linux/drivers/gpu/drm/i915/display/intel_display.c
Linus Torvalds 260f6f4fda drm for 6.17-rc1
non-drm:
 rust:
 - make ETIMEDOUT available
 - add size constants up to SZ_2G
 - add DMA coherent allocation bindings
 mtd:
 - driver for Intel GPU non-volatile storage
 i2c
 - designware quirk for Intel xe
 
 core:
 - atomic helpers: tune enable/disable sequences
 - add task info to wedge API
 - refactor EDID quirks
 - connector: move HDR sink to drm_display_info
 - fourcc: half-float and 32-bit float formats
 - mode_config: pass format info to simplify
 
 dma-buf:
 - heaps: Give CMA heap a stable name
 
 ci:
 - add device tree validation and kunit
 
 displayport:
 - change AUX DPCD access probe address
 - add quirk for DPCD probe
 - add panel replay definitions
 - backlight control helpers
 
 fbdev:
 - make CONFIG_FIRMWARE_EDID available on all arches
 
 fence:
 - fix UAF issues
 
 format-helper:
 - improve tests
 
 gpusvm:
 - introduce devmem only flag for allocation
 - add timeslicing support to GPU SVM
 
 ttm:
 - improve eviction
 
 sched:
 - tracing improvements
 - kunit improvements
 - memory leak fixes
 - reset handling improvements
 
 color mgmt:
 - add hardware gamma LUT handling helpers
 
 bridge:
 - add destroy hook
 - switch to reference counted drm_bridge allocations
 - tc358767: convert to devm_drm_bridge_alloc
 - improve CEC handling
 
 panel:
 - switch to reference counter drm_panel allocations
 - fwnode panel lookup
 - Huiling hl055fhv028c support
 - Raspberry Pi 7" 720x1280 support
 - edp: KDC KD116N3730A05, N160JCE-ELL CMN, N116BCJ-EAK
 - simple: AUO P238HAN01
 - st7701: Winstar wf40eswaa6mnn0
 - visionox: rm69299-shift
 - Renesas R61307, Renesas R69328 support
 - DJN HX83112B
 
 hdmi:
 - add CEC handling
 - YUV420 output support
 
 xe:
 - WildCat Lake support
 - Enable PanthorLake by default
 - mark BMG as SRIOV capable
 - update firmware recommendations
 - Expose media OA units
 - aux-bux support for non-volatile memory
 - MTD intel-dg driver for non-volatile memory
 - Expose fan control and voltage regulator in sysfs
 - restructure migration for multi-device
 - Restore GuC submit UAF fix
 - make GEM shrinker drm managed
 - SRIOV VF Post-migration recovery of GGTT nodes
 - W/A additions/reworks
 - Prefetch support for svm ranges
 - Don't allocate managed BO for each policy change
 - HWMON fixes for BMG
 - Create LRC BO without VM
 - PCI ID updates
 - make SLPC debugfs files optional
 - rework eviction rejection of bound external BOs
 - consolidate PAT programming logic for pre/post Xe2
 - init changes for flicker-free boot
 - Enable GuC Dynamic Inhibit Context switch
 
 i915:
 - drm_panic support for i915/xe
 - initial flip queue off by default for LNL/PNL
 - Wildcat Lake Display support
 - Support for DSC fractional link bpp
 - Support for simultaneous Panel Replay and Adaptive sync
 - Support for PTL+ double buffer LUT
 - initial PIPEDMC event handling
 - drm_panel_follower support
 - DPLL interface renames
 - allocate struct intel_display dynamically
 - flip queue preperation
 - abstract DRAM detection better
 - avoid GuC scheduling stalls
 - remove DG1 force probe requirement
 - fix MEI interrupt handler on RT kernels
 - use backlight control helpers for eDP
 - more shared display code refactoring
 
 amdgpu:
 - add userq slot to INFO ioctl
 - SR-IOV hibernation support
 - Suspend improvements
 - Backlight improvements
 - Use scaling for non-native eDP modes
 - cleaner shader updates for GC 9.x
 - Remove fence slab
 - SDMA fw checks for userq support
 - RAS updates
 - DMCUB updates
 - DP tunneling fixes
 - Display idle D3 support
 - Per queue reset improvements
 - initial smartmux support
 
 amdkfd:
 - enable KFD on loongarch
 - mtype fix for ext coherent system memory
 
 radeon:
 - CS validation additional GL extensions
 - drop console lock during suspend/resume
 - bump driver version
 
 msm:
 - VM BIND support
 - CI: infrastructure updates
 - UBWC single source of truth
 - decouple GPU and KMS support
 - DP: rework I/O accessors
 - DPU: SM8750 support
 - DSI: SM8750 support
 - GPU: X1-45 support and speedbin support for X1-85
 - MDSS: SM8750 support
 
 nova:
 - register! macro improvements
 - DMA object abstraction
 - VBIOS parser + fwsec lookup
 - sysmem flush page support
 - falcon: generic falcon boot code and HAL
 - FWSEC-FRTS: fb setup and load/execute
 
 ivpu:
 - Add Wildcat Lake support
 - Add turbo flag
 
 ast:
 - improve hardware generations implementation
 
 imx:
 - IMX8qxq Display Controller support
 
 lima:
 - Rockchip RK3528 GPU support
 
 nouveau:
 - fence handling cleanup
 
 panfrost:
 - MT8370 support
 - bo labeling
 - 64-bit register access
 
 qaic:
 - add RAS support
 
 rockchip:
 - convert inno_hdmi to a bridge
 
 rz-du:
 - add RZ/V2H(P) support
 - MIPI-DSI DCS support
 
 sitronix:
 - ST7567 support
 
 sun4i:
 - add H616 support
 
 tidss:
 - add TI AM62L support
 - AM65x OLDI bridge support
 
 bochs:
 - drm panic support
 
 vkms:
 - YUV and R* format support
 - use faux device
 
 vmwgfx:
 - fence improvements
 
 hyperv:
 - move out of simple
 - add drm_panic support
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEEKbZHaGwW9KfbeusDHTzWXnEhr4FAmiJM/0ACgkQDHTzWXnE
 hr6MpA/+JJKGdSdrE95QkaMcOZh/3e3areGXZ0V/RrrJXdB4/DoAfQSHhF0H7m7y
 MhBGVLGNMXq7KHrz28p1MjLHrE1mwmvJ6hZ4J076ed4u9naoCD0m6k5w5wiue+KL
 HyPR54ADxN0BYmgV0l/B0wj42KsHyTO4x4hdqPJu02V9Dtmx6FCh2ujkOF3p9nbK
 GMwWDttl4KEKljD0IvQ9YIYJ66crYGx/XmZi7JoWRrS104K/h1u8qZuXBp5jVKTy
 OZRAVyLdmJqdTOLH7l599MBBcEd/bNV37/LVwF4T5iFunEKOAiyN0QY0OR+IeRVh
 ZfOv2/gp4UNyIfyahQ7LKLgEilNPGHoPitvDJPvBZxW2UjwXVNvA1QfdK5DAlVRS
 D5NoFRjlFFCz8/c2hQwlKJ9o7eVgH3/pK0mwR7SPGQTuqzLFCrAfCuzUvg/gV++6
 JFqmGKMHeCoxO2o4GMrwjFttStP41usxtV/D+grcbPteNO9UyKJS4C38n4eamJXM
 a9Sy9APuAb6F0w5+yMItEF7TQifgmhIbm5AZHlxE1KoDQV6TdiIf1Gou5LeDGoL6
 OACbXHJPL52tUnfCRpbfI4tE/IVyYsfL01JnvZ5cZZWItXfcIz76ykJri+E0G60g
 yRl/zkimHKO4B0l/HSzal5xROXr+3VzeWehEiz/ot1VriP5OesA=
 =n9MO
 -----END PGP SIGNATURE-----

Merge tag 'drm-next-2025-07-30' of https://gitlab.freedesktop.org/drm/kernel

Pull drm updates from Dave Airlie:
 "Highlights:

   - Intel xe enable Panthor Lake, started adding WildCat Lake

   - amdgpu has a bunch of reset improvments along with the usual IP
     updates

   - msm got VM_BIND support which is important for vulkan sparse memory

   - more drm_panic users

   - gpusvm common code to handle a bunch of core SVM work outside
     drivers.

  Detail summary:

  Changes outside drm subdirectory:
   - 'shrink_shmem_memory()' for better shmem/hibernate interaction
   - Rust support infrastructure:
      - make ETIMEDOUT available
      - add size constants up to SZ_2G
      - add DMA coherent allocation bindings
   - mtd driver for Intel GPU non-volatile storage
   - i2c designware quirk for Intel xe

  core:
   - atomic helpers: tune enable/disable sequences
   - add task info to wedge API
   - refactor EDID quirks
   - connector: move HDR sink to drm_display_info
   - fourcc: half-float and 32-bit float formats
   - mode_config: pass format info to simplify

  dma-buf:
   - heaps: Give CMA heap a stable name

  ci:
   - add device tree validation and kunit

  displayport:
   - change AUX DPCD access probe address
   - add quirk for DPCD probe
   - add panel replay definitions
   - backlight control helpers

  fbdev:
   - make CONFIG_FIRMWARE_EDID available on all arches

  fence:
   - fix UAF issues

  format-helper:
   - improve tests

  gpusvm:
   - introduce devmem only flag for allocation
   - add timeslicing support to GPU SVM

  ttm:
   - improve eviction

  sched:
   - tracing improvements
   - kunit improvements
   - memory leak fixes
   - reset handling improvements

  color mgmt:
   - add hardware gamma LUT handling helpers

  bridge:
   - add destroy hook
   - switch to reference counted drm_bridge allocations
   - tc358767: convert to devm_drm_bridge_alloc
   - improve CEC handling

  panel:
   - switch to reference counter drm_panel allocations
   - fwnode panel lookup
   - Huiling hl055fhv028c support
   - Raspberry Pi 7" 720x1280 support
   - edp: KDC KD116N3730A05, N160JCE-ELL CMN, N116BCJ-EAK
   - simple: AUO P238HAN01
   - st7701: Winstar wf40eswaa6mnn0
   - visionox: rm69299-shift
   - Renesas R61307, Renesas R69328 support
   - DJN HX83112B

  hdmi:
   - add CEC handling
   - YUV420 output support

  xe:
   - WildCat Lake support
   - Enable PanthorLake by default
   - mark BMG as SRIOV capable
   - update firmware recommendations
   - Expose media OA units
   - aux-bux support for non-volatile memory
   - MTD intel-dg driver for non-volatile memory
   - Expose fan control and voltage regulator in sysfs
   - restructure migration for multi-device
   - Restore GuC submit UAF fix
   - make GEM shrinker drm managed
   - SRIOV VF Post-migration recovery of GGTT nodes
   - W/A additions/reworks
   - Prefetch support for svm ranges
   - Don't allocate managed BO for each policy change
   - HWMON fixes for BMG
   - Create LRC BO without VM
   - PCI ID updates
   - make SLPC debugfs files optional
   - rework eviction rejection of bound external BOs
   - consolidate PAT programming logic for pre/post Xe2
   - init changes for flicker-free boot
   - Enable GuC Dynamic Inhibit Context switch

  i915:
   - drm_panic support for i915/xe
   - initial flip queue off by default for LNL/PNL
   - Wildcat Lake Display support
   - Support for DSC fractional link bpp
   - Support for simultaneous Panel Replay and Adaptive sync
   - Support for PTL+ double buffer LUT
   - initial PIPEDMC event handling
   - drm_panel_follower support
   - DPLL interface renames
   - allocate struct intel_display dynamically
   - flip queue preperation
   - abstract DRAM detection better
   - avoid GuC scheduling stalls
   - remove DG1 force probe requirement
   - fix MEI interrupt handler on RT kernels
   - use backlight control helpers for eDP
   - more shared display code refactoring

  amdgpu:
   - add userq slot to INFO ioctl
   - SR-IOV hibernation support
   - Suspend improvements
   - Backlight improvements
   - Use scaling for non-native eDP modes
   - cleaner shader updates for GC 9.x
   - Remove fence slab
   - SDMA fw checks for userq support
   - RAS updates
   - DMCUB updates
   - DP tunneling fixes
   - Display idle D3 support
   - Per queue reset improvements
   - initial smartmux support

  amdkfd:
   - enable KFD on loongarch
   - mtype fix for ext coherent system memory

  radeon:
   - CS validation additional GL extensions
   - drop console lock during suspend/resume
   - bump driver version

  msm:
   - VM BIND support
   - CI: infrastructure updates
   - UBWC single source of truth
   - decouple GPU and KMS support
   - DP: rework I/O accessors
   - DPU: SM8750 support
   - DSI: SM8750 support
   - GPU: X1-45 support and speedbin support for X1-85
   - MDSS: SM8750 support

  nova:
   - register! macro improvements
   - DMA object abstraction
   - VBIOS parser + fwsec lookup
   - sysmem flush page support
   - falcon: generic falcon boot code and HAL
   - FWSEC-FRTS: fb setup and load/execute

  ivpu:
   - Add Wildcat Lake support
   - Add turbo flag

  ast:
   - improve hardware generations implementation

  imx:
   - IMX8qxq Display Controller support

  lima:
   - Rockchip RK3528 GPU support

  nouveau:
   - fence handling cleanup

  panfrost:
   - MT8370 support
   - bo labeling
   - 64-bit register access

  qaic:
   - add RAS support

  rockchip:
   - convert inno_hdmi to a bridge

  rz-du:
   - add RZ/V2H(P) support
   - MIPI-DSI DCS support

  sitronix:
   - ST7567 support

  sun4i:
   - add H616 support

  tidss:
   - add TI AM62L support
   - AM65x OLDI bridge support

  bochs:
   - drm panic support

  vkms:
   - YUV and R* format support
   - use faux device

  vmwgfx:
   - fence improvements

  hyperv:
   - move out of simple
   - add drm_panic support"

* tag 'drm-next-2025-07-30' of https://gitlab.freedesktop.org/drm/kernel: (1479 commits)
  drm/tidss: oldi: convert to devm_drm_bridge_alloc() API
  drm/tidss: encoder: convert to devm_drm_bridge_alloc()
  drm/amdgpu: move reset support type checks into the caller
  drm/amdgpu/sdma7: re-emit unprocessed state on ring reset
  drm/amdgpu/sdma6: re-emit unprocessed state on ring reset
  drm/amdgpu/sdma5.2: re-emit unprocessed state on ring reset
  drm/amdgpu/sdma5: re-emit unprocessed state on ring reset
  drm/amdgpu/gfx12: re-emit unprocessed state on ring reset
  drm/amdgpu/gfx11: re-emit unprocessed state on ring reset
  drm/amdgpu/gfx10: re-emit unprocessed state on ring reset
  drm/amdgpu/gfx9.4.3: re-emit unprocessed state on kcq reset
  drm/amdgpu/gfx9: re-emit unprocessed state on kcq reset
  drm/amdgpu: Add WARN_ON to the resource clear function
  drm/amd/pm: Use cached metrics data on SMUv13.0.6
  drm/amd/pm: Use cached data for min/max clocks
  gpu: nova-core: fix bounds check in PmuLookupTableEntry::new
  drm/amdgpu: Replace HQD terminology with slots naming
  drm/amdgpu: Add user queue instance count in HW IP info
  drm/amd/amdgpu: Add helper functions for isp buffers
  drm/amd/amdgpu: Initialize swnode for ISP MFD device
  ...
2025-07-30 19:26:49 -07:00

