linux/drivers/gpu/drm/i915/display/intel_plane.c
Jocelyn Falempe 98910fa0a4 drm/i915/psr: Add intel_psr2_panic_force_full_update
When the panic handler is called, configure the psr to send the full
framebuffer to the monitor, otherwise the panic screen is only
partially visible.

Signed-off-by: Jocelyn Falempe <jfalempe@redhat.com>
Link: https://lore.kernel.org/r/20250624091501.257661-12-jfalempe@redhat.com
Signed-off-by: Maarten Lankhorst <dev@lankhorst.se>
2025-06-27 11:48:23 +02:00

1756 lines
53 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: atomic plane helpers
*
* The functions here are used by the atomic plane helper functions to
* implement legacy plane updates (i.e., drm_plane->update_plane() and
* drm_plane->disable_plane()). This allows plane updates to use the
* atomic state infrastructure and perform plane updates as separate
* prepare/check/commit/cleanup steps.
*/
#include <linux/dma-fence-chain.h>
#include <linux/dma-resv.h>
#include <linux/iosys-map.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_blend.h>
#include <drm/drm_cache.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_panic.h>
#include "gem/i915_gem_object.h"
#include "i915_scheduler_types.h"
#include "i915_vma.h"
#include "i9xx_plane_regs.h"
#include "intel_bo.h"
#include "intel_cdclk.h"
#include "intel_cursor.h"
#include "intel_display_rps.h"
#include "intel_display_trace.h"
#include "intel_display_types.h"
#include "intel_fb.h"
#include "intel_fb_pin.h"
#include "intel_fbdev.h"
#include "intel_plane.h"
#include "intel_psr.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
#include "skl_watermark.h"
static void intel_plane_state_reset(struct intel_plane_state *plane_state,
struct intel_plane *plane)
{
memset(plane_state, 0, sizeof(*plane_state));
__drm_atomic_helper_plane_state_reset(&plane_state->uapi, &plane->base);
plane_state->scaler_id = -1;
}
struct intel_plane *intel_plane_alloc(void)
{
struct intel_plane_state *plane_state;
struct intel_plane *plane;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
plane_state = kzalloc(sizeof(*plane_state), GFP_KERNEL);
if (!plane_state) {
kfree(plane);
return ERR_PTR(-ENOMEM);
}
intel_plane_state_reset(plane_state, plane);
plane->base.state = &plane_state->uapi;
return plane;
}
void intel_plane_free(struct intel_plane *plane)
{
intel_plane_destroy_state(&plane->base, plane->base.state);
kfree(plane);
}
/**
* intel_plane_destroy - destroy a plane
* @plane: plane to destroy
*
* Common destruction function for all types of planes (primary, cursor,
* sprite).
*/
void intel_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
kfree(to_intel_plane(plane));
}
/**
* intel_plane_duplicate_state - duplicate plane state
* @plane: drm plane
*
* Allocates and returns a copy of the plane state (both common and
* Intel-specific) for the specified plane.
*
* Returns: The newly allocated plane state, or NULL on failure.
*/
struct drm_plane_state *
intel_plane_duplicate_state(struct drm_plane *plane)
{
struct intel_plane_state *intel_state;
intel_state = to_intel_plane_state(plane->state);
intel_state = kmemdup(intel_state, sizeof(*intel_state), GFP_KERNEL);
if (!intel_state)
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &intel_state->uapi);
intel_state->ggtt_vma = NULL;
intel_state->dpt_vma = NULL;
intel_state->flags = 0;
intel_state->damage = DRM_RECT_INIT(0, 0, 0, 0);
/* add reference to fb */
if (intel_state->hw.fb)
drm_framebuffer_get(intel_state->hw.fb);
return &intel_state->uapi;
}
/**
* intel_plane_destroy_state - destroy plane state
* @plane: drm plane
* @state: state object to destroy
*
* Destroys the plane state (both common and Intel-specific) for the
* specified plane.
*/
void
intel_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct intel_plane_state *plane_state = to_intel_plane_state(state);
drm_WARN_ON(plane->dev, plane_state->ggtt_vma);
drm_WARN_ON(plane->dev, plane_state->dpt_vma);
__drm_atomic_helper_plane_destroy_state(&plane_state->uapi);
if (plane_state->hw.fb)
drm_framebuffer_put(plane_state->hw.fb);
kfree(plane_state);
}
bool intel_plane_needs_physical(struct intel_plane *plane)
{
struct intel_display *display = to_intel_display(plane);
return plane->id == PLANE_CURSOR &&
DISPLAY_INFO(display)->cursor_needs_physical;
}
bool intel_plane_can_async_flip(struct intel_plane *plane, u32 format,
u64 modifier)
{
if (intel_format_info_is_yuv_semiplanar(drm_format_info(format), modifier) ||
format == DRM_FORMAT_C8)
return false;
return plane->can_async_flip && plane->can_async_flip(modifier);
}
bool intel_plane_format_mod_supported_async(struct drm_plane *plane,
u32 format,
u64 modifier)
{
if (!plane->funcs->format_mod_supported(plane, format, modifier))
return false;
return intel_plane_can_async_flip(to_intel_plane(plane),
format, modifier);
}
unsigned int intel_adjusted_rate(const struct drm_rect *src,
const struct drm_rect *dst,
unsigned int rate)
{
unsigned int src_w, src_h, dst_w, dst_h;
src_w = drm_rect_width(src) >> 16;
src_h = drm_rect_height(src) >> 16;
dst_w = drm_rect_width(dst);
dst_h = drm_rect_height(dst);
/* Downscaling limits the maximum pixel rate */
dst_w = min(src_w, dst_w);
dst_h = min(src_h, dst_h);
return DIV_ROUND_UP_ULL(mul_u32_u32(rate, src_w * src_h),
dst_w * dst_h);
}
unsigned int intel_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
/*
* Note we don't check for plane visibility here as
* we want to use this when calculating the cursor
* watermarks even if the cursor is fully offscreen.
* That depends on the src/dst rectangles being
* correctly populated whenever the watermark code
* considers the cursor to be visible, whether or not
* it is actually visible.
