|
__i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, pgoff_t n)
|
|
{
|
|
return i915_gem_object_get_dma_address_len(obj, n, NULL);
|
|
}
|