8324 lines
245 KiB
C

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/dma-resv.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_dp_tunnel.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_fixed.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
#include <drm/drm_vblank.h>
#include "g4x_dp.h"
#include "g4x_hdmi.h"
#include "hsw_ips.h"
#include "i915_config.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "i915_utils.h"
#include "i9xx_plane.h"
#include "i9xx_plane_regs.h"
#include "i9xx_wm.h"
#include "intel_alpm.h"
#include "intel_atomic.h"
#include "intel_audio.h"
#include "intel_bo.h"
#include "intel_bw.h"
#include "intel_cdclk.h"
#include "intel_clock_gating.h"
#include "intel_color.h"
#include "intel_crt.h"
#include "intel_crtc.h"
#include "intel_crtc_state_dump.h"
#include "intel_cursor.h"
#include "intel_cursor_regs.h"
#include "intel_cx0_phy.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display_driver.h"
#include "intel_display_power.h"
#include "intel_display_regs.h"
#include "intel_display_rpm.h"
#include "intel_display_types.h"
#include "intel_dmc.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#include "intel_dp_mst.h"
#include "intel_dp_tunnel.h"
#include "intel_dpll.h"
#include "intel_dpll_mgr.h"
#include "intel_dpt.h"
#include "intel_dpt_common.h"
#include "intel_drrs.h"
#include "intel_dsb.h"
#include "intel_dsi.h"
#include "intel_dvo.h"
#include "intel_fb.h"
#include "intel_fbc.h"
#include "intel_fdi.h"
#include "intel_fifo_underrun.h"
#include "intel_flipq.h"
#include "intel_frontbuffer.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_link_bw.h"
#include "intel_lvds.h"
#include "intel_lvds_regs.h"
#include "intel_modeset_setup.h"
#include "intel_modeset_verify.h"
#include "intel_overlay.h"
#include "intel_panel.h"
#include "intel_pch_display.h"
#include "intel_pch_refclk.h"
#include "intel_pfit.h"
#include "intel_pipe_crc.h"
#include "intel_plane.h"
#include "intel_plane_initial.h"
#include "intel_pmdemand.h"
#include "intel_pps.h"
#include "intel_psr.h"
#include "intel_psr_regs.h"
#include "intel_sdvo.h"
#include "intel_snps_phy.h"
#include "intel_tc.h"
#include "intel_tdf.h"
#include "intel_tv.h"
#include "intel_vblank.h"
#include "intel_vdsc.h"
#include "intel_vdsc_regs.h"
#include "intel_vga.h"
#include "intel_vrr.h"
#include "intel_wm.h"
#include "skl_scaler.h"
#include "skl_universal_plane.h"
#include "skl_watermark.h"
#include "vlv_dpio_phy_regs.h"
#include "vlv_dsi.h"
#include "vlv_dsi_pll.h"
#include "vlv_dsi_regs.h"
#include "vlv_sideband.h"
static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state);
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
static void hsw_set_transconf(const struct intel_crtc_state *crtc_state);
static void bdw_set_pipe_misc(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state);
/* returns HPLL frequency in kHz */
int vlv_get_hpll_vco(struct drm_device *drm)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
/* Obtain SKU information */
hpll_freq = vlv_cck_read(drm, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
return vco_freq[hpll_freq] * 1000;
}
int vlv_get_cck_clock(struct drm_device *drm,
const char *name, u32 reg, int ref_freq)
{
u32 val;
int divider;
val = vlv_cck_read(drm, reg);
divider = val & CCK_FREQUENCY_VALUES;
drm_WARN(drm, (val & CCK_FREQUENCY_STATUS) !=
(divider << CCK_FREQUENCY_STATUS_SHIFT),
"%s change in progress\n", name);
return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
}
int vlv_get_cck_clock_hpll(struct drm_device *drm,
const char *name, u32 reg)
{
struct drm_i915_private *dev_priv = to_i915(drm);
int hpll;
vlv_cck_get(drm);
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = vlv_get_hpll_vco(drm);
hpll = vlv_get_cck_clock(drm, name, reg, dev_priv->hpll_freq);
vlv_cck_put(drm);
return hpll;
}
void intel_update_czclk(struct intel_display *display)
{
struct drm_i915_private *dev_priv = to_i915(display->drm);
if (!display->platform.valleyview && !display->platform.cherryview)
return;
dev_priv->czclk_freq = vlv_get_cck_clock_hpll(display->drm, "czclk",
CCK_CZ_CLOCK_CONTROL);
drm_dbg_kms(display->drm, "CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
}
static bool is_hdr_mode(const struct intel_crtc_state *crtc_state)
{
return (crtc_state->active_planes &
~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0;
}
/* WA Display #0827: Gen9:all */
static void
skl_wa_827(struct intel_display *display, enum pipe pipe, bool enable)
{
intel_de_rmw(display, CLKGATE_DIS_PSL(pipe),
DUPS1_GATING_DIS | DUPS2_GATING_DIS,
enable ? DUPS1_GATING_DIS | DUPS2_GATING_DIS : 0);
}
/* Wa_2006604312:icl,ehl */
static void
icl_wa_scalerclkgating(struct intel_display *display, enum pipe pipe,
bool enable)
{
intel_de_rmw(display, CLKGATE_DIS_PSL(pipe),
DPFR_GATING_DIS,
enable ? DPFR_GATING_DIS : 0);
}
/* Wa_1604331009:icl,jsl,ehl */
static void
icl_wa_cursorclkgating(struct intel_display *display, enum pipe pipe,
bool enable)
{
intel_de_rmw(display, CLKGATE_DIS_PSL(pipe),
CURSOR_GATING_DIS,
enable ? CURSOR_GATING_DIS : 0);
}
static bool
is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
{
return crtc_state->master_transcoder != INVALID_TRANSCODER;
}
bool
is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
{
return crtc_state->sync_mode_slaves_mask != 0;
}
bool
is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
{
return is_trans_port_sync_master(crtc_state) ||
is_trans_port_sync_slave(crtc_state);
}
static enum pipe joiner_primary_pipe(const struct intel_crtc_state *crtc_state)
{
return ffs(crtc_state->joiner_pipes) - 1;
}
/*
* The following helper functions, despite being named for bigjoiner,
* are applicable to both bigjoiner and uncompressed joiner configurations.
*/
static bool is_bigjoiner(const struct intel_crtc_state *crtc_state)
{
return hweight8(crtc_state->joiner_pipes) >= 2;
}
static u8 bigjoiner_primary_pipes(const struct intel_crtc_state *crtc_state)
{
if (!is_bigjoiner(crtc_state))
return 0;
return crtc_state->joiner_pipes & (0b01010101 << joiner_primary_pipe(crtc_state));
}
static unsigned int bigjoiner_secondary_pipes(const struct intel_crtc_state *crtc_state)
{
if (!is_bigjoiner(crtc_state))
return 0;
return crtc_state->joiner_pipes & (0b10101010 << joiner_primary_pipe(crtc_state));
}
bool intel_crtc_is_bigjoiner_primary(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!is_bigjoiner(crtc_state))
return false;
return BIT(crtc->pipe) & bigjoiner_primary_pipes(crtc_state);
}
bool intel_crtc_is_bigjoiner_secondary(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!is_bigjoiner(crtc_state))
return false;
return BIT(crtc->pipe) & bigjoiner_secondary_pipes(crtc_state);
}
u8 _intel_modeset_primary_pipes(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!is_bigjoiner(crtc_state))
return BIT(crtc->pipe);
return bigjoiner_primary_pipes(crtc_state);
}
u8 _intel_modeset_secondary_pipes(const struct intel_crtc_state *crtc_state)
{
return bigjoiner_secondary_pipes(crtc_state);
}
bool intel_crtc_is_ultrajoiner(const struct intel_crtc_state *crtc_state)
{
return intel_crtc_num_joined_pipes(crtc_state) >= 4;
}
static u8 ultrajoiner_primary_pipes(const struct intel_crtc_state *crtc_state)
{
if (!intel_crtc_is_ultrajoiner(crtc_state))
return 0;
return crtc_state->joiner_pipes & (0b00010001 << joiner_primary_pipe(crtc_state));
}
bool intel_crtc_is_ultrajoiner_primary(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return intel_crtc_is_ultrajoiner(crtc_state) &&
BIT(crtc->pipe) & ultrajoiner_primary_pipes(crtc_state);
}
/*
* The ultrajoiner enable bit doesn't seem to follow primary/secondary logic or
* any other logic, so lets just add helper function to
* at least hide this hassle..
*/
static u8 ultrajoiner_enable_pipes(const struct intel_crtc_state *crtc_state)
{
if (!intel_crtc_is_ultrajoiner(crtc_state))
return 0;
return crtc_state->joiner_pipes & (0b01110111 << joiner_primary_pipe(crtc_state));
}
bool intel_crtc_ultrajoiner_enable_needed(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return intel_crtc_is_ultrajoiner(crtc_state) &&
BIT(crtc->pipe) & ultrajoiner_enable_pipes(crtc_state);
}
u8 intel_crtc_joiner_secondary_pipes(const struct intel_crtc_state *crtc_state)
{
if (crtc_state->joiner_pipes)
return crtc_state->joiner_pipes & ~BIT(joiner_primary_pipe(crtc_state));
else
return 0;
}
bool intel_crtc_is_joiner_secondary(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return crtc_state->joiner_pipes &&
crtc->pipe != joiner_primary_pipe(crtc_state);
}
bool intel_crtc_is_joiner_primary(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return crtc_state->joiner_pipes &&
crtc->pipe == joiner_primary_pipe(crtc_state);
}
int intel_crtc_num_joined_pipes(const struct intel_crtc_state *crtc_state)
{
return hweight8(intel_crtc_joined_pipe_mask(crtc_state));
}
u8 intel_crtc_joined_pipe_mask(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
return BIT(crtc->pipe) | crtc_state->joiner_pipes;
}
struct intel_crtc *intel_primary_crtc(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (intel_crtc_is_joiner_secondary(crtc_state))
return intel_crtc_for_pipe(display, joiner_primary_pipe(crtc_state));
else
return to_intel_crtc(crtc_state->uapi.crtc);
}
static void
intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
if (DISPLAY_VER(display) >= 4) {
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
/* Wait for the Pipe State to go off */
if (intel_de_wait_for_clear(display, TRANSCONF(display, cpu_transcoder),
TRANSCONF_STATE_ENABLE, 100))
drm_WARN(display->drm, 1, "pipe_off wait timed out\n");
} else {
intel_wait_for_pipe_scanline_stopped(crtc);
}
}
void assert_transcoder(struct intel_display *display,
enum transcoder cpu_transcoder, bool state)
{
bool cur_state;
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
/* we keep both pipes enabled on 830 */
if (display->platform.i830)
state = true;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
wakeref = intel_display_power_get_if_enabled(display, power_domain);
if (wakeref) {
u32 val = intel_de_read(display,
TRANSCONF(display, cpu_transcoder));
cur_state = !!(val & TRANSCONF_ENABLE);
intel_display_power_put(display, power_domain, wakeref);
} else {
cur_state = false;
}
INTEL_DISPLAY_STATE_WARN(display, cur_state != state,
"transcoder %s assertion failure (expected %s, current %s)\n",
transcoder_name(cpu_transcoder), str_on_off(state),
str_on_off(cur_state));
}
static void assert_plane(struct intel_plane *plane, bool state)
{
struct intel_display *display = to_intel_display(plane->base.dev);
enum pipe pipe;
bool cur_state;
cur_state = plane->get_hw_state(plane, &pipe);
INTEL_DISPLAY_STATE_WARN(display, cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
plane->base.name, str_on_off(state),
str_on_off(cur_state));
}
#define assert_plane_enabled(p) assert_plane(p, true)
#define assert_plane_disabled(p) assert_plane(p, false)
static void assert_planes_disabled(struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(display->drm, crtc, plane)
assert_plane_disabled(plane);
}
void intel_enable_transcoder(const struct intel_crtc_state *new_crtc_state)
{
struct intel_display *display = to_intel_display(new_crtc_state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
u32 val;
drm_dbg_kms(display->drm, "enabling pipe %c\n", pipe_name(pipe));
assert_planes_disabled(crtc);
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (HAS_GMCH(display)) {
if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(display);
else
assert_pll_enabled(display, pipe);
} else {
if (new_crtc_state->has_pch_encoder) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(display,
intel_crtc_pch_transcoder(crtc));
assert_fdi_tx_pll_enabled(display,
(enum pipe) cpu_transcoder);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
/* Wa_22012358565:adl-p */
if (DISPLAY_VER(display) == 13)
intel_de_rmw(display, PIPE_ARB_CTL(display, pipe),
0, PIPE_ARB_USE_PROG_SLOTS);
if (DISPLAY_VER(display) >= 14) {
u32 clear = DP_DSC_INSERT_SF_AT_EOL_WA;
u32 set = 0;
if (DISPLAY_VER(display) == 14)
set |= DP_FEC_BS_JITTER_WA;
intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder),
clear, set);
}
val = intel_de_read(display, TRANSCONF(display, cpu_transcoder));
if (val & TRANSCONF_ENABLE) {
/* we keep both pipes enabled on 830 */
drm_WARN_ON(display->drm, !display->platform.i830);
return;
}
/* Wa_1409098942:adlp+ */
if (DISPLAY_VER(display) >= 13 &&
new_crtc_state->dsc.compression_enable) {
val &= ~TRANSCONF_PIXEL_COUNT_SCALING_MASK;
val |= REG_FIELD_PREP(TRANSCONF_PIXEL_COUNT_SCALING_MASK,
TRANSCONF_PIXEL_COUNT_SCALING_X4);
}
intel_de_write(display, TRANSCONF(display, cpu_transcoder),
val | TRANSCONF_ENABLE);
intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder));
/*
* Until the pipe starts PIPEDSL reads will return a stale value,
* which causes an apparent vblank timestamp jump when PIPEDSL
* resets to its proper value. That also messes up the frame count
* when it's derived from the timestamps. So let's wait for the
* pipe to start properly before we call drm_crtc_vblank_on()
*/
if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
intel_wait_for_pipe_scanline_moving(crtc);
}
void intel_disable_transcoder(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
enum pipe pipe = crtc->pipe;
u32 val;
drm_dbg_kms(display->drm, "disabling pipe %c\n", pipe_name(pipe));
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(crtc);
val = intel_de_read(display, TRANSCONF(display, cpu_transcoder));
if ((val & TRANSCONF_ENABLE) == 0)
return;
/*
* Double wide has implications for planes
* so best keep it disabled when not needed.
*/
if (old_crtc_state->double_wide)
val &= ~TRANSCONF_DOUBLE_WIDE;
/* Don't disable pipe or pipe PLLs if needed */
if (!display->platform.i830)
val &= ~TRANSCONF_ENABLE;
/* Wa_1409098942:adlp+ */
if (DISPLAY_VER(display) >= 13 &&
old_crtc_state->dsc.compression_enable)
val &= ~TRANSCONF_PIXEL_COUNT_SCALING_MASK;
intel_de_write(display, TRANSCONF(display, cpu_transcoder), val);
if (DISPLAY_VER(display) >= 12)
intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder),
FECSTALL_DIS_DPTSTREAM_DPTTG, 0);
if ((val & TRANSCONF_ENABLE) == 0)
intel_wait_for_pipe_off(old_crtc_state);
}
u32 intel_plane_fb_max_stride(struct drm_device *drm,
u32 pixel_format, u64 modifier)
{
struct intel_display *display = to_intel_display(drm);
struct intel_crtc *crtc;
struct intel_plane *plane;
if (!HAS_DISPLAY(display))
return 0;
/*
* We assume the primary plane for pipe A has
* the highest stride limits of them all,
* if in case pipe A is disabled, use the first pipe from pipe_mask.
*/
crtc = intel_first_crtc(display);
if (!crtc)
return 0;
plane = to_intel_plane(crtc->base.primary);
return plane->max_stride(plane, pixel_format, modifier,
DRM_MODE_ROTATE_0);
}
void intel_set_plane_visible(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state,
bool visible)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
plane_state->uapi.visible = visible;
if (visible)
crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
else
crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
}
void intel_plane_fixup_bitmasks(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct drm_plane *plane;
/*
* Active_planes aliases if multiple "primary" or cursor planes
* have been used on the same (or wrong) pipe. plane_mask uses
* unique ids, hence we can use that to reconstruct active_planes.
*/
crtc_state->enabled_planes = 0;
crtc_state->active_planes = 0;
drm_for_each_plane_mask(plane, display->drm,
crtc_state->uapi.plane_mask) {
crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id);
crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
}
}
void intel_plane_disable_noatomic(struct intel_crtc *crtc,
struct intel_plane *plane)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
drm_dbg_kms(display->drm,
"Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
plane->base.base.id, plane->base.name,
crtc->base.base.id, crtc->base.name);
intel_plane_set_invisible(crtc_state, plane_state);
intel_set_plane_visible(crtc_state, plane_state, false);
intel_plane_fixup_bitmasks(crtc_state);
skl_wm_plane_disable_noatomic(crtc, plane);
if ((crtc_state->active_planes & ~BIT(PLANE_CURSOR)) == 0 &&
hsw_ips_disable(crtc_state)) {
crtc_state->ips_enabled = false;
intel_plane_initial_vblank_wait(crtc);
}
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH(display) &&
intel_set_memory_cxsr(display, false))
intel_plane_initial_vblank_wait(crtc);
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So disable underrun reporting before all the planes get disabled.
*/
if (DISPLAY_VER(display) == 2 && !crtc_state->active_planes)
intel_set_cpu_fifo_underrun_reporting(display, crtc->pipe, false);
intel_plane_disable_arm(NULL, plane, crtc_state);
intel_plane_initial_vblank_wait(crtc);
}
unsigned int
intel_plane_fence_y_offset(const struct intel_plane_state *plane_state)
{
int x = 0, y = 0;
intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
plane_state->view.color_plane[0].offset, 0);
return y;
}
static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
u32 tmp;
tmp = intel_de_read(display, PIPE_CHICKEN(pipe));
/*
* Display WA #1153: icl
* enable hardware to bypass the alpha math
* and rounding for per-pixel values 00 and 0xff
*/
tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
/*
* Display WA # 1605353570: icl
* Set the pixel rounding bit to 1 for allowing
* passthrough of Frame buffer pixels unmodified
* across pipe
*/
tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
/*
* Underrun recovery must always be disabled on display 13+.
* DG2 chicken bit meaning is inverted compared to other platforms.
*/
if (display->platform.dg2)
tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2;
else if ((DISPLAY_VER(display) >= 13) && (DISPLAY_VER(display) < 30))
tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP;
/* Wa_14010547955:dg2 */
if (display->platform.dg2)
tmp |= DG2_RENDER_CCSTAG_4_3_EN;
intel_de_write(display, PIPE_CHICKEN(pipe), tmp);
}
bool intel_has_pending_fb_unpin(struct intel_display *display)
{
struct drm_crtc *crtc;
bool cleanup_done;
drm_for_each_crtc(crtc, display->drm) {