*
* See: intel_wm_plane_visible() and intel_check_cursor()
*/
return intel_adjusted_rate(&plane_state->uapi.src,
&plane_state->uapi.dst,
crtc_state->pixel_rate);
}
unsigned int intel_plane_data_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int color_plane)
{
const struct drm_framebuffer *fb = plane_state->hw.fb;
if (!plane_state->uapi.visible)
return 0;
return intel_plane_pixel_rate(crtc_state, plane_state) *
fb->format->cpp[color_plane];
}
static unsigned int
intel_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int color_plane)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
unsigned int rel_data_rate;
int width, height;
if (plane->id == PLANE_CURSOR)
return 0;
if (!plane_state->uapi.visible)
return 0;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
width = drm_rect_width(&plane_state->uapi.src) >> 16;
height = drm_rect_height(&plane_state->uapi.src) >> 16;
/* UV plane does 1/2 pixel sub-sampling */
if (color_plane == 1) {
width /= 2;
height /= 2;
}
rel_data_rate =
skl_plane_relative_data_rate(crtc_state, plane, width, height,
fb->format->cpp[color_plane]);
if (!rel_data_rate)
return 0;
return intel_adjusted_rate(&plane_state->uapi.src,
&plane_state->uapi.dst,
rel_data_rate);
}
int intel_plane_calc_min_cdclk(struct intel_atomic_state *state,
struct intel_plane *plane,
bool *need_cdclk_calc)
{
struct intel_display *display = to_intel_display(plane);
const struct intel_plane_state *plane_state =
intel_atomic_get_new_plane_state(state, plane);
struct intel_crtc *crtc = to_intel_crtc(plane_state->hw.crtc);
const struct intel_cdclk_state *cdclk_state;
const struct intel_crtc_state *old_crtc_state;
struct intel_crtc_state *new_crtc_state;
if (!plane_state->uapi.visible || !plane->min_cdclk)
return 0;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
new_crtc_state->min_cdclk[plane->id] =
plane->min_cdclk(new_crtc_state, plane_state);
/*
* No need to check against the cdclk state if
* the min cdclk for the plane doesn't increase.
*
* Ie. we only ever increase the cdclk due to plane
* requirements. This can reduce back and forth
* display blinking due to constant cdclk changes.
*/
if (new_crtc_state->min_cdclk[plane->id] <=
old_crtc_state->min_cdclk[plane->id])
return 0;
cdclk_state = intel_atomic_get_cdclk_state(state);
if (IS_ERR(cdclk_state))
return PTR_ERR(cdclk_state);
/*
* No need to recalculate the cdclk state if
* the min cdclk for the pipe doesn't increase.
*
* Ie. we only ever increase the cdclk due to plane
* requirements. This can reduce back and forth
* display blinking due to constant cdclk changes.
*/
if (new_crtc_state->min_cdclk[plane->id] <=
intel_cdclk_min_cdclk(cdclk_state, crtc->pipe))
return 0;
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] min cdclk (%d kHz) > [CRTC:%d:%s] min cdclk (%d kHz)\n",
plane->base.base.id, plane->base.name,
new_crtc_state->min_cdclk[plane->id],
crtc->base.base.id, crtc->base.name,
intel_cdclk_min_cdclk(cdclk_state, crtc->pipe));
*need_cdclk_calc = true;
return 0;
}
static void intel_plane_clear_hw_state(struct intel_plane_state *plane_state)
{
if (plane_state->hw.fb)
drm_framebuffer_put(plane_state->hw.fb);
memset(&plane_state->hw, 0, sizeof(plane_state->hw));
}
static void
intel_plane_copy_uapi_plane_damage(struct intel_plane_state *new_plane_state,
const struct intel_plane_state *old_uapi_plane_state,
const struct intel_plane_state *new_uapi_plane_state)
{
struct intel_display *display = to_intel_display(new_plane_state);
struct drm_rect *damage = &new_plane_state->damage;
/* damage property tracking enabled from display version 12 onwards */
if (DISPLAY_VER(display) < 12)
return;
if (!drm_atomic_helper_damage_merged(&old_uapi_plane_state->uapi,
&new_uapi_plane_state->uapi,
damage))
/* Incase helper fails, mark whole plane region as damage */
*damage = drm_plane_state_src(&new_uapi_plane_state->uapi);
}
void intel_plane_copy_uapi_to_hw_state(struct intel_plane_state *plane_state,
const struct intel_plane_state *from_plane_state,
struct intel_crtc *crtc)
{
intel_plane_clear_hw_state(plane_state);
/*
* For the joiner secondary uapi.crtc will point at
* the primary crtc. So we explicitly assign the right
* secondary crtc to hw.crtc. uapi.crtc!=NULL simply
* indicates the plane is logically enabled on the uapi level.
*/
plane_state->hw.crtc = from_plane_state->uapi.crtc ? &crtc->base : NULL;
plane_state->hw.fb = from_plane_state->uapi.fb;
if (plane_state->hw.fb)
drm_framebuffer_get(plane_state->hw.fb);
plane_state->hw.alpha = from_plane_state->uapi.alpha;
plane_state->hw.pixel_blend_mode =
from_plane_state->uapi.pixel_blend_mode;
plane_state->hw.rotation = from_plane_state->uapi.rotation;
plane_state->hw.color_encoding = from_plane_state->uapi.color_encoding;
plane_state->hw.color_range = from_plane_state->uapi.color_range;
plane_state->hw.scaling_filter = from_plane_state->uapi.scaling_filter;
plane_state->uapi.src = drm_plane_state_src(&from_plane_state->uapi);
plane_state->uapi.dst = drm_plane_state_dest(&from_plane_state->uapi);
}
void intel_plane_copy_hw_state(struct intel_plane_state *plane_state,
const struct intel_plane_state *from_plane_state)
{
intel_plane_clear_hw_state(plane_state);
memcpy(&plane_state->hw, &from_plane_state->hw,
sizeof(plane_state->hw));
if (plane_state->hw.fb)
drm_framebuffer_get(plane_state->hw.fb);
}
void intel_plane_set_invisible(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
crtc_state->active_planes &= ~BIT(plane->id);
crtc_state->scaled_planes &= ~BIT(plane->id);
crtc_state->nv12_planes &= ~BIT(plane->id);
crtc_state->c8_planes &= ~BIT(plane->id);
crtc_state->async_flip_planes &= ~BIT(plane->id);
crtc_state->data_rate[plane->id] = 0;
crtc_state->data_rate_y[plane->id] = 0;
crtc_state->rel_data_rate[plane->id] = 0;
crtc_state->rel_data_rate_y[plane->id] = 0;
crtc_state->min_cdclk[plane->id] = 0;
plane_state->uapi.visible = false;
}
static bool intel_plane_is_scaled(const struct intel_plane_state *plane_state)
{
int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
int dst_w = drm_rect_width(&plane_state->uapi.dst);
int dst_h = drm_rect_height(&plane_state->uapi.dst);
return src_w != dst_w || src_h != dst_h;
}
static bool intel_plane_do_async_flip(struct intel_plane *plane,
const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_display *display = to_intel_display(plane);
if (!plane->async_flip)
return false;
if (!new_crtc_state->uapi.async_flip)
return false;
/*
* In platforms after DISPLAY13, we might need to override
* first async flip in order to change watermark levels
* as part of optimization.