struct drm_crtc_commit *commit;
spin_lock(&crtc->commit_lock);
commit = list_first_entry_or_null(&crtc->commit_list,
struct drm_crtc_commit, commit_entry);
cleanup_done = commit ?
try_wait_for_completion(&commit->cleanup_done) : true;
spin_unlock(&crtc->commit_lock);
if (cleanup_done)
continue;
intel_crtc_wait_for_next_vblank(to_intel_crtc(crtc));
return true;
}
return false;
}
/*
* Finds the encoder associated with the given CRTC. This can only be
* used when we know that the CRTC isn't feeding multiple encoders!
*/
struct intel_encoder *
intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
const struct intel_crtc_state *crtc_state)
{
const struct drm_connector_state *connector_state;
const struct drm_connector *connector;
struct intel_encoder *encoder = NULL;
struct intel_crtc *primary_crtc;
int num_encoders = 0;
int i;
primary_crtc = intel_primary_crtc(crtc_state);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &primary_crtc->base)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
drm_WARN(state->base.dev, num_encoders != 1,
"%d encoders for pipe %c\n",
num_encoders, pipe_name(primary_crtc->pipe));
return encoder;
}
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc)
{
if (crtc->overlay)
(void) intel_overlay_switch_off(crtc->overlay);
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (!crtc_state->nv12_planes)
return false;
/* WA Display #0827: Gen9:all */
if (DISPLAY_VER(display) == 9)
return true;
return false;
}
static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
/* Wa_2006604312:icl,ehl */
if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(display) == 11)
return true;
return false;
}
static bool needs_cursorclk_wa(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
/* Wa_1604331009:icl,jsl,ehl */
if (is_hdr_mode(crtc_state) &&
crtc_state->active_planes & BIT(PLANE_CURSOR) &&
DISPLAY_VER(display) == 11)
return true;
return false;
}
static void intel_async_flip_vtd_wa(struct intel_display *display,
enum pipe pipe, bool enable)
{
if (DISPLAY_VER(display) == 9) {
/*
* "Plane N stretch max must be programmed to 11b (x1)
* when Async flips are enabled on that plane."
*/
intel_de_rmw(display, CHICKEN_PIPESL_1(pipe),
SKL_PLANE1_STRETCH_MAX_MASK,
enable ? SKL_PLANE1_STRETCH_MAX_X1 : SKL_PLANE1_STRETCH_MAX_X8);
} else {
/* Also needed on HSW/BDW albeit undocumented */
intel_de_rmw(display, CHICKEN_PIPESL_1(pipe),
HSW_PRI_STRETCH_MAX_MASK,
enable ? HSW_PRI_STRETCH_MAX_X1 : HSW_PRI_STRETCH_MAX_X8);
}
}
static bool needs_async_flip_vtd_wa(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
return crtc_state->uapi.async_flip && i915_vtd_active(i915) &&
(DISPLAY_VER(display) == 9 || display->platform.broadwell ||
display->platform.haswell);
}
static void intel_encoders_audio_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->audio_enable)
encoder->audio_enable(encoder, crtc_state, conn_state);
}
}
static void intel_encoders_audio_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->audio_disable)
encoder->audio_disable(encoder, old_crtc_state, old_conn_state);
}
}
#define is_enabling(feature, old_crtc_state, new_crtc_state) \
((!(old_crtc_state)->feature || intel_crtc_needs_modeset(new_crtc_state)) && \
(new_crtc_state)->feature)
#define is_disabling(feature, old_crtc_state, new_crtc_state) \
((old_crtc_state)->feature && \
(!(new_crtc_state)->feature || intel_crtc_needs_modeset(new_crtc_state)))
static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
if (!new_crtc_state->hw.active)
return false;
return is_enabling(active_planes, old_crtc_state, new_crtc_state);
}
static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
if (!old_crtc_state->hw.active)
return false;
return is_disabling(active_planes, old_crtc_state, new_crtc_state);
}
static bool vrr_params_changed(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return old_crtc_state->vrr.flipline != new_crtc_state->vrr.flipline ||
old_crtc_state->vrr.vmin != new_crtc_state->vrr.vmin ||
old_crtc_state->vrr.vmax != new_crtc_state->vrr.vmax ||
old_crtc_state->vrr.guardband != new_crtc_state->vrr.guardband ||
old_crtc_state->vrr.pipeline_full != new_crtc_state->vrr.pipeline_full ||
old_crtc_state->vrr.vsync_start != new_crtc_state->vrr.vsync_start ||
old_crtc_state->vrr.vsync_end != new_crtc_state->vrr.vsync_end;
}
static bool cmrr_params_changed(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
return old_crtc_state->cmrr.cmrr_m != new_crtc_state->cmrr.cmrr_m ||
old_crtc_state->cmrr.cmrr_n != new_crtc_state->cmrr.cmrr_n;
}
static bool intel_crtc_vrr_enabling(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->hw.active)
return false;
return is_enabling(vrr.enable, old_crtc_state, new_crtc_state) ||
(new_crtc_state->vrr.enable &&
(new_crtc_state->update_m_n || new_crtc_state->update_lrr ||
vrr_params_changed(old_crtc_state, new_crtc_state)));
}
bool intel_crtc_vrr_disabling(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!old_crtc_state->hw.active)
return false;
return is_disabling(vrr.enable, old_crtc_state, new_crtc_state) ||
(old_crtc_state->vrr.enable &&
(new_crtc_state->update_m_n || new_crtc_state->update_lrr ||
vrr_params_changed(old_crtc_state, new_crtc_state)));
}
static bool audio_enabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
if (!new_crtc_state->hw.active)
return false;
return is_enabling(has_audio, old_crtc_state, new_crtc_state) ||
(new_crtc_state->has_audio &&
memcmp(old_crtc_state->eld, new_crtc_state->eld, MAX_ELD_BYTES) != 0);
}
static bool audio_disabling(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
if (!old_crtc_state->hw.active)
return false;
return is_disabling(has_audio, old_crtc_state, new_crtc_state) ||
(old_crtc_state->has_audio &&
memcmp(old_crtc_state->eld, new_crtc_state->eld, MAX_ELD_BYTES) != 0);
}
#undef is_disabling
#undef is_enabling
static void intel_post_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
intel_frontbuffer_flip(display, new_crtc_state->fb_bits);
if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
intel_update_watermarks(display);
intel_fbc_post_update(state, crtc);
if (needs_async_flip_vtd_wa(old_crtc_state) &&
!needs_async_flip_vtd_wa(new_crtc_state))
intel_async_flip_vtd_wa(display, pipe, false);
if (needs_nv12_wa(old_crtc_state) &&
!needs_nv12_wa(new_crtc_state))
skl_wa_827(display, pipe, false);
if (needs_scalerclk_wa(old_crtc_state) &&
!needs_scalerclk_wa(new_crtc_state))
icl_wa_scalerclkgating(display, pipe, false);
if (needs_cursorclk_wa(old_crtc_state) &&
!needs_cursorclk_wa(new_crtc_state))
icl_wa_cursorclkgating(display, pipe, false);
if (intel_crtc_needs_color_update(new_crtc_state))
intel_color_post_update(new_crtc_state);
if (audio_enabling(old_crtc_state, new_crtc_state))
intel_encoders_audio_enable(state, crtc);
intel_alpm_post_plane_update(state, crtc);
intel_psr_post_plane_update(state, crtc);
}
static void intel_post_plane_update_after_readout(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
/* Must be done after gamma readout due to HSW split gamma vs. IPS w/a */
hsw_ips_post_update(state, crtc);
/*
* Activate DRRS after state readout to avoid
* dp_m_n vs. dp_m2_n2 confusion on BDW+.
*/
intel_drrs_activate(new_crtc_state);
}
static void intel_crtc_enable_flip_done(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = crtc_state->update_planes;
const struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id))
plane->enable_flip_done(plane);
}
}
static void intel_crtc_disable_flip_done(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 update_planes = crtc_state->update_planes;
const struct intel_plane_state __maybe_unused *plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe == crtc->pipe &&
update_planes & BIT(plane->id))
plane->disable_flip_done(plane);
}
}
static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u8 disable_async_flip_planes = old_crtc_state->async_flip_planes &
~new_crtc_state->async_flip_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
bool need_vbl_wait = false;
int i;
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (plane->need_async_flip_toggle_wa &&
plane->pipe == crtc->pipe &&
disable_async_flip_planes & BIT(plane->id)) {
/*
* Apart from the async flip bit we want to
* preserve the old state for the plane.
*/
intel_plane_async_flip(NULL, plane,
old_crtc_state, old_plane_state, false);
need_vbl_wait = true;
}
}
if (need_vbl_wait)
intel_crtc_wait_for_next_vblank(crtc);
}
static void intel_pre_plane_update(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
intel_alpm_pre_plane_update(state, crtc);
intel_psr_pre_plane_update(state, crtc);
if (intel_crtc_vrr_disabling(state, crtc)) {
intel_vrr_disable(old_crtc_state);
intel_crtc_update_active_timings(old_crtc_state, false);
}
if (audio_disabling(old_crtc_state, new_crtc_state))
intel_encoders_audio_disable(state, crtc);
intel_drrs_deactivate(old_crtc_state);
if (hsw_ips_pre_update(state, crtc))
intel_crtc_wait_for_next_vblank(crtc);
if (intel_fbc_pre_update(state, crtc))
intel_crtc_wait_for_next_vblank(crtc);
if (!needs_async_flip_vtd_wa(old_crtc_state) &&
needs_async_flip_vtd_wa(new_crtc_state))
intel_async_flip_vtd_wa(display, pipe, true);
/* Display WA 827 */
if (!needs_nv12_wa(old_crtc_state) &&
needs_nv12_wa(new_crtc_state))
skl_wa_827(display, pipe, true);
/* Wa_2006604312:icl,ehl */
if (!needs_scalerclk_wa(old_crtc_state) &&
needs_scalerclk_wa(new_crtc_state))
icl_wa_scalerclkgating(display, pipe, true);
/* Wa_1604331009:icl,jsl,ehl */
if (!needs_cursorclk_wa(old_crtc_state) &&
needs_cursorclk_wa(new_crtc_state))
icl_wa_cursorclkgating(display, pipe, true);
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH(display) && old_crtc_state->hw.active &&
new_crtc_state->disable_cxsr && intel_set_memory_cxsr(display, false))
intel_crtc_wait_for_next_vblank(crtc);
/*
* IVB workaround: must disable low power watermarks for at least
* one frame before enabling scaling. LP watermarks can be re-enabled
* when scaling is disabled.
*
* WaCxSRDisabledForSpriteScaling:ivb
*/
if (!HAS_GMCH(display) && old_crtc_state->hw.active &&
new_crtc_state->disable_cxsr && ilk_disable_cxsr(display))
intel_crtc_wait_for_next_vblank(crtc);
/*
* If we're doing a modeset we don't need to do any
* pre-vblank watermark programming here.
*/
if (!intel_crtc_needs_modeset(new_crtc_state)) {
/*
* For platforms that support atomic watermarks, program the
* 'intermediate' watermarks immediately. On pre-gen9 platforms, these
* will be the intermediate values that are safe for both pre- and
* post- vblank; when vblank happens, the 'active' values will be set
* to the final 'target' values and we'll do this again to get the
* optimal watermarks. For gen9+ platforms, the values we program here
* will be the final target values which will get automatically latched
* at vblank time; no further programming will be necessary.
*
* If a platform hasn't been transitioned to atomic watermarks yet,
* we'll continue to update watermarks the old way, if flags tell
* us to.
*/
if (!intel_initial_watermarks(state, crtc))
if (new_crtc_state->update_wm_pre)
intel_update_watermarks(display);
}
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So disable underrun reporting before all the planes get disabled.
*
* We do this after .initial_watermarks() so that we have a
* chance of catching underruns with the intermediate watermarks
* vs. the old plane configuration.
*/
if (DISPLAY_VER(display) == 2 && planes_disabling(old_crtc_state, new_crtc_state))
intel_set_cpu_fifo_underrun_reporting(display, pipe, false);
/*
* WA for platforms where async address update enable bit
* is double buffered and only latched at start of vblank.
*/
if (old_crtc_state->async_flip_planes & ~new_crtc_state->async_flip_planes)
intel_crtc_async_flip_disable_wa(state, crtc);
}
static void intel_crtc_disable_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
unsigned int update_mask = new_crtc_state->update_planes;
const struct intel_plane_state *old_plane_state;
struct intel_plane *plane;
unsigned fb_bits = 0;
int i;
intel_crtc_dpms_overlay_disable(crtc);
for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
intel_plane_disable_arm(NULL, plane, new_crtc_state);
if (old_plane_state->uapi.visible)
fb_bits |= plane->frontbuffer_bit;
}
intel_frontbuffer_flip(display, fb_bits);
}
static void intel_encoders_update_prepare(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
int i;
/*
* Make sure the DPLL state is up-to-date for fastset TypeC ports after non-blocking commits.
* TODO: Update the DPLL state for all cases in the encoder->update_prepare() hook.
*/
if (display->dpll.mgr) {
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
if (intel_crtc_needs_modeset(new_crtc_state))
continue;
new_crtc_state->intel_dpll = old_crtc_state->intel_dpll;
new_crtc_state->dpll_hw_state = old_crtc_state->dpll_hw_state;
}
}
}
static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(state, encoder,
crtc_state, conn_state);
}
}
static void intel_encoders_pre_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->pre_enable)
encoder->pre_enable(state, encoder,
crtc_state, conn_state);
}
}
static void intel_encoders_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->enable)
encoder->enable(state, encoder,
crtc_state, conn_state);
intel_opregion_notify_encoder(encoder, true);
}
}
static void intel_encoders_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
intel_opregion_notify_encoder(encoder, false);
if (encoder->disable)
encoder->disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->post_disable)
encoder->post_disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct drm_connector_state *old_conn_state;
struct drm_connector *conn;
int i;
for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(old_conn_state->best_encoder);
if (old_conn_state->crtc != &crtc->base)
continue;
if (encoder->post_pll_disable)
encoder->post_pll_disable(state, encoder,
old_crtc_state, old_conn_state);
}
}
static void intel_encoders_update_pipe(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct drm_connector_state *conn_state;
struct drm_connector *conn;
int i;
for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
if (conn_state->crtc != &crtc->base)
continue;
if (encoder->update_pipe)
encoder->update_pipe(state, encoder,
crtc_state, conn_state);
}
}
static void ilk_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (crtc_state->has_pch_encoder) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->fdi_m_n);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
ilk_set_pipeconf(crtc_state);
}
static void ilk_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(display->drm, crtc->active))
return;
/*
* Sometimes spurious CPU pipe underruns happen during FDI
* training, at least with VGA+HDMI cloning. Suppress them.
*
* On ILK we get an occasional spurious CPU pipe underruns
* between eDP port A enable and vdd enable. Also PCH port
* enable seems to result in the occasional CPU pipe underrun.
*
* Spurious PCH underruns also occur during PCH enabling.
*/
intel_set_cpu_fifo_underrun_reporting(display, pipe, false);
intel_set_pch_fifo_underrun_reporting(display, pipe, false);
ilk_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
crtc->active = true;
intel_encoders_pre_enable(state, crtc);
if (new_crtc_state->has_pch_encoder) {
ilk_pch_pre_enable(state, crtc);
} else {
assert_fdi_tx_disabled(display, pipe);
assert_fdi_rx_disabled(display, pipe);
}
ilk_pfit_enable(new_crtc_state);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_color_modeset(new_crtc_state);
intel_initial_watermarks(state, crtc);
intel_enable_transcoder(new_crtc_state);
if (new_crtc_state->has_pch_encoder)
ilk_pch_enable(state, crtc);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
if (HAS_PCH_CPT(display))
intel_wait_for_pipe_scanline_moving(crtc);
/*
* Must wait for vblank to avoid spurious PCH FIFO underruns.
* And a second vblank wait is needed at least on ILK with
* some interlaced HDMI modes. Let's do the double wait always
* in case there are more corner cases we don't know about.
*/
if (new_crtc_state->has_pch_encoder) {
intel_crtc_wait_for_next_vblank(crtc);
intel_crtc_wait_for_next_vblank(crtc);
}
intel_set_cpu_fifo_underrun_reporting(display, pipe, true);
intel_set_pch_fifo_underrun_reporting(display, pipe, true);
}
/* Display WA #1180: WaDisableScalarClockGating: glk */
static bool glk_need_scaler_clock_gating_wa(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return DISPLAY_VER(display) == 10 && crtc_state->pch_pfit.enabled;
}
static void glk_pipe_scaler_clock_gating_wa(struct intel_crtc *crtc, bool enable)
{
struct intel_display *display = to_intel_display(crtc);
u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
intel_de_rmw(display, CLKGATE_DIS_PSL(crtc->pipe),
mask, enable ? mask : 0);
}
static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
intel_de_write(display, WM_LINETIME(crtc->pipe),
HSW_LINETIME(crtc_state->linetime) |
HSW_IPS_LINETIME(crtc_state->ips_linetime));
}
static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
intel_de_rmw(display, CHICKEN_TRANS(display, crtc_state->cpu_transcoder),
HSW_FRAME_START_DELAY_MASK,
HSW_FRAME_START_DELAY(crtc_state->framestart_delay - 1));
}
static void hsw_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (crtc_state->has_pch_encoder) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->fdi_m_n);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
if (HAS_VRR(display))
intel_vrr_set_transcoder_timings(crtc_state);
if (cpu_transcoder != TRANSCODER_EDP)
intel_de_write(display, TRANS_MULT(display, cpu_transcoder),
crtc_state->pixel_multiplier - 1);
hsw_set_frame_start_delay(crtc_state);
hsw_set_transconf(crtc_state);
}
static void hsw_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
struct intel_crtc *pipe_crtc;
int i;
if (drm_WARN_ON(display->drm, crtc->active))
return;
for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) {
const struct intel_crtc_state *new_pipe_crtc_state =
intel_atomic_get_new_crtc_state(state, pipe_crtc);
intel_dmc_enable_pipe(new_pipe_crtc_state);
}
intel_encoders_pre_pll_enable(state, crtc);
if (new_crtc_state->intel_dpll)