*
* And let's do this for all skl+ so that we can eg. change the
* modifier as well.
*
* TODO: For older platforms there is less reason to do this as
* only X-tile is supported with async flips, though we could
* extend this so other scanout parameters (stride/etc) could
* be changed as well...
*/
return DISPLAY_VER(display) < 9 || old_crtc_state->uapi.async_flip;
}
static bool i9xx_must_disable_cxsr(const struct intel_crtc_state *new_crtc_state,
const struct intel_plane_state *old_plane_state,
const struct intel_plane_state *new_plane_state)
{
struct intel_plane *plane = to_intel_plane(new_plane_state->uapi.plane);
bool old_visible = old_plane_state->uapi.visible;
bool new_visible = new_plane_state->uapi.visible;
u32 old_ctl = old_plane_state->ctl;
u32 new_ctl = new_plane_state->ctl;
bool modeset, turn_on, turn_off;
if (plane->id == PLANE_CURSOR)
return false;
modeset = intel_crtc_needs_modeset(new_crtc_state);
turn_off = old_visible && (!new_visible || modeset);
turn_on = new_visible && (!old_visible || modeset);
/* Must disable CxSR around plane enable/disable */
if (turn_on || turn_off)
return true;
if (!old_visible || !new_visible)
return false;
/*
* Most plane control register updates are blocked while in CxSR.
*
* Tiling mode is one exception where the primary plane can
* apparently handle it, whereas the sprites can not (the
* sprite issue being only relevant on VLV/CHV where CxSR
* is actually possible with a sprite enabled).
*/
if (plane->id == PLANE_PRIMARY) {
old_ctl &= ~DISP_TILED;
new_ctl &= ~DISP_TILED;
}
return old_ctl != new_ctl;
}
static bool ilk_must_disable_cxsr(const struct intel_crtc_state *new_crtc_state,
const struct intel_plane_state *old_plane_state,
const struct intel_plane_state *new_plane_state)
{
struct intel_plane *plane = to_intel_plane(new_plane_state->uapi.plane);
bool old_visible = old_plane_state->uapi.visible;
bool new_visible = new_plane_state->uapi.visible;
bool modeset, turn_on;
if (plane->id == PLANE_CURSOR)
return false;
modeset = intel_crtc_needs_modeset(new_crtc_state);
turn_on = new_visible && (!old_visible || modeset);
/*
* ILK/SNB DVSACNTR/Sprite Enable
* IVB SPR_CTL/Sprite Enable
* "When in Self Refresh Big FIFO mode, a write to enable the
* plane will be internally buffered and delayed while Big FIFO
* mode is exiting."
*
* Which means that enabling the sprite can take an extra frame
* when we start in big FIFO mode (LP1+). Thus we need to drop
* down to LP0 and wait for vblank in order to make sure the
* sprite gets enabled on the next vblank after the register write.
* Doing otherwise would risk enabling the sprite one frame after
* we've already signalled flip completion. We can resume LP1+
* once the sprite has been enabled.
*
* With experimental results seems this is needed also for primary
* plane, not only sprite plane.
*/
if (turn_on)
return true;
/*
* WaCxSRDisabledForSpriteScaling:ivb
* IVB SPR_SCALE/Scaling Enable
* "Low Power watermarks must be disabled for at least one
* frame before enabling sprite scaling, and kept disabled
* until sprite scaling is disabled."
*
* ILK/SNB DVSASCALE/Scaling Enable
* "When in Self Refresh Big FIFO mode, scaling enable will be
* masked off while Big FIFO mode is exiting."
*
* Despite the w/a only being listed for IVB we assume that
* the ILK/SNB note has similar ramifications, hence we apply
* the w/a on all three platforms.
*/
return !intel_plane_is_scaled(old_plane_state) &&
intel_plane_is_scaled(new_plane_state);
}
static int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state,
const struct intel_plane_state *old_plane_state,
struct intel_plane_state *new_plane_state)
{
struct intel_display *display = to_intel_display(new_crtc_state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_plane *plane = to_intel_plane(new_plane_state->uapi.plane);
bool mode_changed = intel_crtc_needs_modeset(new_crtc_state);
bool was_crtc_enabled = old_crtc_state->hw.active;
bool is_crtc_enabled = new_crtc_state->hw.active;
bool turn_off, turn_on, visible, was_visible;
int ret;
if (DISPLAY_VER(display) >= 9 && plane->id != PLANE_CURSOR) {
ret = skl_update_scaler_plane(new_crtc_state, new_plane_state);
if (ret)
return ret;
}
was_visible = old_plane_state->uapi.visible;
visible = new_plane_state->uapi.visible;
if (!was_crtc_enabled && drm_WARN_ON(display->drm, was_visible))
was_visible = false;
/*
* Visibility is calculated as if the crtc was on, but
* after scaler setup everything depends on it being off
* when the crtc isn't active.
*
* FIXME this is wrong for watermarks. Watermarks should also
* be computed as if the pipe would be active. Perhaps move
* per-plane wm computation to the .check_plane() hook, and
* only combine the results from all planes in the current place?