intel_dpll_enable(new_crtc_state);
intel_encoders_pre_enable(state, crtc);
for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) {
const struct intel_crtc_state *pipe_crtc_state =
intel_atomic_get_new_crtc_state(state, pipe_crtc);
intel_dsc_enable(pipe_crtc_state);
if (HAS_UNCOMPRESSED_JOINER(display))
intel_uncompressed_joiner_enable(pipe_crtc_state);
intel_set_pipe_src_size(pipe_crtc_state);
if (DISPLAY_VER(display) >= 9 || display->platform.broadwell)
bdw_set_pipe_misc(NULL, pipe_crtc_state);
}
if (!transcoder_is_dsi(cpu_transcoder))
hsw_configure_cpu_transcoder(new_crtc_state);
for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) {
const struct intel_crtc_state *pipe_crtc_state =
intel_atomic_get_new_crtc_state(state, pipe_crtc);
pipe_crtc->active = true;
if (glk_need_scaler_clock_gating_wa(pipe_crtc_state))
glk_pipe_scaler_clock_gating_wa(pipe_crtc, true);
if (DISPLAY_VER(display) >= 9)
skl_pfit_enable(pipe_crtc_state);
else
ilk_pfit_enable(pipe_crtc_state);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_color_modeset(pipe_crtc_state);
hsw_set_linetime_wm(pipe_crtc_state);
if (DISPLAY_VER(display) >= 11)
icl_set_pipe_chicken(pipe_crtc_state);
intel_initial_watermarks(state, pipe_crtc);
}
intel_encoders_enable(state, crtc);
for_each_pipe_crtc_modeset_enable(display, pipe_crtc, new_crtc_state, i) {
const struct intel_crtc_state *pipe_crtc_state =
intel_atomic_get_new_crtc_state(state, pipe_crtc);
enum pipe hsw_workaround_pipe;
if (glk_need_scaler_clock_gating_wa(pipe_crtc_state)) {
intel_crtc_wait_for_next_vblank(pipe_crtc);
glk_pipe_scaler_clock_gating_wa(pipe_crtc, false);
}
/*
* If we change the relative order between pipe/planes
* enabling, we need to change the workaround.
*/
hsw_workaround_pipe = pipe_crtc_state->hsw_workaround_pipe;
if (display->platform.haswell && hsw_workaround_pipe != INVALID_PIPE) {
struct intel_crtc *wa_crtc =
intel_crtc_for_pipe(display, hsw_workaround_pipe);
intel_crtc_wait_for_next_vblank(wa_crtc);
intel_crtc_wait_for_next_vblank(wa_crtc);
}
}
}
static void ilk_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
/*
* Sometimes spurious CPU pipe underruns happen when the
* pipe is already disabled, but FDI RX/TX is still enabled.
* Happens at least with VGA+HDMI cloning. Suppress them.
*/
intel_set_cpu_fifo_underrun_reporting(display, pipe, false);
intel_set_pch_fifo_underrun_reporting(display, pipe, false);
intel_encoders_disable(state, crtc);
intel_crtc_vblank_off(old_crtc_state);
intel_disable_transcoder(old_crtc_state);
ilk_pfit_disable(old_crtc_state);
if (old_crtc_state->has_pch_encoder)
ilk_pch_disable(state, crtc);
intel_encoders_post_disable(state, crtc);
if (old_crtc_state->has_pch_encoder)
ilk_pch_post_disable(state, crtc);
intel_set_cpu_fifo_underrun_reporting(display, pipe, true);
intel_set_pch_fifo_underrun_reporting(display, pipe, true);
}
static void hsw_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc *pipe_crtc;
int i;
/*
* FIXME collapse everything to one hook.
* Need care with mst->ddi interactions.
*/
intel_encoders_disable(state, crtc);
intel_encoders_post_disable(state, crtc);
intel_dpll_disable(old_crtc_state);
intel_encoders_post_pll_disable(state, crtc);
for_each_pipe_crtc_modeset_disable(display, pipe_crtc, old_crtc_state, i) {
const struct intel_crtc_state *old_pipe_crtc_state =
intel_atomic_get_old_crtc_state(state, pipe_crtc);
intel_dmc_disable_pipe(old_pipe_crtc_state);
}
}
/* Prefer intel_encoder_is_combo() */
bool intel_phy_is_combo(struct intel_display *display, enum phy phy)
{
if (phy == PHY_NONE)
return false;
else if (display->platform.alderlake_s)
return phy <= PHY_E;
else if (display->platform.dg1 || display->platform.rocketlake)
return phy <= PHY_D;
else if (display->platform.jasperlake || display->platform.elkhartlake)
return phy <= PHY_C;
else if (display->platform.alderlake_p || IS_DISPLAY_VER(display, 11, 12))
return phy <= PHY_B;
else
/*
* DG2 outputs labelled as "combo PHY" in the bspec use
* SNPS PHYs with completely different programming,
* hence we always return false here.
*/
return false;
}
/* Prefer intel_encoder_is_tc() */
bool intel_phy_is_tc(struct intel_display *display, enum phy phy)
{
/*
* Discrete GPU phy's are not attached to FIA's to support TC
* subsystem Legacy or non-legacy, and only support native DP/HDMI
*/
if (display->platform.dgfx)
return false;
if (DISPLAY_VER(display) >= 13)
return phy >= PHY_F && phy <= PHY_I;
else if (display->platform.tigerlake)
return phy >= PHY_D && phy <= PHY_I;
else if (display->platform.icelake)
return phy >= PHY_C && phy <= PHY_F;
return false;
}
/* Prefer intel_encoder_is_snps() */
bool intel_phy_is_snps(struct intel_display *display, enum phy phy)
{
/*
* For DG2, and for DG2 only, all four "combo" ports and the TC1 port
* (PHY E) use Synopsis PHYs. See intel_phy_is_tc().
*/
return display->platform.dg2 && phy > PHY_NONE && phy <= PHY_E;
}
/* Prefer intel_encoder_to_phy() */
enum phy intel_port_to_phy(struct intel_display *display, enum port port)
{
if (DISPLAY_VER(display) >= 13 && port >= PORT_D_XELPD)
return PHY_D + port - PORT_D_XELPD;
else if (DISPLAY_VER(display) >= 13 && port >= PORT_TC1)
return PHY_F + port - PORT_TC1;
else if (display->platform.alderlake_s && port >= PORT_TC1)
return PHY_B + port - PORT_TC1;
else if ((display->platform.dg1 || display->platform.rocketlake) && port >= PORT_TC1)
return PHY_C + port - PORT_TC1;
else if ((display->platform.jasperlake || display->platform.elkhartlake) &&
port == PORT_D)
return PHY_A;
return PHY_A + port - PORT_A;
}
/* Prefer intel_encoder_to_tc() */
enum tc_port intel_port_to_tc(struct intel_display *display, enum port port)
{
if (!intel_phy_is_tc(display, intel_port_to_phy(display, port)))
return TC_PORT_NONE;
if (DISPLAY_VER(display) >= 12)
return TC_PORT_1 + port - PORT_TC1;
else
return TC_PORT_1 + port - PORT_C;
}
enum phy intel_encoder_to_phy(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
return intel_port_to_phy(display, encoder->port);
}
bool intel_encoder_is_combo(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
return intel_phy_is_combo(display, intel_encoder_to_phy(encoder));
}
bool intel_encoder_is_snps(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
return intel_phy_is_snps(display, intel_encoder_to_phy(encoder));
}
bool intel_encoder_is_tc(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
return intel_phy_is_tc(display, intel_encoder_to_phy(encoder));
}
enum tc_port intel_encoder_to_tc(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
return intel_port_to_tc(display, encoder->port);
}
enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port *dig_port)
{
struct intel_display *display = to_intel_display(dig_port);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
return intel_display_power_tbt_aux_domain(display, dig_port->aux_ch);
return intel_display_power_legacy_aux_domain(display, dig_port->aux_ch);
}
static void get_crtc_power_domains(struct intel_crtc_state *crtc_state,
struct intel_power_domain_mask *mask)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
struct drm_encoder *encoder;
enum pipe pipe = crtc->pipe;
bitmap_zero(mask->bits, POWER_DOMAIN_NUM);
if (!crtc_state->hw.active)
return;
set_bit(POWER_DOMAIN_PIPE(pipe), mask->bits);
set_bit(POWER_DOMAIN_TRANSCODER(cpu_transcoder), mask->bits);
if (crtc_state->pch_pfit.enabled ||
crtc_state->pch_pfit.force_thru)
set_bit(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe), mask->bits);
drm_for_each_encoder_mask(encoder, display->drm,
crtc_state->uapi.encoder_mask) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
set_bit(intel_encoder->power_domain, mask->bits);
}
if (HAS_DDI(display) && crtc_state->has_audio)
set_bit(POWER_DOMAIN_AUDIO_MMIO, mask->bits);
if (crtc_state->intel_dpll)
set_bit(POWER_DOMAIN_DISPLAY_CORE, mask->bits);
if (crtc_state->dsc.compression_enable)
set_bit(intel_dsc_power_domain(crtc, cpu_transcoder), mask->bits);
}
void intel_modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state,
struct intel_power_domain_mask *old_domains)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum intel_display_power_domain domain;
struct intel_power_domain_mask domains, new_domains;
get_crtc_power_domains(crtc_state, &domains);
bitmap_andnot(new_domains.bits,
domains.bits,
crtc->enabled_power_domains.mask.bits,
POWER_DOMAIN_NUM);
bitmap_andnot(old_domains->bits,
crtc->enabled_power_domains.mask.bits,
domains.bits,
POWER_DOMAIN_NUM);
for_each_power_domain(domain, &new_domains)
intel_display_power_get_in_set(display,
&crtc->enabled_power_domains,
domain);
}
void intel_modeset_put_crtc_power_domains(struct intel_crtc *crtc,
struct intel_power_domain_mask *domains)
{
struct intel_display *display = to_intel_display(crtc);
intel_display_power_put_mask_in_set(display,
&crtc->enabled_power_domains,
domains);
}
static void i9xx_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (intel_crtc_has_dp_encoder(crtc_state)) {
intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder,
&crtc_state->dp_m_n);
intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder,
&crtc_state->dp_m2_n2);
}
intel_set_transcoder_timings(crtc_state);
i9xx_set_pipeconf(crtc_state);
}
static void valleyview_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(display->drm, crtc->active))
return;
i9xx_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
intel_de_write(display, VLV_PIPE_MSA_MISC(display, pipe), 0);
if (display->platform.cherryview && pipe == PIPE_B) {
intel_de_write(display, CHV_BLEND(display, pipe),
CHV_BLEND_LEGACY);
intel_de_write(display, CHV_CANVAS(display, pipe), 0);
}
crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(display, pipe, true);
intel_encoders_pre_pll_enable(state, crtc);
if (display->platform.cherryview)
chv_enable_pll(new_crtc_state);
else
vlv_enable_pll(new_crtc_state);
intel_encoders_pre_enable(state, crtc);
i9xx_pfit_enable(new_crtc_state);
intel_color_modeset(new_crtc_state);
intel_initial_watermarks(state, crtc);
intel_enable_transcoder(new_crtc_state);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
}
static void i9xx_crtc_enable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
if (drm_WARN_ON(display->drm, crtc->active))
return;
i9xx_configure_cpu_transcoder(new_crtc_state);
intel_set_pipe_src_size(new_crtc_state);
crtc->active = true;
if (DISPLAY_VER(display) != 2)
intel_set_cpu_fifo_underrun_reporting(display, pipe, true);
intel_encoders_pre_enable(state, crtc);
i9xx_enable_pll(new_crtc_state);
i9xx_pfit_enable(new_crtc_state);
intel_color_modeset(new_crtc_state);
if (!intel_initial_watermarks(state, crtc))
intel_update_watermarks(display);
intel_enable_transcoder(new_crtc_state);
intel_crtc_vblank_on(new_crtc_state);
intel_encoders_enable(state, crtc);
/* prevents spurious underruns */
if (DISPLAY_VER(display) == 2)
intel_crtc_wait_for_next_vblank(crtc);
}
static void i9xx_crtc_disable(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
enum pipe pipe = crtc->pipe;
/*
* On gen2 planes are double buffered but the pipe isn't, so we must
* wait for planes to fully turn off before disabling the pipe.
*/
if (DISPLAY_VER(display) == 2)
intel_crtc_wait_for_next_vblank(crtc);
intel_encoders_disable(state, crtc);
intel_crtc_vblank_off(old_crtc_state);
intel_disable_transcoder(old_crtc_state);
i9xx_pfit_disable(old_crtc_state);
intel_encoders_post_disable(state, crtc);
if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
if (display->platform.cherryview)
chv_disable_pll(display, pipe);
else if (display->platform.valleyview)
vlv_disable_pll(display, pipe);
else
i9xx_disable_pll(old_crtc_state);
}
intel_encoders_post_pll_disable(state, crtc);
if (DISPLAY_VER(display) != 2)
intel_set_cpu_fifo_underrun_reporting(display, pipe, false);
if (!display->funcs.wm->initial_watermarks)
intel_update_watermarks(display);
/* clock the pipe down to 640x480@60 to potentially save power */
if (display->platform.i830)
i830_enable_pipe(display, pipe);
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
/* GDG double wide on either pipe, otherwise pipe A only */
return HAS_DOUBLE_WIDE(display) &&
(crtc->pipe == PIPE_A || display->platform.i915g);
}
static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state)
{
u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock;
struct drm_rect src;
/*
* We only use IF-ID interlacing. If we ever use
* PF-ID we'll need to adjust the pixel_rate here.
*/
if (!crtc_state->pch_pfit.enabled)
return pixel_rate;
drm_rect_init(&src, 0, 0,
drm_rect_width(&crtc_state->pipe_src) << 16,
drm_rect_height(&crtc_state->pipe_src) << 16);
return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst,
pixel_rate);
}
static void intel_mode_from_crtc_timings(struct drm_display_mode *mode,
const struct drm_display_mode *timings)
{
mode->hdisplay = timings->crtc_hdisplay;
mode->htotal = timings->crtc_htotal;
mode->hsync_start = timings->crtc_hsync_start;
mode->hsync_end = timings->crtc_hsync_end;
mode->vdisplay = timings->crtc_vdisplay;
mode->vtotal = timings->crtc_vtotal;
mode->vsync_start = timings->crtc_vsync_start;
mode->vsync_end = timings->crtc_vsync_end;
mode->flags = timings->flags;
mode->type = DRM_MODE_TYPE_DRIVER;
mode->clock = timings->crtc_clock;
drm_mode_set_name(mode);
}
static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (HAS_GMCH(display))
/* FIXME calculate proper pipe pixel rate for GMCH pfit */
crtc_state->pixel_rate =
crtc_state->hw.pipe_mode.crtc_clock;
else
crtc_state->pixel_rate =
ilk_pipe_pixel_rate(crtc_state);
}
static void intel_joiner_adjust_timings(const struct intel_crtc_state *crtc_state,
struct drm_display_mode *mode)
{
int num_pipes = intel_crtc_num_joined_pipes(crtc_state);
if (num_pipes == 1)
return;
mode->crtc_clock /= num_pipes;
mode->crtc_hdisplay /= num_pipes;
mode->crtc_hblank_start /= num_pipes;
mode->crtc_hblank_end /= num_pipes;
mode->crtc_hsync_start /= num_pipes;
mode->crtc_hsync_end /= num_pipes;
mode->crtc_htotal /= num_pipes;
}
static void intel_splitter_adjust_timings(const struct intel_crtc_state *crtc_state,
struct drm_display_mode *mode)
{
int overlap = crtc_state->splitter.pixel_overlap;
int n = crtc_state->splitter.link_count;
if (!crtc_state->splitter.enable)
return;
/*
* eDP MSO uses segment timings from EDID for transcoder
* timings, but full mode for everything else.
*
* h_full = (h_segment - pixel_overlap) * link_count
*/
mode->crtc_hdisplay = (mode->crtc_hdisplay - overlap) * n;
mode->crtc_hblank_start = (mode->crtc_hblank_start - overlap) * n;
mode->crtc_hblank_end = (mode->crtc_hblank_end - overlap) * n;
mode->crtc_hsync_start = (mode->crtc_hsync_start - overlap) * n;
mode->crtc_hsync_end = (mode->crtc_hsync_end - overlap) * n;
mode->crtc_htotal = (mode->crtc_htotal - overlap) * n;
mode->crtc_clock *= n;
}
static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state)
{
struct drm_display_mode *mode = &crtc_state->hw.mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/*
* Start with the adjusted_mode crtc timings, which
* have been filled with the transcoder timings.
*/
drm_mode_copy(pipe_mode, adjusted_mode);
/* Expand MSO per-segment transcoder timings to full */
intel_splitter_adjust_timings(crtc_state, pipe_mode);
/*
* We want the full numbers in adjusted_mode normal timings,
* adjusted_mode crtc timings are left with the raw transcoder
* timings.
*/
intel_mode_from_crtc_timings(adjusted_mode, pipe_mode);
/* Populate the "user" mode with full numbers */
drm_mode_copy(mode, pipe_mode);
intel_mode_from_crtc_timings(mode, mode);
mode->hdisplay = drm_rect_width(&crtc_state->pipe_src) *
intel_crtc_num_joined_pipes(crtc_state);
mode->vdisplay = drm_rect_height(&crtc_state->pipe_src);
/* Derive per-pipe timings in case joiner is used */
intel_joiner_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
intel_crtc_compute_pixel_rate(crtc_state);
}
void intel_encoder_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state)
{
encoder->get_config(encoder, crtc_state);
intel_crtc_readout_derived_state(crtc_state);
}
static void intel_joiner_compute_pipe_src(struct intel_crtc_state *crtc_state)
{
int num_pipes = intel_crtc_num_joined_pipes(crtc_state);
int width, height;
if (num_pipes == 1)
return;
width = drm_rect_width(&crtc_state->pipe_src);
height = drm_rect_height(&crtc_state->pipe_src);
drm_rect_init(&crtc_state->pipe_src, 0, 0,
width / num_pipes, height);
}
static int intel_crtc_compute_pipe_src(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
intel_joiner_compute_pipe_src(crtc_state);
/*
* Pipe horizontal size must be even in:
* - DVO ganged mode
* - LVDS dual channel mode
* - Double wide pipe
*/
if (drm_rect_width(&crtc_state->pipe_src) & 1) {
if (crtc_state->double_wide) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] Odd pipe source width not supported with double wide pipe\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(display)) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] Odd pipe source width not supported with dual link LVDS\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_crtc_compute_pipe_mode(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int clock_limit = display->cdclk.max_dotclk_freq;
/*
* Start with the adjusted_mode crtc timings, which
* have been filled with the transcoder timings.
*/
drm_mode_copy(pipe_mode, adjusted_mode);
/* Expand MSO per-segment transcoder timings to full */
intel_splitter_adjust_timings(crtc_state, pipe_mode);
/* Derive per-pipe timings in case joiner is used */
intel_joiner_adjust_timings(crtc_state, pipe_mode);
intel_mode_from_crtc_timings(pipe_mode, pipe_mode);
if (DISPLAY_VER(display) < 4) {
clock_limit = display->cdclk.max_cdclk_freq * 9 / 10;
/*
* Enable double wide mode when the dot clock
* is > 90% of the (display) core speed.
*/
if (intel_crtc_supports_double_wide(crtc) &&
pipe_mode->crtc_clock > clock_limit) {
clock_limit = display->cdclk.max_dotclk_freq;
crtc_state->double_wide = true;
}
}
if (pipe_mode->crtc_clock > clock_limit) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
crtc->base.base.id, crtc->base.name,
pipe_mode->crtc_clock, clock_limit,
str_yes_no(crtc_state->double_wide));
return -EINVAL;
}
return 0;
}
static int intel_crtc_vblank_delay(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int vblank_delay = 0;
if (!HAS_DSB(display))
return 0;
vblank_delay = max(vblank_delay, intel_psr_min_vblank_delay(crtc_state));
return vblank_delay;
}
static int intel_crtc_compute_vblank_delay(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
int vblank_delay, max_vblank_delay;
vblank_delay = intel_crtc_vblank_delay(crtc_state);
max_vblank_delay = adjusted_mode->crtc_vblank_end - adjusted_mode->crtc_vblank_start - 1;
if (vblank_delay > max_vblank_delay) {
drm_dbg_kms(display->drm, "[CRTC:%d:%s] vblank delay (%d) exceeds max (%d)\n",
crtc->base.base.id, crtc->base.name, vblank_delay, max_vblank_delay);
return -EINVAL;
}
adjusted_mode->crtc_vblank_start += vblank_delay;
return 0;
}
static int intel_crtc_compute_config(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
ret = intel_crtc_compute_vblank_delay(state, crtc);
if (ret)
return ret;
ret = intel_dpll_crtc_compute_clock(state, crtc);
if (ret)
return ret;
ret = intel_crtc_compute_pipe_src(crtc_state);
if (ret)
return ret;
ret = intel_crtc_compute_pipe_mode(crtc_state);
if (ret)
return ret;
intel_crtc_compute_pixel_rate(crtc_state);
if (crtc_state->has_pch_encoder)
return ilk_fdi_compute_config(crtc, crtc_state);
return 0;
}
static void
intel_reduce_m_n_ratio(u32 *num, u32 *den)
{
while (*num > DATA_LINK_M_N_MASK ||
*den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
static void compute_m_n(u32 *ret_m, u32 *ret_n,
u32 m, u32 n, u32 constant_n)
{
if (constant_n)
*ret_n = constant_n;
else
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
*ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void
intel_link_compute_m_n(u16 bits_per_pixel_x16, int nlanes,
int pixel_clock, int link_clock,
int bw_overhead,
struct intel_link_m_n *m_n)
{
u32 link_symbol_clock = intel_dp_link_symbol_clock(link_clock);
u32 data_m = intel_dp_effective_data_rate(pixel_clock, bits_per_pixel_x16,
bw_overhead);
u32 data_n = drm_dp_max_dprx_data_rate(link_clock, nlanes);
/*
* Windows/BIOS uses fixed M/N values always. Follow suit.
*
* Also several DP dongles in particular seem to be fussy
* about too large link M/N values. Presumably the 20bit
* value used by Windows/BIOS is acceptable to everyone.
*/
m_n->tu = 64;
compute_m_n(&m_n->data_m, &m_n->data_n,
data_m, data_n,
0x8000000);
compute_m_n(&m_n->link_m, &m_n->link_n,
pixel_clock, link_symbol_clock,
0x80000);
}
void intel_panel_sanitize_ssc(struct intel_display *display)
{
/*
* There may be no VBT; and if the BIOS enabled SSC we can
* just keep using it to avoid unnecessary flicker. Whereas if the
* BIOS isn't using it, don't assume it will work even if the VBT
* indicates as much.
*/
if (HAS_PCH_IBX(display) || HAS_PCH_CPT(display)) {
bool bios_lvds_use_ssc = intel_de_read(display,
PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE;
if (display->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
drm_dbg_kms(display->drm,
"SSC %s by BIOS, overriding VBT which says %s\n",
str_enabled_disabled(bios_lvds_use_ssc),
str_enabled_disabled(display->vbt.lvds_use_ssc));
display->vbt.lvds_use_ssc = bios_lvds_use_ssc;
}
}
}
void intel_zero_m_n(struct intel_link_m_n *m_n)
{
/* corresponds to 0 register value */
memset(m_n, 0, sizeof(*m_n));
m_n->tu = 1;
}
void intel_set_m_n(struct intel_display *display,
const struct intel_link_m_n *m_n,
i915_reg_t data_m_reg, i915_reg_t data_n_reg,
i915_reg_t link_m_reg, i915_reg_t link_n_reg)
{
intel_de_write(display, data_m_reg, TU_SIZE(m_n->tu) | m_n->data_m);
intel_de_write(display, data_n_reg, m_n->data_n);
intel_de_write(display, link_m_reg, m_n->link_m);
/*
* On BDW+ writing LINK_N arms the double buffered update
* of all the M/N registers, so it must be written last.
*/
intel_de_write(display, link_n_reg, m_n->link_n);
}
bool intel_cpu_transcoder_has_m2_n2(struct intel_display *display,
enum transcoder transcoder)
{
if (display->platform.haswell)
return transcoder == TRANSCODER_EDP;
return IS_DISPLAY_VER(display, 5, 7) || display->platform.cherryview;
}
void intel_cpu_transcoder_set_m1_n1(struct intel_crtc *crtc,
enum transcoder transcoder,
const struct intel_link_m_n *m_n)
{
struct intel_display *display = to_intel_display(crtc);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(display) >= 5)
intel_set_m_n(display, m_n,
PIPE_DATA_M1(display, transcoder),
PIPE_DATA_N1(display, transcoder),
PIPE_LINK_M1(display, transcoder),
PIPE_LINK_N1(display, transcoder));
else
intel_set_m_n(display, m_n,
PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe),
PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe));
}
void intel_cpu_transcoder_set_m2_n2(struct intel_crtc *crtc,
enum transcoder transcoder,
const struct intel_link_m_n *m_n)
{
struct intel_display *display = to_intel_display(crtc);
if (!intel_cpu_transcoder_has_m2_n2(display, transcoder))
return;
intel_set_m_n(display, m_n,
PIPE_DATA_M2(display, transcoder),
PIPE_DATA_N2(display, transcoder),
PIPE_LINK_M2(display, transcoder),
PIPE_LINK_N2(display, transcoder));
}
static bool
transcoder_has_vrr(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
return HAS_VRR(display) && !transcoder_is_dsi(cpu_transcoder);
}
static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
u32 crtc_vdisplay, crtc_vtotal, crtc_vblank_start, crtc_vblank_end;
int vsyncshift = 0;
drm_WARN_ON(display->drm, transcoder_is_dsi(cpu_transcoder));
/* We need to be careful not to changed the adjusted mode, for otherwise
* the hw state checker will get angry at the mismatch. */
crtc_vdisplay = adjusted_mode->crtc_vdisplay;
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_start = adjusted_mode->crtc_vblank_start;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
/* the chip adds 2 halflines automatically */
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
else
vsyncshift = adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_htotal / 2;
if (vsyncshift < 0)
vsyncshift += adjusted_mode->crtc_htotal;
}
/*
* VBLANK_START no longer works on ADL+, instead we must use
* TRANS_SET_CONTEXT_LATENCY to configure the pipe vblank start.
*/
if (DISPLAY_VER(display) >= 13) {
intel_de_write(display,
TRANS_SET_CONTEXT_LATENCY(display, cpu_transcoder),
crtc_vblank_start - crtc_vdisplay);
/*
* VBLANK_START not used by hw, just clear it
* to make it stand out in register dumps.
*/
crtc_vblank_start = 1;
}
if (DISPLAY_VER(display) >= 4)
intel_de_write(display,
TRANS_VSYNCSHIFT(display, cpu_transcoder),
vsyncshift);
intel_de_write(display, TRANS_HTOTAL(display, cpu_transcoder),
HACTIVE(adjusted_mode->crtc_hdisplay - 1) |
HTOTAL(adjusted_mode->crtc_htotal - 1));
intel_de_write(display, TRANS_HBLANK(display, cpu_transcoder),
HBLANK_START(adjusted_mode->crtc_hblank_start - 1) |
HBLANK_END(adjusted_mode->crtc_hblank_end - 1));
intel_de_write(display, TRANS_HSYNC(display, cpu_transcoder),
HSYNC_START(adjusted_mode->crtc_hsync_start - 1) |
HSYNC_END(adjusted_mode->crtc_hsync_end - 1));
/*
* For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal
* bits are not required. Since the support for these bits is going to
* be deprecated in upcoming platforms, avoid writing these bits for the
* platforms that do not use legacy Timing Generator.
*/
if (intel_vrr_always_use_vrr_tg(display))
crtc_vtotal = 1;
intel_de_write(display, TRANS_VTOTAL(display, cpu_transcoder),
VACTIVE(crtc_vdisplay - 1) |
VTOTAL(crtc_vtotal - 1));
intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder),
VBLANK_START(crtc_vblank_start - 1) |
VBLANK_END(crtc_vblank_end - 1));
intel_de_write(display, TRANS_VSYNC(display, cpu_transcoder),
VSYNC_START(adjusted_mode->crtc_vsync_start - 1) |
VSYNC_END(adjusted_mode->crtc_vsync_end - 1));
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
* documented on the DDI_FUNC_CTL register description, EDP Input Select
* bits. */
if (display->platform.haswell && cpu_transcoder == TRANSCODER_EDP &&
(pipe == PIPE_B || pipe == PIPE_C))
intel_de_write(display, TRANS_VTOTAL(display, pipe),
VACTIVE(crtc_vdisplay - 1) |
VTOTAL(crtc_vtotal - 1));
if (DISPLAY_VER(display) >= 30) {
/*
* Address issues for resolutions with high refresh rate that
* have small Hblank, specifically where Hblank is smaller than
* one MTP. Simulations indicate this will address the
* jitter issues that currently causes BS to be immediately
* followed by BE which DPRX devices are unable to handle.
* https://groups.vesa.org/wg/DP/document/20494
*/
intel_de_write(display, DP_MIN_HBLANK_CTL(cpu_transcoder),
crtc_state->min_hblank);
}
}
static void intel_set_transcoder_timings_lrr(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
u32 crtc_vdisplay, crtc_vtotal, crtc_vblank_start, crtc_vblank_end;
drm_WARN_ON(display->drm, transcoder_is_dsi(cpu_transcoder));
crtc_vdisplay = adjusted_mode->crtc_vdisplay;
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_start = adjusted_mode->crtc_vblank_start;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
/* the chip adds 2 halflines automatically */
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
}
if (DISPLAY_VER(display) >= 13) {
intel_de_write(display,
TRANS_SET_CONTEXT_LATENCY(display, cpu_transcoder),
crtc_vblank_start - crtc_vdisplay);
/*
* VBLANK_START not used by hw, just clear it
* to make it stand out in register dumps.
*/
crtc_vblank_start = 1;
}
/*
* The hardware actually ignores TRANS_VBLANK.VBLANK_END in DP mode.
* But let's write it anyway to keep the state checker happy.
*/
intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder),
VBLANK_START(crtc_vblank_start - 1) |
VBLANK_END(crtc_vblank_end - 1));
/*
* For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal
* bits are not required. Since the support for these bits is going to
* be deprecated in upcoming platforms, avoid writing these bits for the
* platforms that do not use legacy Timing Generator.
*/
if (intel_vrr_always_use_vrr_tg(display))
crtc_vtotal = 1;
/*
* The double buffer latch point for TRANS_VTOTAL
* is the transcoder's undelayed vblank.
*/
intel_de_write(display, TRANS_VTOTAL(display, cpu_transcoder),
VACTIVE(crtc_vdisplay - 1) |
VTOTAL(crtc_vtotal - 1));
intel_vrr_set_fixed_rr_timings(crtc_state);
intel_vrr_transcoder_enable(crtc_state);
}
static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
int width = drm_rect_width(&crtc_state->pipe_src);
int height = drm_rect_height(&crtc_state->pipe_src);
enum pipe pipe = crtc->pipe;
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
intel_de_write(display, PIPESRC(display, pipe),
PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1));
}
static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (DISPLAY_VER(display) == 2)
return false;
if (DISPLAY_VER(display) >= 9 ||
display->platform.broadwell || display->platform.haswell)
return intel_de_read(display,
TRANSCONF(display, cpu_transcoder)) & TRANSCONF_INTERLACE_MASK_HSW;
else
return intel_de_read(display,
TRANSCONF(display, cpu_transcoder)) & TRANSCONF_INTERLACE_MASK;
}
static void intel_get_transcoder_timings(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
u32 tmp;
tmp = intel_de_read(display, TRANS_HTOTAL(display, cpu_transcoder));
adjusted_mode->crtc_hdisplay = REG_FIELD_GET(HACTIVE_MASK, tmp) + 1;
adjusted_mode->crtc_htotal = REG_FIELD_GET(HTOTAL_MASK, tmp) + 1;
if (!transcoder_is_dsi(cpu_transcoder)) {
tmp = intel_de_read(display,
TRANS_HBLANK(display, cpu_transcoder));
adjusted_mode->crtc_hblank_start = REG_FIELD_GET(HBLANK_START_MASK, tmp) + 1;
adjusted_mode->crtc_hblank_end = REG_FIELD_GET(HBLANK_END_MASK, tmp) + 1;
}
tmp = intel_de_read(display, TRANS_HSYNC(display, cpu_transcoder));
adjusted_mode->crtc_hsync_start = REG_FIELD_GET(HSYNC_START_MASK, tmp) + 1;
adjusted_mode->crtc_hsync_end = REG_FIELD_GET(HSYNC_END_MASK, tmp) + 1;
tmp = intel_de_read(display, TRANS_VTOTAL(display, cpu_transcoder));
adjusted_mode->crtc_vdisplay = REG_FIELD_GET(VACTIVE_MASK, tmp) + 1;
adjusted_mode->crtc_vtotal = REG_FIELD_GET(VTOTAL_MASK, tmp) + 1;
/* FIXME TGL+ DSI transcoders have this! */
if (!transcoder_is_dsi(cpu_transcoder)) {
tmp = intel_de_read(display,
TRANS_VBLANK(display, cpu_transcoder));
adjusted_mode->crtc_vblank_start = REG_FIELD_GET(VBLANK_START_MASK, tmp) + 1;
adjusted_mode->crtc_vblank_end = REG_FIELD_GET(VBLANK_END_MASK, tmp) + 1;
}
tmp = intel_de_read(display, TRANS_VSYNC(display, cpu_transcoder));
adjusted_mode->crtc_vsync_start = REG_FIELD_GET(VSYNC_START_MASK, tmp) + 1;
adjusted_mode->crtc_vsync_end = REG_FIELD_GET(VSYNC_END_MASK, tmp) + 1;
if (intel_pipe_is_interlaced(pipe_config)) {
adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE;
adjusted_mode->crtc_vtotal += 1;
adjusted_mode->crtc_vblank_end += 1;
}
if (DISPLAY_VER(display) >= 13 && !transcoder_is_dsi(cpu_transcoder))
adjusted_mode->crtc_vblank_start =
adjusted_mode->crtc_vdisplay +
intel_de_read(display,
TRANS_SET_CONTEXT_LATENCY(display, cpu_transcoder));
if (DISPLAY_VER(display) >= 30)
pipe_config->min_hblank = intel_de_read(display,
DP_MIN_HBLANK_CTL(cpu_transcoder));
}
static void intel_joiner_adjust_pipe_src(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
int num_pipes = intel_crtc_num_joined_pipes(crtc_state);
enum pipe primary_pipe, pipe = crtc->pipe;
int width;
if (num_pipes == 1)
return;
primary_pipe = joiner_primary_pipe(crtc_state);
width = drm_rect_width(&crtc_state->pipe_src);
drm_rect_translate_to(&crtc_state->pipe_src,
(pipe - primary_pipe) * width, 0);
}
static void intel_get_pipe_src_size(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(crtc);
u32 tmp;
tmp = intel_de_read(display, PIPESRC(display, crtc->pipe));
drm_rect_init(&pipe_config->pipe_src, 0, 0,
REG_FIELD_GET(PIPESRC_WIDTH_MASK, tmp) + 1,
REG_FIELD_GET(PIPESRC_HEIGHT_MASK, tmp) + 1);
intel_joiner_adjust_pipe_src(pipe_config);
}
void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
/*
* - We keep both pipes enabled on 830
* - During modeset the pipe is still disabled and must remain so
* - During fastset the pipe is already enabled and must remain so
*/
if (display->platform.i830 || !intel_crtc_needs_modeset(crtc_state))
val |= TRANSCONF_ENABLE;
if (crtc_state->double_wide)
val |= TRANSCONF_DOUBLE_WIDE;
/* only g4x and later have fancy bpc/dither controls */
if (display->platform.g4x || display->platform.valleyview ||
display->platform.cherryview) {
/* Bspec claims that we can't use dithering for 30bpp pipes. */
if (crtc_state->dither && crtc_state->pipe_bpp != 30)
val |= TRANSCONF_DITHER_EN |
TRANSCONF_DITHER_TYPE_SP;
switch (crtc_state->pipe_bpp) {
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
MISSING_CASE(crtc_state->pipe_bpp);
fallthrough;
case 18:
val |= TRANSCONF_BPC_6;
break;
case 24:
val |= TRANSCONF_BPC_8;
break;
case 30:
val |= TRANSCONF_BPC_10;
break;
}
}
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (DISPLAY_VER(display) < 4 ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
val |= TRANSCONF_INTERLACE_W_FIELD_INDICATION;
else
val |= TRANSCONF_INTERLACE_W_SYNC_SHIFT;
} else {
val |= TRANSCONF_INTERLACE_PROGRESSIVE;
}
if ((display->platform.valleyview || display->platform.cherryview) &&
crtc_state->limited_color_range)
val |= TRANSCONF_COLOR_RANGE_SELECT;
val |= TRANSCONF_GAMMA_MODE(crtc_state->gamma_mode);
if (crtc_state->wgc_enable)
val |= TRANSCONF_WGC_ENABLE;
val |= TRANSCONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
intel_de_write(display, TRANSCONF(display, cpu_transcoder), val);
intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder));
}
static enum intel_output_format
bdw_get_pipe_misc_output_format(struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
u32 tmp;
tmp = intel_de_read(display, PIPE_MISC(crtc->pipe));
if (tmp & PIPE_MISC_YUV420_ENABLE) {
/*
* We support 4:2:0 in full blend mode only.
* For xe3_lpd+ this is implied in YUV420 Enable bit.
* Ensure the same for prior platforms in YUV420 Mode bit.
*/
if (DISPLAY_VER(display) < 30)
drm_WARN_ON(display->drm,
(tmp & PIPE_MISC_YUV420_MODE_FULL_BLEND) == 0);
return INTEL_OUTPUT_FORMAT_YCBCR420;
} else if (tmp & PIPE_MISC_OUTPUT_COLORSPACE_YUV) {
return INTEL_OUTPUT_FORMAT_YCBCR444;
} else {
return INTEL_OUTPUT_FORMAT_RGB;
}
}
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(crtc);
enum intel_display_power_domain power_domain;
enum transcoder cpu_transcoder = (enum transcoder)crtc->pipe;
intel_wakeref_t wakeref;
bool ret = false;
u32 tmp;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(display, power_domain);
if (!wakeref)
return false;
tmp = intel_de_read(display, TRANSCONF(display, cpu_transcoder));
if (!(tmp & TRANSCONF_ENABLE))
goto out;
pipe_config->cpu_transcoder = cpu_transcoder;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
pipe_config->sink_format = pipe_config->output_format;
if (display->platform.g4x || display->platform.valleyview ||
display->platform.cherryview) {
switch (tmp & TRANSCONF_BPC_MASK) {
case TRANSCONF_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANSCONF_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANSCONF_BPC_10:
pipe_config->pipe_bpp = 30;
break;
default:
MISSING_CASE(tmp);
break;
}
}
if ((display->platform.valleyview || display->platform.cherryview) &&
(tmp & TRANSCONF_COLOR_RANGE_SELECT))
pipe_config->limited_color_range = true;
pipe_config->gamma_mode = REG_FIELD_GET(TRANSCONF_GAMMA_MODE_MASK_I9XX, tmp);
pipe_config->framestart_delay = REG_FIELD_GET(TRANSCONF_FRAME_START_DELAY_MASK, tmp) + 1;
if ((display->platform.valleyview || display->platform.cherryview) &&
(tmp & TRANSCONF_WGC_ENABLE))
pipe_config->wgc_enable = true;
intel_color_get_config(pipe_config);
if (HAS_DOUBLE_WIDE(display))
pipe_config->double_wide = tmp & TRANSCONF_DOUBLE_WIDE;
intel_get_transcoder_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
i9xx_pfit_get_config(pipe_config);
i9xx_dpll_get_hw_state(crtc, &pipe_config->dpll_hw_state);
if (DISPLAY_VER(display) >= 4) {
tmp = pipe_config->dpll_hw_state.i9xx.dpll_md;
pipe_config->pixel_multiplier =
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
} else if (display->platform.i945g || display->platform.i945gm ||
display->platform.g33 || display->platform.pineview) {
tmp = pipe_config->dpll_hw_state.i9xx.dpll;