*/
if (!is_crtc_enabled) {
intel_plane_set_invisible(new_crtc_state, new_plane_state);
visible = false;
}
if (!was_visible && !visible)
return 0;
turn_off = was_visible && (!visible || mode_changed);
turn_on = visible && (!was_visible || mode_changed);
drm_dbg_atomic(display->drm,
"[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
crtc->base.base.id, crtc->base.name,
plane->base.base.id, plane->base.name,
was_visible, visible,
turn_off, turn_on, mode_changed);
if (visible || was_visible)
new_crtc_state->fb_bits |= plane->frontbuffer_bit;
if (HAS_GMCH(display) &&
i9xx_must_disable_cxsr(new_crtc_state, old_plane_state, new_plane_state))
new_crtc_state->disable_cxsr = true;
if ((display->platform.ironlake || display->platform.sandybridge || display->platform.ivybridge) &&
ilk_must_disable_cxsr(new_crtc_state, old_plane_state, new_plane_state))
new_crtc_state->disable_cxsr = true;
if (intel_plane_do_async_flip(plane, old_crtc_state, new_crtc_state)) {
new_crtc_state->do_async_flip = true;
new_crtc_state->async_flip_planes |= BIT(plane->id);
} else if (plane->need_async_flip_toggle_wa &&
new_crtc_state->uapi.async_flip) {
/*
* On platforms with double buffered async flip bit we
* set the bit already one frame early during the sync
* flip (see {i9xx,skl}_plane_update_arm()). The
* hardware will therefore be ready to perform a real
* async flip during the next commit, without having
* to wait yet another frame for the bit to latch.
*/
new_crtc_state->async_flip_planes |= BIT(plane->id);
}
return 0;
}
int intel_plane_atomic_check_with_state(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state,
const struct intel_plane_state *old_plane_state,
struct intel_plane_state *new_plane_state)
{
struct intel_plane *plane = to_intel_plane(new_plane_state->uapi.plane);
const struct drm_framebuffer *fb = new_plane_state->hw.fb;
int ret;
intel_plane_set_invisible(new_crtc_state, new_plane_state);
new_crtc_state->enabled_planes &= ~BIT(plane->id);
if (!new_plane_state->hw.crtc && !old_plane_state->hw.crtc)
return 0;
ret = plane->check_plane(new_crtc_state, new_plane_state);
if (ret)
return ret;
if (fb)
new_crtc_state->enabled_planes |= BIT(plane->id);
/* FIXME pre-g4x don't work like this */
if (new_plane_state->uapi.visible)
new_crtc_state->active_planes |= BIT(plane->id);
if (new_plane_state->uapi.visible &&
intel_plane_is_scaled(new_plane_state))
new_crtc_state->scaled_planes |= BIT(plane->id);
if (new_plane_state->uapi.visible &&
intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
new_crtc_state->nv12_planes |= BIT(plane->id);
if (new_plane_state->uapi.visible &&
fb->format->format == DRM_FORMAT_C8)
new_crtc_state->c8_planes |= BIT(plane->id);
if (new_plane_state->uapi.visible || old_plane_state->uapi.visible)
new_crtc_state->update_planes |= BIT(plane->id);
if (new_plane_state->uapi.visible &&
intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) {
new_crtc_state->data_rate_y[plane->id] =
intel_plane_data_rate(new_crtc_state, new_plane_state, 0);
new_crtc_state->data_rate[plane->id] =
intel_plane_data_rate(new_crtc_state, new_plane_state, 1);
new_crtc_state->rel_data_rate_y[plane->id] =
intel_plane_relative_data_rate(new_crtc_state,
new_plane_state, 0);
new_crtc_state->rel_data_rate[plane->id] =
intel_plane_relative_data_rate(new_crtc_state,
new_plane_state, 1);
} else if (new_plane_state->uapi.visible) {
new_crtc_state->data_rate[plane->id] =
intel_plane_data_rate(new_crtc_state, new_plane_state, 0);
new_crtc_state->rel_data_rate[plane->id] =
intel_plane_relative_data_rate(new_crtc_state,
new_plane_state, 0);
}
return intel_plane_atomic_calc_changes(old_crtc_state, new_crtc_state,
old_plane_state, new_plane_state);
}
struct intel_plane *
intel_crtc_get_plane(struct intel_crtc *crtc, enum plane_id plane_id)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
if (plane->id == plane_id)
return plane;
}
return NULL;
}
static int plane_atomic_check(struct intel_atomic_state *state,
struct intel_plane *plane)
{
struct intel_display *display = to_intel_display(state);
struct intel_plane_state *new_plane_state =
intel_atomic_get_new_plane_state(state, plane);
const struct intel_plane_state *old_plane_state =
intel_atomic_get_old_plane_state(state, plane);
const struct intel_plane_state *new_primary_crtc_plane_state;
const struct intel_plane_state *old_primary_crtc_plane_state;
struct intel_crtc *crtc = intel_crtc_for_pipe(display, plane->pipe);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (new_crtc_state && intel_crtc_is_joiner_secondary(new_crtc_state)) {
struct intel_crtc *primary_crtc =
intel_primary_crtc(new_crtc_state);
struct intel_plane *primary_crtc_plane =
intel_crtc_get_plane(primary_crtc, plane->id);
new_primary_crtc_plane_state =
intel_atomic_get_new_plane_state(state, primary_crtc_plane);
old_primary_crtc_plane_state =
intel_atomic_get_old_plane_state(state, primary_crtc_plane);
} else {
new_primary_crtc_plane_state = new_plane_state;
old_primary_crtc_plane_state = old_plane_state;
}
intel_plane_copy_uapi_plane_damage(new_plane_state,
old_primary_crtc_plane_state,
new_primary_crtc_plane_state);
intel_plane_copy_uapi_to_hw_state(new_plane_state,
new_primary_crtc_plane_state,
crtc);
new_plane_state->uapi.visible = false;
if (!new_crtc_state)
return 0;
return intel_plane_atomic_check_with_state(old_crtc_state,
new_crtc_state,
old_plane_state,
new_plane_state);
}
static struct intel_plane *
skl_next_plane_to_commit(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct skl_ddb_entry ddb[I915_MAX_PLANES],
struct skl_ddb_entry ddb_y[I915_MAX_PLANES],
unsigned int *update_mask)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
int i;
if (*update_mask == 0)
return NULL;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
enum plane_id plane_id = plane->id;
if (crtc->pipe != plane->pipe ||
!(*update_mask & BIT(plane_id)))
continue;
if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb[plane_id],
ddb, I915_MAX_PLANES, plane_id) ||
skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_y[plane_id],
ddb_y, I915_MAX_PLANES, plane_id))
continue;
*update_mask &= ~BIT(plane_id);
ddb[plane_id] = crtc_state->wm.skl.plane_ddb[plane_id];
ddb_y[plane_id] = crtc_state->wm.skl.plane_ddb_y[plane_id];
return plane;
}
/* should never happen */
drm_WARN_ON(state->base.dev, 1);
return NULL;
}
void intel_plane_update_noarm(struct intel_dsb *dsb,
struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
trace_intel_plane_update_noarm(plane_state, crtc);
if (plane->fbc)
intel_fbc_dirty_rect_update_noarm(dsb, plane);
if (plane->update_noarm)
plane->update_noarm(dsb, plane, crtc_state, plane_state);
}
void intel_plane_async_flip(struct intel_dsb *dsb,
struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
bool async_flip)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
trace_intel_plane_async_flip(plane, crtc, async_flip);
plane->async_flip(dsb, plane, crtc_state, plane_state, async_flip);
}
void intel_plane_update_arm(struct intel_dsb *dsb,
struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (crtc_state->do_async_flip && plane->async_flip) {
intel_plane_async_flip(dsb, plane, crtc_state, plane_state, true);
return;
}
trace_intel_plane_update_arm(plane_state, crtc);
plane->update_arm(dsb, plane, crtc_state, plane_state);
}
void intel_plane_disable_arm(struct intel_dsb *dsb,
struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
trace_intel_plane_disable_arm(plane, crtc);
plane->disable_arm(dsb, plane, crtc_state);
}
void intel_crtc_planes_update_noarm(struct intel_dsb *dsb,
struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
if (new_crtc_state->do_async_flip)
return;
/*
* Since we only write non-arming registers here,
* the order does not matter even for skl+.