pipe_config->pixel_multiplier =
((tmp & SDVO_MULTIPLIER_MASK)
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
} else {
/* Note that on i915G/GM the pixel multiplier is in the sdvo
* port and will be fixed up in the encoder->get_config
* function. */
pipe_config->pixel_multiplier = 1;
}
if (display->platform.cherryview)
chv_crtc_clock_get(pipe_config);
else if (display->platform.valleyview)
vlv_crtc_clock_get(pipe_config);
else
i9xx_crtc_clock_get(pipe_config);
/*
* Normally the dotclock is filled in by the encoder .get_config()
* but in case the pipe is enabled w/o any ports we need a sane
* default.
*/
pipe_config->hw.adjusted_mode.crtc_clock =
pipe_config->port_clock / pipe_config->pixel_multiplier;
ret = true;
out:
intel_display_power_put(display, power_domain, wakeref);
return ret;
}
void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
/*
* - During modeset the pipe is still disabled and must remain so
* - During fastset the pipe is already enabled and must remain so
*/
if (!intel_crtc_needs_modeset(crtc_state))
val |= TRANSCONF_ENABLE;
switch (crtc_state->pipe_bpp) {
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
MISSING_CASE(crtc_state->pipe_bpp);
fallthrough;
case 18:
val |= TRANSCONF_BPC_6;
break;
case 24:
val |= TRANSCONF_BPC_8;
break;
case 30:
val |= TRANSCONF_BPC_10;
break;
case 36:
val |= TRANSCONF_BPC_12;
break;
}
if (crtc_state->dither)
val |= TRANSCONF_DITHER_EN | TRANSCONF_DITHER_TYPE_SP;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= TRANSCONF_INTERLACE_IF_ID_ILK;
else
val |= TRANSCONF_INTERLACE_PF_PD_ILK;
/*
* This would end up with an odd purple hue over
* the entire display. Make sure we don't do it.
*/
drm_WARN_ON(display->drm, crtc_state->limited_color_range &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
if (crtc_state->limited_color_range &&
!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
val |= TRANSCONF_COLOR_RANGE_SELECT;
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
val |= TRANSCONF_OUTPUT_COLORSPACE_YUV709;
val |= TRANSCONF_GAMMA_MODE(crtc_state->gamma_mode);
val |= TRANSCONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1);
val |= TRANSCONF_MSA_TIMING_DELAY(crtc_state->msa_timing_delay);
intel_de_write(display, TRANSCONF(display, cpu_transcoder), val);
intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder));
}
static void hsw_set_transconf(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 val = 0;
/*
* - During modeset the pipe is still disabled and must remain so
* - During fastset the pipe is already enabled and must remain so
*/
if (!intel_crtc_needs_modeset(crtc_state))
val |= TRANSCONF_ENABLE;
if (display->platform.haswell && crtc_state->dither)
val |= TRANSCONF_DITHER_EN | TRANSCONF_DITHER_TYPE_SP;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= TRANSCONF_INTERLACE_IF_ID_ILK;
else
val |= TRANSCONF_INTERLACE_PF_PD_ILK;
if (display->platform.haswell &&
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
val |= TRANSCONF_OUTPUT_COLORSPACE_YUV_HSW;
intel_de_write(display, TRANSCONF(display, cpu_transcoder), val);
intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder));
}
static void bdw_set_pipe_misc(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
u32 val = 0;
switch (crtc_state->pipe_bpp) {
case 18:
val |= PIPE_MISC_BPC_6;
break;
case 24:
val |= PIPE_MISC_BPC_8;
break;
case 30:
val |= PIPE_MISC_BPC_10;
break;
case 36:
/* Port output 12BPC defined for ADLP+ */
if (DISPLAY_VER(display) >= 13)
val |= PIPE_MISC_BPC_12_ADLP;
break;
default:
MISSING_CASE(crtc_state->pipe_bpp);
break;
}
if (crtc_state->dither)
val |= PIPE_MISC_DITHER_ENABLE | PIPE_MISC_DITHER_TYPE_SP;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
val |= PIPE_MISC_OUTPUT_COLORSPACE_YUV;
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
val |= DISPLAY_VER(display) >= 30 ? PIPE_MISC_YUV420_ENABLE :
PIPE_MISC_YUV420_ENABLE | PIPE_MISC_YUV420_MODE_FULL_BLEND;
if (DISPLAY_VER(display) >= 11 && is_hdr_mode(crtc_state))
val |= PIPE_MISC_HDR_MODE_PRECISION;
if (DISPLAY_VER(display) >= 12)
val |= PIPE_MISC_PIXEL_ROUNDING_TRUNC;
/* allow PSR with sprite enabled */
if (display->platform.broadwell)
val |= PIPE_MISC_PSR_MASK_SPRITE_ENABLE;
intel_de_write_dsb(display, dsb, PIPE_MISC(crtc->pipe), val);
}
int bdw_get_pipe_misc_bpp(struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
u32 tmp;
tmp = intel_de_read(display, PIPE_MISC(crtc->pipe));
switch (tmp & PIPE_MISC_BPC_MASK) {
case PIPE_MISC_BPC_6:
return 18;
case PIPE_MISC_BPC_8:
return 24;
case PIPE_MISC_BPC_10:
return 30;
/*
* PORT OUTPUT 12 BPC defined for ADLP+.
*
* TODO:
* For previous platforms with DSI interface, bits 5:7
* are used for storing pipe_bpp irrespective of dithering.
* Since the value of 12 BPC is not defined for these bits
* on older platforms, need to find a workaround for 12 BPC
* MIPI DSI HW readout.
*/
case PIPE_MISC_BPC_12_ADLP:
if (DISPLAY_VER(display) >= 13)
return 36;
fallthrough;
default:
MISSING_CASE(tmp);
return 0;
}
}
int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
{
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * bpp * 21 / 20;
return DIV_ROUND_UP(bps, link_bw * 8);
}
void intel_get_m_n(struct intel_display *display,
struct intel_link_m_n *m_n,
i915_reg_t data_m_reg, i915_reg_t data_n_reg,
i915_reg_t link_m_reg, i915_reg_t link_n_reg)
{
m_n->link_m = intel_de_read(display, link_m_reg) & DATA_LINK_M_N_MASK;
m_n->link_n = intel_de_read(display, link_n_reg) & DATA_LINK_M_N_MASK;
m_n->data_m = intel_de_read(display, data_m_reg) & DATA_LINK_M_N_MASK;
m_n->data_n = intel_de_read(display, data_n_reg) & DATA_LINK_M_N_MASK;
m_n->tu = REG_FIELD_GET(TU_SIZE_MASK, intel_de_read(display, data_m_reg)) + 1;
}
void intel_cpu_transcoder_get_m1_n1(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n)
{
struct intel_display *display = to_intel_display(crtc);
enum pipe pipe = crtc->pipe;
if (DISPLAY_VER(display) >= 5)
intel_get_m_n(display, m_n,
PIPE_DATA_M1(display, transcoder),
PIPE_DATA_N1(display, transcoder),
PIPE_LINK_M1(display, transcoder),
PIPE_LINK_N1(display, transcoder));
else
intel_get_m_n(display, m_n,
PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe),
PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe));
}
void intel_cpu_transcoder_get_m2_n2(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n)
{
struct intel_display *display = to_intel_display(crtc);
if (!intel_cpu_transcoder_has_m2_n2(display, transcoder))
return;
intel_get_m_n(display, m_n,
PIPE_DATA_M2(display, transcoder),
PIPE_DATA_N2(display, transcoder),
PIPE_LINK_M2(display, transcoder),
PIPE_LINK_N2(display, transcoder));
}
static bool ilk_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(crtc);
enum intel_display_power_domain power_domain;
enum transcoder cpu_transcoder = (enum transcoder)crtc->pipe;
intel_wakeref_t wakeref;
bool ret = false;
u32 tmp;
power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
wakeref = intel_display_power_get_if_enabled(display, power_domain);
if (!wakeref)
return false;
tmp = intel_de_read(display, TRANSCONF(display, cpu_transcoder));
if (!(tmp & TRANSCONF_ENABLE))
goto out;
pipe_config->cpu_transcoder = cpu_transcoder;
switch (tmp & TRANSCONF_BPC_MASK) {
case TRANSCONF_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANSCONF_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANSCONF_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANSCONF_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
if (tmp & TRANSCONF_COLOR_RANGE_SELECT)
pipe_config->limited_color_range = true;
switch (tmp & TRANSCONF_OUTPUT_COLORSPACE_MASK) {
case TRANSCONF_OUTPUT_COLORSPACE_YUV601:
case TRANSCONF_OUTPUT_COLORSPACE_YUV709:
pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
break;
default:
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
break;
}
pipe_config->sink_format = pipe_config->output_format;
pipe_config->gamma_mode = REG_FIELD_GET(TRANSCONF_GAMMA_MODE_MASK_ILK, tmp);
pipe_config->framestart_delay = REG_FIELD_GET(TRANSCONF_FRAME_START_DELAY_MASK, tmp) + 1;
pipe_config->msa_timing_delay = REG_FIELD_GET(TRANSCONF_MSA_TIMING_DELAY_MASK, tmp);
intel_color_get_config(pipe_config);
pipe_config->pixel_multiplier = 1;
ilk_pch_get_config(pipe_config);
intel_get_transcoder_timings(crtc, pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
ilk_pfit_get_config(pipe_config);
ret = true;
out:
intel_display_power_put(display, power_domain, wakeref);
return ret;
}
static u8 joiner_pipes(struct intel_display *display)
{
u8 pipes;
if (DISPLAY_VER(display) >= 12)
pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D);
else if (DISPLAY_VER(display) >= 11)
pipes = BIT(PIPE_B) | BIT(PIPE_C);
else
pipes = 0;
return pipes & DISPLAY_RUNTIME_INFO(display)->pipe_mask;
}
static bool transcoder_ddi_func_is_enabled(struct intel_display *display,
enum transcoder cpu_transcoder)
{
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
u32 tmp = 0;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
with_intel_display_power_if_enabled(display, power_domain, wakeref)
tmp = intel_de_read(display,
TRANS_DDI_FUNC_CTL(display, cpu_transcoder));
return tmp & TRANS_DDI_FUNC_ENABLE;
}
static void enabled_uncompressed_joiner_pipes(struct intel_display *display,
u8 *primary_pipes, u8 *secondary_pipes)
{
struct intel_crtc *crtc;
*primary_pipes = 0;
*secondary_pipes = 0;
if (!HAS_UNCOMPRESSED_JOINER(display))
return;
for_each_intel_crtc_in_pipe_mask(display->drm, crtc,
joiner_pipes(display)) {
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
power_domain = POWER_DOMAIN_PIPE(pipe);
with_intel_display_power_if_enabled(display, power_domain, wakeref) {
u32 tmp = intel_de_read(display, ICL_PIPE_DSS_CTL1(pipe));
if (tmp & UNCOMPRESSED_JOINER_PRIMARY)
*primary_pipes |= BIT(pipe);
if (tmp & UNCOMPRESSED_JOINER_SECONDARY)
*secondary_pipes |= BIT(pipe);
}
}
}
static void enabled_bigjoiner_pipes(struct intel_display *display,
u8 *primary_pipes, u8 *secondary_pipes)
{
struct intel_crtc *crtc;
*primary_pipes = 0;
*secondary_pipes = 0;
if (!HAS_BIGJOINER(display))
return;
for_each_intel_crtc_in_pipe_mask(display->drm, crtc,
joiner_pipes(display)) {
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
power_domain = intel_dsc_power_domain(crtc, (enum transcoder)pipe);
with_intel_display_power_if_enabled(display, power_domain, wakeref) {
u32 tmp = intel_de_read(display, ICL_PIPE_DSS_CTL1(pipe));
if (!(tmp & BIG_JOINER_ENABLE))
continue;
if (tmp & PRIMARY_BIG_JOINER_ENABLE)
*primary_pipes |= BIT(pipe);
else
*secondary_pipes |= BIT(pipe);
}
}
}
static u8 expected_secondary_pipes(u8 primary_pipes, int num_pipes)
{
u8 secondary_pipes = 0;
for (int i = 1; i < num_pipes; i++)
secondary_pipes |= primary_pipes << i;
return secondary_pipes;
}
static u8 expected_uncompressed_joiner_secondary_pipes(u8 uncompjoiner_primary_pipes)
{
return expected_secondary_pipes(uncompjoiner_primary_pipes, 2);
}
static u8 expected_bigjoiner_secondary_pipes(u8 bigjoiner_primary_pipes)
{
return expected_secondary_pipes(bigjoiner_primary_pipes, 2);
}
static u8 get_joiner_primary_pipe(enum pipe pipe, u8 primary_pipes)
{
primary_pipes &= GENMASK(pipe, 0);
return primary_pipes ? BIT(fls(primary_pipes) - 1) : 0;
}
static u8 expected_ultrajoiner_secondary_pipes(u8 ultrajoiner_primary_pipes)
{
return expected_secondary_pipes(ultrajoiner_primary_pipes, 4);
}
static u8 fixup_ultrajoiner_secondary_pipes(u8 ultrajoiner_primary_pipes,
u8 ultrajoiner_secondary_pipes)
{
return ultrajoiner_secondary_pipes | ultrajoiner_primary_pipes << 3;
}
static void enabled_ultrajoiner_pipes(struct intel_display *display,
u8 *primary_pipes, u8 *secondary_pipes)
{
struct intel_crtc *crtc;
*primary_pipes = 0;
*secondary_pipes = 0;
if (!HAS_ULTRAJOINER(display))
return;
for_each_intel_crtc_in_pipe_mask(display->drm, crtc,
joiner_pipes(display)) {
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
power_domain = intel_dsc_power_domain(crtc, (enum transcoder)pipe);
with_intel_display_power_if_enabled(display, power_domain, wakeref) {
u32 tmp = intel_de_read(display, ICL_PIPE_DSS_CTL1(pipe));
if (!(tmp & ULTRA_JOINER_ENABLE))
continue;
if (tmp & PRIMARY_ULTRA_JOINER_ENABLE)
*primary_pipes |= BIT(pipe);
else
*secondary_pipes |= BIT(pipe);
}
}
}
static void enabled_joiner_pipes(struct intel_display *display,
enum pipe pipe,
u8 *primary_pipe, u8 *secondary_pipes)
{
u8 primary_ultrajoiner_pipes;
u8 primary_uncompressed_joiner_pipes, primary_bigjoiner_pipes;
u8 secondary_ultrajoiner_pipes;
u8 secondary_uncompressed_joiner_pipes, secondary_bigjoiner_pipes;
u8 ultrajoiner_pipes;
u8 uncompressed_joiner_pipes, bigjoiner_pipes;
enabled_ultrajoiner_pipes(display, &primary_ultrajoiner_pipes,
&secondary_ultrajoiner_pipes);
/*
* For some strange reason the last pipe in the set of four
* shouldn't have ultrajoiner enable bit set in hardware.
* Set the bit anyway to make life easier.
*/
drm_WARN_ON(display->drm,
expected_secondary_pipes(primary_ultrajoiner_pipes, 3) !=
secondary_ultrajoiner_pipes);
secondary_ultrajoiner_pipes =
fixup_ultrajoiner_secondary_pipes(primary_ultrajoiner_pipes,
secondary_ultrajoiner_pipes);
drm_WARN_ON(display->drm, (primary_ultrajoiner_pipes & secondary_ultrajoiner_pipes) != 0);
enabled_uncompressed_joiner_pipes(display, &primary_uncompressed_joiner_pipes,
&secondary_uncompressed_joiner_pipes);
drm_WARN_ON(display->drm,
(primary_uncompressed_joiner_pipes & secondary_uncompressed_joiner_pipes) != 0);
enabled_bigjoiner_pipes(display, &primary_bigjoiner_pipes,
&secondary_bigjoiner_pipes);
drm_WARN_ON(display->drm,
(primary_bigjoiner_pipes & secondary_bigjoiner_pipes) != 0);
ultrajoiner_pipes = primary_ultrajoiner_pipes | secondary_ultrajoiner_pipes;
uncompressed_joiner_pipes = primary_uncompressed_joiner_pipes |
secondary_uncompressed_joiner_pipes;
bigjoiner_pipes = primary_bigjoiner_pipes | secondary_bigjoiner_pipes;
drm_WARN(display->drm, (ultrajoiner_pipes & bigjoiner_pipes) != ultrajoiner_pipes,
"Ultrajoiner pipes(%#x) should be bigjoiner pipes(%#x)\n",
ultrajoiner_pipes, bigjoiner_pipes);
drm_WARN(display->drm, secondary_ultrajoiner_pipes !=
expected_ultrajoiner_secondary_pipes(primary_ultrajoiner_pipes),
"Wrong secondary ultrajoiner pipes(expected %#x, current %#x)\n",
expected_ultrajoiner_secondary_pipes(primary_ultrajoiner_pipes),
secondary_ultrajoiner_pipes);
drm_WARN(display->drm, (uncompressed_joiner_pipes & bigjoiner_pipes) != 0,
"Uncompressed joiner pipes(%#x) and bigjoiner pipes(%#x) can't intersect\n",
uncompressed_joiner_pipes, bigjoiner_pipes);
drm_WARN(display->drm, secondary_bigjoiner_pipes !=
expected_bigjoiner_secondary_pipes(primary_bigjoiner_pipes),
"Wrong secondary bigjoiner pipes(expected %#x, current %#x)\n",
expected_bigjoiner_secondary_pipes(primary_bigjoiner_pipes),
secondary_bigjoiner_pipes);
drm_WARN(display->drm, secondary_uncompressed_joiner_pipes !=
expected_uncompressed_joiner_secondary_pipes(primary_uncompressed_joiner_pipes),
"Wrong secondary uncompressed joiner pipes(expected %#x, current %#x)\n",
expected_uncompressed_joiner_secondary_pipes(primary_uncompressed_joiner_pipes),
secondary_uncompressed_joiner_pipes);
*primary_pipe = 0;
*secondary_pipes = 0;
if (ultrajoiner_pipes & BIT(pipe)) {
*primary_pipe = get_joiner_primary_pipe(pipe, primary_ultrajoiner_pipes);
*secondary_pipes = secondary_ultrajoiner_pipes &
expected_ultrajoiner_secondary_pipes(*primary_pipe);
drm_WARN(display->drm,
expected_ultrajoiner_secondary_pipes(*primary_pipe) !=
*secondary_pipes,
"Wrong ultrajoiner secondary pipes for primary_pipe %#x (expected %#x, current %#x)\n",
*primary_pipe,
expected_ultrajoiner_secondary_pipes(*primary_pipe),
*secondary_pipes);
return;
}
if (uncompressed_joiner_pipes & BIT(pipe)) {
*primary_pipe = get_joiner_primary_pipe(pipe, primary_uncompressed_joiner_pipes);
*secondary_pipes = secondary_uncompressed_joiner_pipes &
expected_uncompressed_joiner_secondary_pipes(*primary_pipe);
drm_WARN(display->drm,
expected_uncompressed_joiner_secondary_pipes(*primary_pipe) !=
*secondary_pipes,
"Wrong uncompressed joiner secondary pipes for primary_pipe %#x (expected %#x, current %#x)\n",
*primary_pipe,
expected_uncompressed_joiner_secondary_pipes(*primary_pipe),
*secondary_pipes);
return;
}
if (bigjoiner_pipes & BIT(pipe)) {
*primary_pipe = get_joiner_primary_pipe(pipe, primary_bigjoiner_pipes);
*secondary_pipes = secondary_bigjoiner_pipes &
expected_bigjoiner_secondary_pipes(*primary_pipe);
drm_WARN(display->drm,
expected_bigjoiner_secondary_pipes(*primary_pipe) !=
*secondary_pipes,
"Wrong bigjoiner secondary pipes for primary_pipe %#x (expected %#x, current %#x)\n",
*primary_pipe,
expected_bigjoiner_secondary_pipes(*primary_pipe),
*secondary_pipes);
return;
}
}
static u8 hsw_panel_transcoders(struct intel_display *display)
{
u8 panel_transcoder_mask = BIT(TRANSCODER_EDP);
if (DISPLAY_VER(display) >= 11)
panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
return panel_transcoder_mask;
}
static u8 hsw_enabled_transcoders(struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
u8 panel_transcoder_mask = hsw_panel_transcoders(display);
enum transcoder cpu_transcoder;
u8 primary_pipe, secondary_pipes;
u8 enabled_transcoders = 0;
/*
* XXX: Do intel_display_power_get_if_enabled before reading this (for
* consistency and less surprising code; it's in always on power).
*/
for_each_cpu_transcoder_masked(display, cpu_transcoder,
panel_transcoder_mask) {
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
enum pipe trans_pipe;
u32 tmp = 0;
power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
with_intel_display_power_if_enabled(display, power_domain, wakeref)
tmp = intel_de_read(display,
TRANS_DDI_FUNC_CTL(display, cpu_transcoder));
if (!(tmp & TRANS_DDI_FUNC_ENABLE))
continue;
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
drm_WARN(display->drm, 1,
"unknown pipe linked to transcoder %s\n",
transcoder_name(cpu_transcoder));
fallthrough;
case TRANS_DDI_EDP_INPUT_A_ONOFF:
case TRANS_DDI_EDP_INPUT_A_ON:
trans_pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
trans_pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
trans_pipe = PIPE_C;
break;
case TRANS_DDI_EDP_INPUT_D_ONOFF:
trans_pipe = PIPE_D;
break;
}
if (trans_pipe == crtc->pipe)
enabled_transcoders |= BIT(cpu_transcoder);
}
/* single pipe or joiner primary */
cpu_transcoder = (enum transcoder) crtc->pipe;
if (transcoder_ddi_func_is_enabled(display, cpu_transcoder))
enabled_transcoders |= BIT(cpu_transcoder);
/* joiner secondary -> consider the primary pipe's transcoder as well */
enabled_joiner_pipes(display, crtc->pipe, &primary_pipe, &secondary_pipes);
if (secondary_pipes & BIT(crtc->pipe)) {
cpu_transcoder = (enum transcoder)ffs(primary_pipe) - 1;
if (transcoder_ddi_func_is_enabled(display, cpu_transcoder))
enabled_transcoders |= BIT(cpu_transcoder);
}
return enabled_transcoders;
}
static bool has_edp_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & BIT(TRANSCODER_EDP);
}
static bool has_dsi_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & (BIT(TRANSCODER_DSI_0) |
BIT(TRANSCODER_DSI_1));
}
static bool has_pipe_transcoders(u8 enabled_transcoders)
{
return enabled_transcoders & ~(BIT(TRANSCODER_EDP) |
BIT(TRANSCODER_DSI_0) |
BIT(TRANSCODER_DSI_1));
}
static void assert_enabled_transcoders(struct intel_display *display,
u8 enabled_transcoders)
{
/* Only one type of transcoder please */
drm_WARN_ON(display->drm,
has_edp_transcoders(enabled_transcoders) +
has_dsi_transcoders(enabled_transcoders) +
has_pipe_transcoders(enabled_transcoders) > 1);
/* Only DSI transcoders can be ganged */
drm_WARN_ON(display->drm,
!has_dsi_transcoders(enabled_transcoders) &&
!is_power_of_2(enabled_transcoders));
}
static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_display_power_domain_set *power_domain_set)
{
struct intel_display *display = to_intel_display(crtc);
unsigned long enabled_transcoders;
u32 tmp;
enabled_transcoders = hsw_enabled_transcoders(crtc);
if (!enabled_transcoders)
return false;
assert_enabled_transcoders(display, enabled_transcoders);
/*
* With the exception of DSI we should only ever have
* a single enabled transcoder. With DSI let's just
* pick the first one.
*/
pipe_config->cpu_transcoder = ffs(enabled_transcoders) - 1;
if (!intel_display_power_get_in_set_if_enabled(display, power_domain_set,
POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
return false;
if (hsw_panel_transcoders(display) & BIT(pipe_config->cpu_transcoder)) {
tmp = intel_de_read(display,
TRANS_DDI_FUNC_CTL(display, pipe_config->cpu_transcoder));
if ((tmp & TRANS_DDI_EDP_INPUT_MASK) == TRANS_DDI_EDP_INPUT_A_ONOFF)
pipe_config->pch_pfit.force_thru = true;
}
tmp = intel_de_read(display,
TRANSCONF(display, pipe_config->cpu_transcoder));
return tmp & TRANSCONF_ENABLE;
}
static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_display_power_domain_set *power_domain_set)
{
struct intel_display *display = to_intel_display(crtc);
enum transcoder cpu_transcoder;
enum port port;
u32 tmp;
for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
if (port == PORT_A)
cpu_transcoder = TRANSCODER_DSI_A;
else
cpu_transcoder = TRANSCODER_DSI_C;
if (!intel_display_power_get_in_set_if_enabled(display, power_domain_set,
POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
continue;
/*
* The PLL needs to be enabled with a valid divider
* configuration, otherwise accessing DSI registers will hang
* the machine. See BSpec North Display Engine
* registers/MIPI[BXT]. We can break out here early, since we
* need the same DSI PLL to be enabled for both DSI ports.
*/
if (!bxt_dsi_pll_is_enabled(display))
break;
/* XXX: this works for video mode only */
tmp = intel_de_read(display, BXT_MIPI_PORT_CTRL(port));
if (!(tmp & DPI_ENABLE))
continue;
tmp = intel_de_read(display, MIPI_CTRL(display, port));
if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
continue;
pipe_config->cpu_transcoder = cpu_transcoder;
break;
}
return transcoder_is_dsi(pipe_config->cpu_transcoder);
}
static void intel_joiner_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
u8 primary_pipe, secondary_pipes;
enum pipe pipe = crtc->pipe;
enabled_joiner_pipes(display, pipe, &primary_pipe, &secondary_pipes);
if (((primary_pipe | secondary_pipes) & BIT(pipe)) == 0)
return;
crtc_state->joiner_pipes = primary_pipe | secondary_pipes;
}
static bool hsw_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct intel_display *display = to_intel_display(crtc);
bool active;
u32 tmp;
if (!intel_display_power_get_in_set_if_enabled(display, &crtc->hw_readout_power_domains,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
active = hsw_get_transcoder_state(crtc, pipe_config, &crtc->hw_readout_power_domains);
if ((display->platform.geminilake || display->platform.broxton) &&
bxt_get_dsi_transcoder_state(crtc, pipe_config, &crtc->hw_readout_power_domains)) {
drm_WARN_ON(display->drm, active);
active = true;
}
if (!active)
goto out;
intel_joiner_get_config(pipe_config);
intel_dsc_get_config(pipe_config);
if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
DISPLAY_VER(display) >= 11)
intel_get_transcoder_timings(crtc, pipe_config);
if (transcoder_has_vrr(pipe_config))
intel_vrr_get_config(pipe_config);
intel_get_pipe_src_size(crtc, pipe_config);
if (display->platform.haswell) {
u32 tmp = intel_de_read(display,
TRANSCONF(display, pipe_config->cpu_transcoder));
if (tmp & TRANSCONF_OUTPUT_COLORSPACE_YUV_HSW)
pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
else
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
} else {
pipe_config->output_format =
bdw_get_pipe_misc_output_format(crtc);
}
pipe_config->sink_format = pipe_config->output_format;
intel_color_get_config(pipe_config);
tmp = intel_de_read(display, WM_LINETIME(crtc->pipe));
pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp);
if (display->platform.broadwell || display->platform.haswell)
pipe_config->ips_linetime =
REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp);
if (intel_display_power_get_in_set_if_enabled(display, &crtc->hw_readout_power_domains,
POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) {
if (DISPLAY_VER(display) >= 9)
skl_scaler_get_config(pipe_config);
else
ilk_pfit_get_config(pipe_config);
}
hsw_ips_get_config(pipe_config);
if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
pipe_config->pixel_multiplier =
intel_de_read(display,
TRANS_MULT(display, pipe_config->cpu_transcoder)) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
tmp = intel_de_read(display, CHICKEN_TRANS(display, pipe_config->cpu_transcoder));
pipe_config->framestart_delay = REG_FIELD_GET(HSW_FRAME_START_DELAY_MASK, tmp) + 1;
} else {
/* no idea if this is correct */
pipe_config->framestart_delay = 1;
}
out:
intel_display_power_put_all_in_set(display, &crtc->hw_readout_power_domains);
return active;
}
bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
if (!display->funcs.display->get_pipe_config(crtc, crtc_state))
return false;
crtc_state->hw.active = true;
intel_crtc_readout_derived_state(crtc_state);
return true;
}
int intel_dotclock_calculate(int link_freq,
const struct intel_link_m_n *m_n)
{
/*
* The calculation for the data clock -> pixel clock is:
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
* But we want to avoid losing precision if possible, so:
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
*
* and for link freq (10kbs units) -> pixel clock it is:
* link_symbol_clock = link_freq * 10 / link_symbol_size
* pixel_clock = (m * link_symbol_clock) / n
* or for more precision:
* pixel_clock = (m * link_freq * 10) / (n * link_symbol_size)
*/
if (!m_n->link_n)
return 0;
return DIV_ROUND_UP_ULL(mul_u32_u32(m_n->link_m, link_freq * 10),
m_n->link_n * intel_dp_link_symbol_size(link_freq));
}
int intel_crtc_dotclock(const struct intel_crtc_state *pipe_config)
{
int dotclock;
if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24)
dotclock = DIV_ROUND_CLOSEST(pipe_config->port_clock * 24,
pipe_config->pipe_bpp);
else
dotclock = pipe_config->port_clock;
if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
!intel_crtc_has_dp_encoder(pipe_config))
dotclock *= 2;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
return dotclock;
}
/* Returns the currently programmed mode of the given encoder. */
struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_crtc_state *crtc_state;
struct drm_display_mode *mode;
struct intel_crtc *crtc;
enum pipe pipe;
if (!encoder->get_hw_state(encoder, &pipe))
return NULL;
crtc = intel_crtc_for_pipe(display, pipe);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
crtc_state = intel_crtc_state_alloc(crtc);
if (!crtc_state) {
kfree(mode);
return NULL;
}
if (!intel_crtc_get_pipe_config(crtc_state)) {
intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
kfree(mode);
return NULL;
}
intel_encoder_get_config(encoder, crtc_state);
intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode);
intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
return mode;
}
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & BIT(b->type) &&
b->cloneable & BIT(a->type));
}
static bool check_single_encoder_cloning(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_encoder *source_encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
source_encoder =
to_intel_encoder(connector_state->best_encoder);
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
return true;
}
static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
pipe_mode->crtc_clock);
return min(linetime_wm, 0x1ff);
}
static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state,
const struct intel_cdclk_state *cdclk_state)
{
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8,
intel_cdclk_logical(cdclk_state));
return min(linetime_wm, 0x1ff);
}
static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
int linetime_wm;
if (!crtc_state->hw.enable)
return 0;
linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8,
crtc_state->pixel_rate);
/* Display WA #1135: BXT:ALL GLK:ALL */
if ((display->platform.geminilake || display->platform.broxton) &&
skl_watermark_ipc_enabled(display))
linetime_wm /= 2;
return min(linetime_wm, 0x1ff);
}
static int hsw_compute_linetime_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_cdclk_state *cdclk_state;
if (DISPLAY_VER(display) >= 9)
crtc_state->linetime = skl_linetime_wm(crtc_state);
else
crtc_state->linetime = hsw_linetime_wm(crtc_state);
if (!hsw_crtc_supports_ips(crtc))
return 0;
cdclk_state = intel_atomic_get_cdclk_state(state);
if (IS_ERR(cdclk_state))
return PTR_ERR(cdclk_state);
crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state,
cdclk_state);
return 0;
}
static int intel_crtc_atomic_check(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
int ret;
if (DISPLAY_VER(display) < 5 && !display->platform.g4x &&
intel_crtc_needs_modeset(crtc_state) &&
!crtc_state->hw.active)
crtc_state->update_wm_post = true;
if (intel_crtc_needs_modeset(crtc_state)) {
ret = intel_dpll_crtc_get_dpll(state, crtc);
if (ret)
return ret;
}
ret = intel_color_check(state, crtc);
if (ret)
return ret;
ret = intel_wm_compute(state, crtc);
if (ret) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] watermarks are invalid\n",
crtc->base.base.id, crtc->base.name);
return ret;
}
if (DISPLAY_VER(display) >= 9) {
if (intel_crtc_needs_modeset(crtc_state) ||
intel_crtc_needs_fastset(crtc_state)) {
ret = skl_update_scaler_crtc(crtc_state);
if (ret)
return ret;
}
ret = intel_atomic_setup_scalers(state, crtc);
if (ret)
return ret;
}
if (HAS_IPS(display)) {
ret = hsw_ips_compute_config(state, crtc);
if (ret)
return ret;
}
if (DISPLAY_VER(display) >= 9 ||
display->platform.broadwell || display->platform.haswell) {
ret = hsw_compute_linetime_wm(state, crtc);
if (ret)
return ret;
}
ret = intel_psr2_sel_fetch_update(state, crtc);
if (ret)
return ret;
return 0;
}
static int
compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct drm_connector *connector = conn_state->connector;
const struct drm_display_info *info = &connector->display_info;
int bpp;
switch (conn_state->max_bpc) {
case 6 ... 7:
bpp = 6 * 3;
break;
case 8 ... 9:
bpp = 8 * 3;
break;
case 10 ... 11:
bpp = 10 * 3;
break;
case 12 ... 16:
bpp = 12 * 3;
break;
default:
MISSING_CASE(conn_state->max_bpc);
return -EINVAL;
}
if (bpp < crtc_state->pipe_bpp) {
drm_dbg_kms(display->drm,
"[CONNECTOR:%d:%s] Limiting display bpp to %d "
"(EDID bpp %d, max requested bpp %d, max platform bpp %d)\n",
connector->base.id, connector->name,
bpp, 3 * info->bpc,
3 * conn_state->max_requested_bpc,
crtc_state->pipe_bpp);
crtc_state->pipe_bpp = bpp;
}
return 0;
}
int intel_display_min_pipe_bpp(void)
{
return 6 * 3;
}
int intel_display_max_pipe_bpp(struct intel_display *display)
{
if (display->platform.g4x || display->platform.valleyview ||
display->platform.cherryview)
return 10*3;
else if (DISPLAY_VER(display) >= 5)
return 12*3;
else
return 8*3;
}
static int
compute_baseline_pipe_bpp(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
crtc_state->pipe_bpp = intel_display_max_pipe_bpp(display);
/* Clamp display bpp to connector max bpp */
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
int ret;
if (connector_state->crtc != &crtc->base)
continue;
ret = compute_sink_pipe_bpp(connector_state, crtc_state);
if (ret)
return ret;
}
return 0;
}
static bool check_digital_port_conflicts(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
unsigned int used_ports = 0;
unsigned int used_mst_ports = 0;
bool ret = true;
/*
* We're going to peek into connector->state,
* hence connection_mutex must be held.
*/
drm_modeset_lock_assert_held(&display->drm->mode_config.connection_mutex);
/*
* Walk the connector list instead of the encoder
* list to detect the problem on ddi platforms
* where there's just one encoder per digital port.
*/
drm_connector_list_iter_begin(display->drm, &conn_iter);
drm_for_each_connector_iter(connector, &conn_iter) {
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
connector_state =
drm_atomic_get_new_connector_state(&state->base,
connector);
if (!connector_state)
connector_state = connector->state;
if (!connector_state->best_encoder)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
drm_WARN_ON(display->drm, !connector_state->crtc);
switch (encoder->type) {
case INTEL_OUTPUT_DDI:
if (drm_WARN_ON(display->drm, !HAS_DDI(display)))
break;
fallthrough;
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
/* the same port mustn't appear more than once */
if (used_ports & BIT(encoder->port))
ret = false;
used_ports |= BIT(encoder->port);
break;
case INTEL_OUTPUT_DP_MST:
used_mst_ports |=
1 << encoder->port;
break;
default:
break;
}
}
drm_connector_list_iter_end(&conn_iter);
/* can't mix MST and SST/HDMI on the same port */
if (used_ports & used_mst_ports)
return false;
return ret;
}
static void
intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
WARN_ON(intel_crtc_is_joiner_secondary(crtc_state));
drm_property_replace_blob(&crtc_state->hw.degamma_lut,
crtc_state->uapi.degamma_lut);
drm_property_replace_blob(&crtc_state->hw.gamma_lut,
crtc_state->uapi.gamma_lut);
drm_property_replace_blob(&crtc_state->hw.ctm,
crtc_state->uapi.ctm);
}
static void
intel_crtc_copy_uapi_to_hw_state_modeset(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
WARN_ON(intel_crtc_is_joiner_secondary(crtc_state));
crtc_state->hw.enable = crtc_state->uapi.enable;
crtc_state->hw.active = crtc_state->uapi.active;
drm_mode_copy(&crtc_state->hw.mode,
&crtc_state->uapi.mode);
drm_mode_copy(&crtc_state->hw.adjusted_mode,
&crtc_state->uapi.adjusted_mode);
crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter;
intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc);
}
static void
copy_joiner_crtc_state_nomodeset(struct intel_atomic_state *state,
struct intel_crtc *secondary_crtc)
{
struct intel_crtc_state *secondary_crtc_state =
intel_atomic_get_new_crtc_state(state, secondary_crtc);
struct intel_crtc *primary_crtc = intel_primary_crtc(secondary_crtc_state);
const struct intel_crtc_state *primary_crtc_state =
intel_atomic_get_new_crtc_state(state, primary_crtc);
drm_property_replace_blob(&secondary_crtc_state->hw.degamma_lut,
primary_crtc_state->hw.degamma_lut);
drm_property_replace_blob(&secondary_crtc_state->hw.gamma_lut,
primary_crtc_state->hw.gamma_lut);
drm_property_replace_blob(&secondary_crtc_state->hw.ctm,
primary_crtc_state->hw.ctm);
secondary_crtc_state->uapi.color_mgmt_changed = primary_crtc_state->uapi.color_mgmt_changed;
}
static int
copy_joiner_crtc_state_modeset(struct intel_atomic_state *state,
struct intel_crtc *secondary_crtc)
{
struct intel_crtc_state *secondary_crtc_state =
intel_atomic_get_new_crtc_state(state, secondary_crtc);
struct intel_crtc *primary_crtc = intel_primary_crtc(secondary_crtc_state);
const struct intel_crtc_state *primary_crtc_state =
intel_atomic_get_new_crtc_state(state, primary_crtc);
struct intel_crtc_state *saved_state;
WARN_ON(primary_crtc_state->joiner_pipes !=
secondary_crtc_state->joiner_pipes);
saved_state = kmemdup(primary_crtc_state, sizeof(*saved_state), GFP_KERNEL);
if (!saved_state)
return -ENOMEM;
/* preserve some things from the slave's original crtc state */
saved_state->uapi = secondary_crtc_state->uapi;
saved_state->scaler_state = secondary_crtc_state->scaler_state;
saved_state->intel_dpll = secondary_crtc_state->intel_dpll;
saved_state->crc_enabled = secondary_crtc_state->crc_enabled;
intel_crtc_free_hw_state(secondary_crtc_state);
if (secondary_crtc_state->dp_tunnel_ref.tunnel)
drm_dp_tunnel_ref_put(&secondary_crtc_state->dp_tunnel_ref);
memcpy(secondary_crtc_state, saved_state, sizeof(*secondary_crtc_state));
kfree(saved_state);
/* Re-init hw state */
memset(&secondary_crtc_state->hw, 0, sizeof(secondary_crtc_state->hw));
secondary_crtc_state->hw.enable = primary_crtc_state->hw.enable;
secondary_crtc_state->hw.active = primary_crtc_state->hw.active;
drm_mode_copy(&secondary_crtc_state->hw.mode,
&primary_crtc_state->hw.mode);
drm_mode_copy(&secondary_crtc_state->hw.pipe_mode,
&primary_crtc_state->hw.pipe_mode);
drm_mode_copy(&secondary_crtc_state->hw.adjusted_mode,
&primary_crtc_state->hw.adjusted_mode);
secondary_crtc_state->hw.scaling_filter = primary_crtc_state->hw.scaling_filter;
if (primary_crtc_state->dp_tunnel_ref.tunnel)
drm_dp_tunnel_ref_get(primary_crtc_state->dp_tunnel_ref.tunnel,
&secondary_crtc_state->dp_tunnel_ref);