*/
for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
/* TODO: for mailbox updates this should be skipped */
if (new_plane_state->uapi.visible ||
new_plane_state->is_y_plane)
intel_plane_update_noarm(dsb, plane,
new_crtc_state, new_plane_state);
}
}
static void skl_crtc_planes_update_arm(struct intel_dsb *dsb,
struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct skl_ddb_entry ddb[I915_MAX_PLANES];
struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane *plane;
memcpy(ddb, old_crtc_state->wm.skl.plane_ddb,
sizeof(old_crtc_state->wm.skl.plane_ddb));
memcpy(ddb_y, old_crtc_state->wm.skl.plane_ddb_y,
sizeof(old_crtc_state->wm.skl.plane_ddb_y));
while ((plane = skl_next_plane_to_commit(state, crtc, ddb, ddb_y, &update_mask))) {
struct intel_plane_state *new_plane_state =
intel_atomic_get_new_plane_state(state, plane);
/*
* TODO: for mailbox updates intel_plane_update_noarm()
* would have to be called here as well.
*/
if (new_plane_state->uapi.visible ||
new_plane_state->is_y_plane)
intel_plane_update_arm(dsb, plane, new_crtc_state, new_plane_state);
else
intel_plane_disable_arm(dsb, plane, new_crtc_state);
}
}
static void i9xx_crtc_planes_update_arm(struct intel_dsb *dsb,
struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
/*
* TODO: for mailbox updates intel_plane_update_noarm()
* would have to be called here as well.
*/
if (new_plane_state->uapi.visible)
intel_plane_update_arm(dsb, plane, new_crtc_state, new_plane_state);
else
intel_plane_disable_arm(dsb, plane, new_crtc_state);
}
}
void intel_crtc_planes_update_arm(struct intel_dsb *dsb,
struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
if (DISPLAY_VER(display) >= 9)
skl_crtc_planes_update_arm(dsb, state, crtc);
else
i9xx_crtc_planes_update_arm(dsb, state, crtc);
}
int intel_plane_check_clipping(struct intel_plane_state *plane_state,
struct intel_crtc_state *crtc_state,
int min_scale, int max_scale,
bool can_position)
{
struct intel_display *display = to_intel_display(plane_state);
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_framebuffer *fb = plane_state->hw.fb;
struct drm_rect *src = &plane_state->uapi.src;
struct drm_rect *dst = &plane_state->uapi.dst;
const struct drm_rect *clip = &crtc_state->pipe_src;
unsigned int rotation = plane_state->hw.rotation;
int hscale, vscale;
if (!fb) {
plane_state->uapi.visible = false;
return 0;
}
drm_rect_rotate(src, fb->width << 16, fb->height << 16, rotation);
/* Check scaling */
hscale = drm_rect_calc_hscale(src, dst, min_scale, max_scale);
vscale = drm_rect_calc_vscale(src, dst, min_scale, max_scale);
if (hscale < 0 || vscale < 0) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] invalid scaling "DRM_RECT_FP_FMT " -> " DRM_RECT_FMT "\n",
plane->base.base.id, plane->base.name,
DRM_RECT_FP_ARG(src), DRM_RECT_ARG(dst));
return -ERANGE;
}
/*
* FIXME: This might need further adjustment for seamless scaling
* with phase information, for the 2p2 and 2p1 scenarios.
*/
plane_state->uapi.visible = drm_rect_clip_scaled(src, dst, clip);
drm_rect_rotate_inv(src, fb->width << 16, fb->height << 16, rotation);
if (!can_position && plane_state->uapi.visible &&
!drm_rect_equals(dst, clip)) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] plane (" DRM_RECT_FMT ") must cover entire CRTC (" DRM_RECT_FMT ")\n",
plane->base.base.id, plane->base.name,
DRM_RECT_ARG(dst), DRM_RECT_ARG(clip));
return -EINVAL;
}
/* final plane coordinates will be relative to the plane's pipe */
drm_rect_translate(dst, -clip->x1, -clip->y1);
return 0;
}
int intel_plane_check_src_coordinates(struct intel_plane_state *plane_state)
{
struct intel_display *display = to_intel_display(plane_state);
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
struct drm_rect *src = &plane_state->uapi.src;
u32 src_x, src_y, src_w, src_h, hsub, vsub;
bool rotated = drm_rotation_90_or_270(plane_state->hw.rotation);
/*
* FIXME hsub/vsub vs. block size is a mess. Pre-tgl CCS
* abuses hsub/vsub so we can't use them here. But as they
* are limited to 32bpp RGB formats we don't actually need
* to check anything.
*/
if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS)
return 0;
/*
* Hardware doesn't handle subpixel coordinates.
* Adjust to (macro)pixel boundary, but be careful not to
* increase the source viewport size, because that could
* push the downscaling factor out of bounds.
*/
src_x = src->x1 >> 16;
src_w = drm_rect_width(src) >> 16;
src_y = src->y1 >> 16;
src_h = drm_rect_height(src) >> 16;
drm_rect_init(src, src_x << 16, src_y << 16,
src_w << 16, src_h << 16);
if (fb->format->format == DRM_FORMAT_RGB565 && rotated) {
hsub = 2;
vsub = 2;
} else if (DISPLAY_VER(display) >= 20 &&
intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) {
/*
* This allows NV12 and P0xx formats to have odd size and/or odd
* source coordinates on DISPLAY_VER(display) >= 20
*/
hsub = 1;
vsub = 1;
/* Wa_16023981245 */
if ((DISPLAY_VERx100(display) == 2000 ||
DISPLAY_VERx100(display) == 3000 ||
DISPLAY_VERx100(display) == 3002) &&
src_x % 2 != 0)
hsub = 2;
} else {
hsub = fb->format->hsub;
vsub = fb->format->vsub;
}
if (rotated)
hsub = vsub = max(hsub, vsub);
if (src_x % hsub || src_w % hsub) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] src x/w (%u, %u) must be a multiple of %u (rotated: %s)\n",
plane->base.base.id, plane->base.name,
src_x, src_w, hsub, str_yes_no(rotated));
return -EINVAL;
}
if (src_y % vsub || src_h % vsub) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] src y/h (%u, %u) must be a multiple of %u (rotated: %s)\n",
plane->base.base.id, plane->base.name,
src_y, src_h, vsub, str_yes_no(rotated));
return -EINVAL;
}
return 0;
}
static int add_dma_resv_fences(struct dma_resv *resv,
struct drm_plane_state *new_plane_state)
{
struct dma_fence *fence = dma_fence_get(new_plane_state->fence);
struct dma_fence *new;
int ret;
ret = dma_resv_get_singleton(resv, dma_resv_usage_rw(false), &new);
if (ret)
goto error;
if (new && fence) {
struct dma_fence_chain *chain = dma_fence_chain_alloc();
if (!chain) {
ret = -ENOMEM;
goto error;
}
dma_fence_chain_init(chain, fence, new, 1);
fence = &chain->base;
} else if (new) {
fence = new;
}
dma_fence_put(new_plane_state->fence);
new_plane_state->fence = fence;
return 0;
error:
dma_fence_put(fence);
return ret;
}
/**
* intel_prepare_plane_fb - Prepare fb for usage on plane
* @_plane: drm plane to prepare for
* @_new_plane_state: the plane state being prepared
*
* Prepares a framebuffer for usage on a display plane. Generally this
* involves pinning the underlying object and updating the frontbuffer tracking
* bits. Some older platforms need special physical address handling for
* cursor planes.
*
* Returns 0 on success, negative error code on failure.
*/
static int
intel_prepare_plane_fb(struct drm_plane *_plane,
struct drm_plane_state *_new_plane_state)
{
struct i915_sched_attr attr = { .priority = I915_PRIORITY_DISPLAY };
struct intel_plane *plane = to_intel_plane(_plane);
struct intel_display *display = to_intel_display(plane);
struct intel_plane_state *new_plane_state =
to_intel_plane_state(_new_plane_state);
struct intel_atomic_state *state =
to_intel_atomic_state(new_plane_state->uapi.state);
struct intel_plane_state *old_plane_state =
intel_atomic_get_old_plane_state(state, plane);
struct drm_gem_object *obj = intel_fb_bo(new_plane_state->hw.fb);
struct drm_gem_object *old_obj = intel_fb_bo(old_plane_state->hw.fb);
int ret;
if (old_obj) {
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state,
to_intel_crtc(old_plane_state->hw.crtc));
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer. Note that we rely on userspace rendering
* into the buffer attached to the pipe they are waiting
* on. If not, userspace generates a GPU hang with IPEHR
* point to the MI_WAIT_FOR_EVENT.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
if (intel_crtc_needs_modeset(new_crtc_state)) {
ret = add_dma_resv_fences(old_obj->resv,
&new_plane_state->uapi);
if (ret < 0)
return ret;
}
}
if (!obj)
return 0;
ret = intel_plane_pin_fb(new_plane_state, old_plane_state);
if (ret)
return ret;
ret = drm_gem_plane_helper_prepare_fb(&plane->base, &new_plane_state->uapi);
if (ret < 0)
goto unpin_fb;
if (new_plane_state->uapi.fence) {
i915_gem_fence_wait_priority(new_plane_state->uapi.fence,
&attr);
intel_display_rps_boost_after_vblank(new_plane_state->hw.crtc,
new_plane_state->uapi.fence);
}
/*
* We declare pageflips to be interactive and so merit a small bias
* towards upclocking to deliver the frame on time. By only changing
* the RPS thresholds to sample more regularly and aim for higher
* clocks we can hopefully deliver low power workloads (like kodi)
* that are not quite steady state without resorting to forcing
* maximum clocks following a vblank miss (see do_rps_boost()).
*/
intel_display_rps_mark_interactive(display, state, true);
return 0;
unpin_fb:
intel_plane_unpin_fb(new_plane_state);
return ret;
}
/**
* intel_cleanup_plane_fb - Cleans up an fb after plane use
* @plane: drm plane to clean up for
* @_old_plane_state: the state from the previous modeset
*
* Cleans up a framebuffer that has just been removed from a plane.
*/
static void
intel_cleanup_plane_fb(struct drm_plane *plane,
struct drm_plane_state *_old_plane_state)
{
struct intel_display *display = to_intel_display(plane->dev);
struct intel_plane_state *old_plane_state =
to_intel_plane_state(_old_plane_state);
struct intel_atomic_state *state =
to_intel_atomic_state(old_plane_state->uapi.state);
struct drm_gem_object *obj = intel_fb_bo(old_plane_state->hw.fb);
if (!obj)
return;
intel_display_rps_mark_interactive(display, state, false);
intel_plane_unpin_fb(old_plane_state);
}
/* Handle Y-tiling, only if DPT is enabled (otherwise disabling tiling is easier)
* All DPT hardware have 128-bytes width tiling, so Y-tile dimension is 32x32
* pixels for 32bits pixels.
*/
#define YTILE_WIDTH 32
#define YTILE_HEIGHT 32
#define YTILE_SIZE (YTILE_WIDTH * YTILE_HEIGHT * 4)
static unsigned int intel_ytile_get_offset(unsigned int width, unsigned int x, unsigned int y)
{
u32 offset;
unsigned int swizzle;
unsigned int width_in_blocks = DIV_ROUND_UP(width, 32);
/* Block offset */
offset = ((y / YTILE_HEIGHT) * width_in_blocks + (x / YTILE_WIDTH)) * YTILE_SIZE;
x = x % YTILE_WIDTH;
y = y % YTILE_HEIGHT;
/* bit order inside a block is x4 x3 x2 y4 y3 y2 y1 y0 x1 x0 */
swizzle = (x & 3) | ((y & 0x1f) << 2) | ((x & 0x1c) << 5);
offset += swizzle * 4;
return offset;
}
static unsigned int intel_4tile_get_offset(unsigned int width, unsigned int x, unsigned int y)
{
u32 offset;
unsigned int swizzle;
unsigned int width_in_blocks = DIV_ROUND_UP(width, 32);
/* Block offset */
offset = ((y / YTILE_HEIGHT) * width_in_blocks + (x / YTILE_WIDTH)) * YTILE_SIZE;
x = x % YTILE_WIDTH;
y = y % YTILE_HEIGHT;
/* bit order inside a block is y4 y3 x4 y2 x3 x2 y1 y0 x1 x0 */
swizzle = (x & 3) | ((y & 3) << 2) | ((x & 0xc) << 2) | (y & 4) << 4 |
((x & 0x10) << 3) | ((y & 0x18) << 5);
offset += swizzle * 4;
return offset;
}
static void intel_panic_flush(struct drm_plane *plane)
{
struct intel_plane_state *plane_state = to_intel_plane_state(plane->state);
struct intel_crtc_state *crtc_state = to_intel_crtc_state(plane->state->crtc->state);
struct intel_plane *iplane = to_intel_plane(plane);
struct intel_display *display = to_intel_display(iplane);
struct drm_framebuffer *fb = plane_state->hw.fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
intel_bo_panic_finish(intel_fb);
if (crtc_state->enable_psr2_sel_fetch) {
/* Force a full update for psr2 */
intel_psr2_panic_force_full_update(display, crtc_state);
}
/* Flush the cache and don't disable tiling if it's the fbdev framebuffer.*/
if (intel_fb == intel_fbdev_framebuffer(display->fbdev.fbdev)) {
struct iosys_map map;
intel_fbdev_get_map(display->fbdev.fbdev, &map);
drm_clflush_virt_range(map.vaddr, fb->pitches[0] * fb->height);
return;
}
if (fb->modifier && iplane->disable_tiling)
iplane->disable_tiling(iplane);
}
static unsigned int (*intel_get_tiling_func(u64 fb_modifier))(unsigned int width,
unsigned int x,
unsigned int y)
{
switch (fb_modifier) {
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Y_TILED_CCS:
case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC:
case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
return intel_ytile_get_offset;
case I915_FORMAT_MOD_4_TILED:
case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS:
case I915_FORMAT_MOD_4_TILED_DG2_MC_CCS:
case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC:
case I915_FORMAT_MOD_4_TILED_MTL_RC_CCS:
case I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC:
case I915_FORMAT_MOD_4_TILED_MTL_MC_CCS:
case I915_FORMAT_MOD_4_TILED_BMG_CCS:
case I915_FORMAT_MOD_4_TILED_LNL_CCS:
return intel_4tile_get_offset;
case I915_FORMAT_MOD_X_TILED:
case I915_FORMAT_MOD_Yf_TILED:
case I915_FORMAT_MOD_Yf_TILED_CCS:
default:
/* Not supported yet */
return NULL;
}
}
static int intel_get_scanout_buffer(struct drm_plane *plane,
struct drm_scanout_buffer *sb)
{
struct intel_plane_state *plane_state;
struct drm_gem_object *obj;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
struct intel_display *display = to_intel_display(plane->dev);
if (!plane->state || !plane->state->fb || !plane->state->visible)
return -ENODEV;
plane_state = to_intel_plane_state(plane->state);
fb = plane_state->hw.fb;
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb_bo(fb);
if (!obj)
return -ENODEV;
if (intel_fb == intel_fbdev_framebuffer(display->fbdev.fbdev)) {
intel_fbdev_get_map(display->fbdev.fbdev, &sb->map[0]);
} else {
int ret;
/* Can't disable tiling if DPT is in use */
if (intel_fb_uses_dpt(fb)) {
if (fb->format->cpp[0] != 4)
return -EOPNOTSUPP;
intel_fb->panic_tiling = intel_get_tiling_func(fb->modifier);
if (!intel_fb->panic_tiling)
return -EOPNOTSUPP;
}
sb->private = intel_fb;
ret = intel_bo_panic_setup(sb);
if (ret)
return ret;
}
sb->width = fb->width;
sb->height = fb->height;
/* Use the generic linear format, because tiling, RC, CCS, CC
* will be disabled in disable_tiling()
*/
sb->format = drm_format_info(fb->format->format);
sb->pitch[0] = fb->pitches[0];
return 0;
}
static const struct drm_plane_helper_funcs intel_plane_helper_funcs = {
.prepare_fb = intel_prepare_plane_fb,
.cleanup_fb = intel_cleanup_plane_fb,
};
static const struct drm_plane_helper_funcs intel_primary_plane_helper_funcs = {
.prepare_fb = intel_prepare_plane_fb,
.cleanup_fb = intel_cleanup_plane_fb,
.get_scanout_buffer = intel_get_scanout_buffer,
.panic_flush = intel_panic_flush,
};
void intel_plane_helper_add(struct intel_plane *plane)
{
if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
drm_plane_helper_add(&plane->base, &intel_primary_plane_helper_funcs);
else
drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
}
void intel_plane_init_cursor_vblank_work(struct intel_plane_state *old_plane_state,
struct intel_plane_state *new_plane_state)
{
if (!old_plane_state->ggtt_vma ||
old_plane_state->ggtt_vma == new_plane_state->ggtt_vma)
return;
drm_vblank_work_init(&old_plane_state->unpin_work, old_plane_state->uapi.crtc,
intel_cursor_unpin_work);
}
static void link_nv12_planes(struct intel_crtc_state *crtc_state,
struct intel_plane_state *uv_plane_state,
struct intel_plane_state *y_plane_state)
{
struct intel_display *display = to_intel_display(uv_plane_state);
struct intel_plane *uv_plane = to_intel_plane(uv_plane_state->uapi.plane);
struct intel_plane *y_plane = to_intel_plane(y_plane_state->uapi.plane);
drm_dbg_kms(display->drm, "UV plane [PLANE:%d:%s] using Y plane [PLANE:%d:%s]\n",
uv_plane->base.base.id, uv_plane->base.name,
y_plane->base.base.id, y_plane->base.name);
uv_plane_state->planar_linked_plane = y_plane;
y_plane_state->is_y_plane = true;
y_plane_state->planar_linked_plane = uv_plane;
crtc_state->enabled_planes |= BIT(y_plane->id);
crtc_state->active_planes |= BIT(y_plane->id);
crtc_state->update_planes |= BIT(y_plane->id);
crtc_state->data_rate[y_plane->id] = crtc_state->data_rate_y[uv_plane->id];
crtc_state->rel_data_rate[y_plane->id] = crtc_state->rel_data_rate_y[uv_plane->id];
/* Copy parameters to Y plane */
intel_plane_copy_hw_state(y_plane_state, uv_plane_state);
y_plane_state->uapi.src = uv_plane_state->uapi.src;
y_plane_state->uapi.dst = uv_plane_state->uapi.dst;
y_plane_state->ctl = uv_plane_state->ctl;
y_plane_state->color_ctl = uv_plane_state->color_ctl;
y_plane_state->view = uv_plane_state->view;
y_plane_state->decrypt = uv_plane_state->decrypt;
icl_link_nv12_planes(uv_plane_state, y_plane_state);
}
static void unlink_nv12_plane(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_display *display = to_intel_display(plane_state);
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
plane_state->planar_linked_plane = NULL;
if (!plane_state->is_y_plane)
return;
drm_WARN_ON(display->drm, plane_state->uapi.visible);
plane_state->is_y_plane = false;
crtc_state->enabled_planes &= ~BIT(plane->id);
crtc_state->active_planes &= ~BIT(plane->id);
crtc_state->update_planes |= BIT(plane->id);
crtc_state->data_rate[plane->id] = 0;
crtc_state->rel_data_rate[plane->id] = 0;
}
static int icl_check_nv12_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane_state *plane_state;
struct intel_plane *plane;
int i;
if (DISPLAY_VER(display) < 11)
return 0;
/*
* Destroy all old plane links and make the Y plane invisible
* in the crtc_state->active_planes mask.
*/
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
if (plane_state->planar_linked_plane)
unlink_nv12_plane(crtc_state, plane_state);
}
if (!crtc_state->nv12_planes)
return 0;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct intel_plane_state *y_plane_state = NULL;
struct intel_plane *y_plane;
if (plane->pipe != crtc->pipe)
continue;
if ((crtc_state->nv12_planes & BIT(plane->id)) == 0)
continue;
for_each_intel_plane_on_crtc(display->drm, crtc, y_plane) {
if (!icl_is_nv12_y_plane(display, y_plane->id))
continue;
if (crtc_state->active_planes & BIT(y_plane->id))
continue;
y_plane_state = intel_atomic_get_plane_state(state, y_plane);
if (IS_ERR(y_plane_state))
return PTR_ERR(y_plane_state);
break;
}
if (!y_plane_state) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] need %d free Y planes for planar YUV\n",
crtc->base.base.id, crtc->base.name,
hweight8(crtc_state->nv12_planes));
return -EINVAL;
}
link_nv12_planes(crtc_state, plane_state, y_plane_state);
}
return 0;
}
static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
struct intel_crtc *crtc,
u8 plane_ids_mask)
{
struct intel_display *display = to_intel_display(state);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(display->drm, crtc, plane) {
struct intel_plane_state *plane_state;
if ((plane_ids_mask & BIT(plane->id)) == 0)
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
}
return 0;
}
int intel_plane_add_affected(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
return intel_crtc_add_planes_to_state(state, crtc,
old_crtc_state->enabled_planes |
new_crtc_state->enabled_planes);
}
static bool active_planes_affects_min_cdclk(struct intel_display *display)
{
/* See {hsw,vlv,ivb}_plane_ratio() */
return display->platform.broadwell || display->platform.haswell ||
display->platform.cherryview || display->platform.valleyview ||
display->platform.ivybridge;
}
static u8 intel_joiner_affected_planes(struct intel_atomic_state *state,
u8 joined_pipes)
{
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
u8 affected_planes = 0;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct intel_plane *linked = plane_state->planar_linked_plane;
if ((joined_pipes & BIT(plane->pipe)) == 0)
continue;
affected_planes |= BIT(plane->id);
if (linked)
affected_planes |= BIT(linked->id);
}
return affected_planes;
}
static int intel_joiner_add_affected_planes(struct intel_atomic_state *state,
u8 joined_pipes)
{
u8 prev_affected_planes, affected_planes = 0;
/*
* We want all the joined pipes to have the same
* set of planes in the atomic state, to make sure
* state copying always works correctly, and the
* UV<->Y plane linkage is always up to date.
* Keep pulling planes in until we've determined
* the full set of affected planes. A bit complicated
* on account of each pipe being capable of selecting
* their own Y planes independently of the other pipes,
* and the selection being done from the set of
* inactive planes.
*/
do {
struct intel_crtc *crtc;
for_each_intel_crtc_in_pipe_mask(state->base.dev, crtc, joined_pipes) {
int ret;
ret = intel_crtc_add_planes_to_state(state, crtc, affected_planes);
if (ret)
return ret;
}
prev_affected_planes = affected_planes;
affected_planes = intel_joiner_affected_planes(state, joined_pipes);
} while (affected_planes != prev_affected_planes);
return 0;
}
static int intel_add_affected_planes(struct intel_atomic_state *state)
{
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
int ret;
ret = intel_joiner_add_affected_planes(state, intel_crtc_joined_pipe_mask(crtc_state));
if (ret)
return ret;
}
return 0;
}
int intel_plane_atomic_check(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
int i, ret;
ret = intel_add_affected_planes(state);
if (ret)
return ret;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
ret = plane_atomic_check(state, plane);
if (ret) {
drm_dbg_atomic(display->drm,
"[PLANE:%d:%s] atomic driver check failed\n",
plane->base.base.id, plane->base.name);
return ret;
}
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
u8 old_active_planes, new_active_planes;
ret = icl_check_nv12_planes(state, crtc);
if (ret)
return ret;
/*
* On some platforms the number of active planes affects
* the planes' minimum cdclk calculation. Add such planes
* to the state before we compute the minimum cdclk.
*/
if (!active_planes_affects_min_cdclk(display))
continue;
old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
if (hweight8(old_active_planes) == hweight8(new_active_planes))
continue;
ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
if (ret)
return ret;
}
return 0;
}
u32 intel_plane_ggtt_offset(const struct intel_plane_state *plane_state)
{
return i915_ggtt_offset(plane_state->ggtt_vma);
}