copy_joiner_crtc_state_nomodeset(state, secondary_crtc);
secondary_crtc_state->uapi.mode_changed = primary_crtc_state->uapi.mode_changed;
secondary_crtc_state->uapi.connectors_changed = primary_crtc_state->uapi.connectors_changed;
secondary_crtc_state->uapi.active_changed = primary_crtc_state->uapi.active_changed;
WARN_ON(primary_crtc_state->joiner_pipes !=
secondary_crtc_state->joiner_pipes);
return 0;
}
static int
intel_crtc_prepare_cleared_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc_state *saved_state;
saved_state = intel_crtc_state_alloc(crtc);
if (!saved_state)
return -ENOMEM;
/* free the old crtc_state->hw members */
intel_crtc_free_hw_state(crtc_state);
intel_dp_tunnel_atomic_clear_stream_bw(state, crtc_state);
/* FIXME: before the switch to atomic started, a new pipe_config was
* kzalloc'd. Code that depends on any field being zero should be
* fixed, so that the crtc_state can be safely duplicated. For now,
* only fields that are know to not cause problems are preserved. */
saved_state->uapi = crtc_state->uapi;
saved_state->inherited = crtc_state->inherited;
saved_state->scaler_state = crtc_state->scaler_state;
saved_state->intel_dpll = crtc_state->intel_dpll;
saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
sizeof(saved_state->icl_port_dplls));
saved_state->crc_enabled = crtc_state->crc_enabled;
if (display->platform.g4x ||
display->platform.valleyview || display->platform.cherryview)
saved_state->wm = crtc_state->wm;
memcpy(crtc_state, saved_state, sizeof(*crtc_state));
kfree(saved_state);
intel_crtc_copy_uapi_to_hw_state_modeset(state, crtc);
return 0;
}
static int
intel_modeset_pipe_config(struct intel_atomic_state *state,
struct intel_crtc *crtc,
const struct intel_link_bw_limits *limits)
{
struct intel_display *display = to_intel_display(crtc);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int pipe_src_w, pipe_src_h;
int base_bpp, ret, i;
crtc_state->cpu_transcoder = (enum transcoder) crtc->pipe;
crtc_state->framestart_delay = 1;
/*
* Sanitize sync polarity flags based on requested ones. If neither
* positive or negative polarity is requested, treat this as meaning
* negative polarity.
*/
if (!(crtc_state->hw.adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (!(crtc_state->hw.adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
ret = compute_baseline_pipe_bpp(state, crtc);
if (ret)
return ret;
crtc_state->fec_enable = limits->force_fec_pipes & BIT(crtc->pipe);
crtc_state->max_link_bpp_x16 = limits->max_bpp_x16[crtc->pipe];
if (crtc_state->pipe_bpp > fxp_q4_to_int(crtc_state->max_link_bpp_x16)) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] Link bpp limited to " FXP_Q4_FMT "\n",
crtc->base.base.id, crtc->base.name,
FXP_Q4_ARGS(crtc_state->max_link_bpp_x16));
crtc_state->bw_constrained = true;
}
base_bpp = crtc_state->pipe_bpp;
/*
* Determine the real pipe dimensions. Note that stereo modes can
* increase the actual pipe size due to the frame doubling and
* insertion of additional space for blanks between the frame. This
* is stored in the crtc timings. We use the requested mode to do this
* computation to clearly distinguish it from the adjusted mode, which
* can be changed by the connectors in the below retry loop.
*/
drm_mode_get_hv_timing(&crtc_state->hw.mode,
&pipe_src_w, &pipe_src_h);
drm_rect_init(&crtc_state->pipe_src, 0, 0,
pipe_src_w, pipe_src_h);
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(connector_state->best_encoder);
if (connector_state->crtc != &crtc->base)
continue;
if (!check_single_encoder_cloning(state, crtc, encoder)) {
drm_dbg_kms(display->drm,
"[ENCODER:%d:%s] rejecting invalid cloning configuration\n",
encoder->base.base.id, encoder->base.name);
return -EINVAL;
}
/*
* Determine output_types before calling the .compute_config()
* hooks so that the hooks can use this information safely.
*/
if (encoder->compute_output_type)
crtc_state->output_types |=
BIT(encoder->compute_output_type(encoder, crtc_state,
connector_state));
else
crtc_state->output_types |= BIT(encoder->type);
}
/* Ensure the port clock defaults are reset when retrying. */
crtc_state->port_clock = 0;
crtc_state->pixel_multiplier = 1;
/* Fill in default crtc timings, allow encoders to overwrite them. */
drm_mode_set_crtcinfo(&crtc_state->hw.adjusted_mode,
CRTC_STEREO_DOUBLE);
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(connector_state->best_encoder);
if (connector_state->crtc != &crtc->base)
continue;
ret = encoder->compute_config(encoder, crtc_state,
connector_state);
if (ret == -EDEADLK)
return ret;
if (ret < 0) {
drm_dbg_kms(display->drm, "[ENCODER:%d:%s] config failure: %d\n",
encoder->base.base.id, encoder->base.name, ret);
return ret;
}
}
/* Set default port clock if not overwritten by the encoder. Needs to be
* done afterwards in case the encoder adjusts the mode. */
if (!crtc_state->port_clock)
crtc_state->port_clock = crtc_state->hw.adjusted_mode.crtc_clock
* crtc_state->pixel_multiplier;
ret = intel_crtc_compute_config(state, crtc);
if (ret == -EDEADLK)
return ret;
if (ret < 0) {
drm_dbg_kms(display->drm, "[CRTC:%d:%s] config failure: %d\n",
crtc->base.base.id, crtc->base.name, ret);
return ret;
}
/* Dithering seems to not pass-through bits correctly when it should, so
* only enable it on 6bpc panels and when its not a compliance
* test requesting 6bpc video pattern.
*/
crtc_state->dither = (crtc_state->pipe_bpp == 6*3) &&
!crtc_state->dither_force_disable;
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
crtc->base.base.id, crtc->base.name,
base_bpp, crtc_state->pipe_bpp, crtc_state->dither);
return 0;
}
static int
intel_modeset_pipe_config_late(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct drm_connector_state *conn_state;
struct drm_connector *connector;
int i;
intel_vrr_compute_config_late(crtc_state);
for_each_new_connector_in_state(&state->base, connector,
conn_state, i) {
struct intel_encoder *encoder =
to_intel_encoder(conn_state->best_encoder);
int ret;
if (conn_state->crtc != &crtc->base ||
!encoder->compute_config_late)
continue;
ret = encoder->compute_config_late(encoder, crtc_state,
conn_state);
if (ret)
return ret;
}
return 0;
}
bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
if (clock1 == clock2)
return true;
if (!clock1 || !clock2)
return false;
diff = abs(clock1 - clock2);
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
return false;
}
static bool
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
const struct intel_link_m_n *m2_n2)
{
return m_n->tu == m2_n2->tu &&
m_n->data_m == m2_n2->data_m &&
m_n->data_n == m2_n2->data_n &&
m_n->link_m == m2_n2->link_m &&
m_n->link_n == m2_n2->link_n;
}
static bool
intel_compare_infoframe(const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
return memcmp(a, b, sizeof(*a)) == 0;
}
static bool
intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a,
const struct drm_dp_vsc_sdp *b)
{
return a->pixelformat == b->pixelformat &&
a->colorimetry == b->colorimetry &&
a->bpc == b->bpc &&
a->dynamic_range == b->dynamic_range &&
a->content_type == b->content_type;
}
static bool
intel_compare_dp_as_sdp(const struct drm_dp_as_sdp *a,
const struct drm_dp_as_sdp *b)
{
return a->vtotal == b->vtotal &&
a->target_rr == b->target_rr &&
a->duration_incr_ms == b->duration_incr_ms &&
a->duration_decr_ms == b->duration_decr_ms &&
a->mode == b->mode;
}
static bool
intel_compare_buffer(const u8 *a, const u8 *b, size_t len)
{
return memcmp(a, b, len) == 0;
}
static void __printf(5, 6)
pipe_config_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name, const char *format, ...)
{
struct va_format vaf;
va_list args;
va_start(args, format);
vaf.fmt = format;
vaf.va = &args;
if (fastset)
drm_printf(p, "[CRTC:%d:%s] fastset requirement not met in %s %pV\n",
crtc->base.base.id, crtc->base.name, name, &vaf);
else
drm_printf(p, "[CRTC:%d:%s] mismatch in %s %pV\n",
crtc->base.base.id, crtc->base.name, name, &vaf);
va_end(args);
}
static void
pipe_config_infoframe_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name,
const union hdmi_infoframe *a,
const union hdmi_infoframe *b)
{
struct intel_display *display = to_intel_display(crtc);
const char *loglevel;
if (fastset) {
if (!drm_debug_enabled(DRM_UT_KMS))
return;
loglevel = KERN_DEBUG;
} else {
loglevel = KERN_ERR;
}
pipe_config_mismatch(p, fastset, crtc, name, "infoframe");
drm_printf(p, "expected:\n");
hdmi_infoframe_log(loglevel, display->drm->dev, a);
drm_printf(p, "found:\n");
hdmi_infoframe_log(loglevel, display->drm->dev, b);
}
static void
pipe_config_dp_vsc_sdp_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name,
const struct drm_dp_vsc_sdp *a,
const struct drm_dp_vsc_sdp *b)
{
pipe_config_mismatch(p, fastset, crtc, name, "dp vsc sdp");
drm_printf(p, "expected:\n");
drm_dp_vsc_sdp_log(p, a);
drm_printf(p, "found:\n");
drm_dp_vsc_sdp_log(p, b);
}
static void
pipe_config_dp_as_sdp_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name,
const struct drm_dp_as_sdp *a,
const struct drm_dp_as_sdp *b)
{
pipe_config_mismatch(p, fastset, crtc, name, "dp as sdp");
drm_printf(p, "expected:\n");
drm_dp_as_sdp_log(p, a);
drm_printf(p, "found:\n");
drm_dp_as_sdp_log(p, b);
}
/* Returns the length up to and including the last differing byte */
static size_t
memcmp_diff_len(const u8 *a, const u8 *b, size_t len)
{
int i;
for (i = len - 1; i >= 0; i--) {
if (a[i] != b[i])
return i + 1;
}
return 0;
}
static void
pipe_config_buffer_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name,
const u8 *a, const u8 *b, size_t len)
{
pipe_config_mismatch(p, fastset, crtc, name, "buffer");
/* only dump up to the last difference */
len = memcmp_diff_len(a, b, len);
drm_print_hex_dump(p, "expected: ", a, len);
drm_print_hex_dump(p, "found: ", b, len);
}
static void
pipe_config_pll_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name,
const struct intel_dpll_hw_state *a,
const struct intel_dpll_hw_state *b)
{
struct intel_display *display = to_intel_display(crtc);
pipe_config_mismatch(p, fastset, crtc, name, " "); /* stupid -Werror=format-zero-length */
drm_printf(p, "expected:\n");
intel_dpll_dump_hw_state(display, p, a);
drm_printf(p, "found:\n");
intel_dpll_dump_hw_state(display, p, b);
}
static void
pipe_config_cx0pll_mismatch(struct drm_printer *p, bool fastset,
const struct intel_crtc *crtc,
const char *name,
const struct intel_cx0pll_state *a,
const struct intel_cx0pll_state *b)
{
struct intel_display *display = to_intel_display(crtc);
char *chipname = a->use_c10 ? "C10" : "C20";
pipe_config_mismatch(p, fastset, crtc, name, chipname);
drm_printf(p, "expected:\n");
intel_cx0pll_dump_hw_state(display, a);
drm_printf(p, "found:\n");
intel_cx0pll_dump_hw_state(display, b);
}
static bool allow_vblank_delay_fastset(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
/*
* Allow fastboot to fix up vblank delay (handled via LRR
* codepaths), a bit dodgy as the registers aren't
* double buffered but seems to be working more or less...
*/
return HAS_LRR(display) && old_crtc_state->inherited &&
!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI);
}
bool
intel_pipe_config_compare(const struct intel_crtc_state *current_config,
const struct intel_crtc_state *pipe_config,
bool fastset)
{
struct intel_display *display = to_intel_display(current_config);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
struct drm_printer p;
u32 exclude_infoframes = 0;
bool ret = true;
if (fastset)
p = drm_dbg_printer(display->drm, DRM_UT_KMS, NULL);
else
p = drm_err_printer(display->drm, NULL);
#define PIPE_CONF_CHECK_X(name) do { \
if (current_config->name != pipe_config->name) { \
BUILD_BUG_ON_MSG(__same_type(current_config->name, bool), \
__stringify(name) " is bool"); \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected 0x%08x, found 0x%08x)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \
if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \
BUILD_BUG_ON_MSG(__same_type(current_config->name, bool), \
__stringify(name) " is bool"); \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected 0x%08x, found 0x%08x)", \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_I(name) do { \
if (current_config->name != pipe_config->name) { \
BUILD_BUG_ON_MSG(__same_type(current_config->name, bool), \
__stringify(name) " is bool"); \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected %i, found %i)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_LLI(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected %lli, found %lli)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BOOL(name) do { \
if (current_config->name != pipe_config->name) { \
BUILD_BUG_ON_MSG(!__same_type(current_config->name, bool), \
__stringify(name) " is not bool"); \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected %s, found %s)", \
str_yes_no(current_config->name), \
str_yes_no(pipe_config->name)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_P(name) do { \
if (current_config->name != pipe_config->name) { \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected %p, found %p)", \
current_config->name, \
pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_M_N(name) do { \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name)) { \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(expected tu %i data %i/%i link %i/%i, " \
"found tu %i, data %i/%i link %i/%i)", \
current_config->name.tu, \
current_config->name.data_m, \
current_config->name.data_n, \
current_config->name.link_m, \
current_config->name.link_n, \
pipe_config->name.tu, \
pipe_config->name.data_m, \
pipe_config->name.data_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_PLL(name) do { \
if (!intel_dpll_compare_hw_state(display, &current_config->name, \
&pipe_config->name)) { \
pipe_config_pll_mismatch(&p, fastset, crtc, __stringify(name), \
&current_config->name, \
&pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_PLL_CX0(name) do { \
if (!intel_cx0pll_compare_hw_state(&current_config->name, \
&pipe_config->name)) { \
pipe_config_cx0pll_mismatch(&p, fastset, crtc, __stringify(name), \
&current_config->name, \
&pipe_config->name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_TIMINGS(name) do { \
PIPE_CONF_CHECK_I(name.crtc_hdisplay); \
PIPE_CONF_CHECK_I(name.crtc_htotal); \
PIPE_CONF_CHECK_I(name.crtc_hblank_start); \
PIPE_CONF_CHECK_I(name.crtc_hblank_end); \
PIPE_CONF_CHECK_I(name.crtc_hsync_start); \
PIPE_CONF_CHECK_I(name.crtc_hsync_end); \
PIPE_CONF_CHECK_I(name.crtc_vdisplay); \
if (!fastset || !allow_vblank_delay_fastset(current_config)) \
PIPE_CONF_CHECK_I(name.crtc_vblank_start); \
PIPE_CONF_CHECK_I(name.crtc_vsync_start); \
PIPE_CONF_CHECK_I(name.crtc_vsync_end); \
if (!fastset || !pipe_config->update_lrr) { \
PIPE_CONF_CHECK_I(name.crtc_vtotal); \
PIPE_CONF_CHECK_I(name.crtc_vblank_end); \
} \
} while (0)
#define PIPE_CONF_CHECK_RECT(name) do { \
PIPE_CONF_CHECK_I(name.x1); \
PIPE_CONF_CHECK_I(name.x2); \
PIPE_CONF_CHECK_I(name.y1); \
PIPE_CONF_CHECK_I(name.y2); \
} while (0)
#define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
pipe_config_mismatch(&p, fastset, crtc, __stringify(name), \
"(%x) (expected %i, found %i)", \
(mask), \
current_config->name & (mask), \
pipe_config->name & (mask)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_INFOFRAME(name) do { \
if (!intel_compare_infoframe(&current_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_infoframe_mismatch(&p, fastset, crtc, __stringify(name), \
&current_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \
if (!intel_compare_dp_vsc_sdp(&current_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_dp_vsc_sdp_mismatch(&p, fastset, crtc, __stringify(name), \
&current_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_DP_AS_SDP(name) do { \
if (!intel_compare_dp_as_sdp(&current_config->infoframes.name, \
&pipe_config->infoframes.name)) { \
pipe_config_dp_as_sdp_mismatch(&p, fastset, crtc, __stringify(name), \
&current_config->infoframes.name, \
&pipe_config->infoframes.name); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_BUFFER(name, len) do { \
BUILD_BUG_ON(sizeof(current_config->name) != (len)); \
BUILD_BUG_ON(sizeof(pipe_config->name) != (len)); \
if (!intel_compare_buffer(current_config->name, pipe_config->name, (len))) { \
pipe_config_buffer_mismatch(&p, fastset, crtc, __stringify(name), \
current_config->name, \
pipe_config->name, \
(len)); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_COLOR_LUT(lut, is_pre_csc_lut) do { \
if (current_config->gamma_mode == pipe_config->gamma_mode && \
!intel_color_lut_equal(current_config, \
current_config->lut, pipe_config->lut, \
is_pre_csc_lut)) { \
pipe_config_mismatch(&p, fastset, crtc, __stringify(lut), \
"hw_state doesn't match sw_state"); \
ret = false; \
} \
} while (0)
#define PIPE_CONF_CHECK_CSC(name) do { \
PIPE_CONF_CHECK_X(name.preoff[0]); \
PIPE_CONF_CHECK_X(name.preoff[1]); \
PIPE_CONF_CHECK_X(name.preoff[2]); \
PIPE_CONF_CHECK_X(name.coeff[0]); \
PIPE_CONF_CHECK_X(name.coeff[1]); \
PIPE_CONF_CHECK_X(name.coeff[2]); \
PIPE_CONF_CHECK_X(name.coeff[3]); \
PIPE_CONF_CHECK_X(name.coeff[4]); \
PIPE_CONF_CHECK_X(name.coeff[5]); \
PIPE_CONF_CHECK_X(name.coeff[6]); \
PIPE_CONF_CHECK_X(name.coeff[7]); \
PIPE_CONF_CHECK_X(name.coeff[8]); \
PIPE_CONF_CHECK_X(name.postoff[0]); \
PIPE_CONF_CHECK_X(name.postoff[1]); \
PIPE_CONF_CHECK_X(name.postoff[2]); \
} while (0)
#define PIPE_CONF_QUIRK(quirk) \
((current_config->quirks | pipe_config->quirks) & (quirk))
PIPE_CONF_CHECK_BOOL(hw.enable);
PIPE_CONF_CHECK_BOOL(hw.active);
PIPE_CONF_CHECK_I(cpu_transcoder);
PIPE_CONF_CHECK_I(mst_master_transcoder);
PIPE_CONF_CHECK_BOOL(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_M_N(fdi_m_n);
PIPE_CONF_CHECK_I(lane_count);
PIPE_CONF_CHECK_X(lane_lat_optim_mask);
PIPE_CONF_CHECK_I(min_hblank);
if (HAS_DOUBLE_BUFFERED_M_N(display)) {
if (!fastset || !pipe_config->update_m_n)
PIPE_CONF_CHECK_M_N(dp_m_n);
} else {
PIPE_CONF_CHECK_M_N(dp_m_n);
PIPE_CONF_CHECK_M_N(dp_m2_n2);
}
PIPE_CONF_CHECK_X(output_types);
PIPE_CONF_CHECK_I(framestart_delay);
PIPE_CONF_CHECK_I(msa_timing_delay);
PIPE_CONF_CHECK_TIMINGS(hw.pipe_mode);
PIPE_CONF_CHECK_TIMINGS(hw.adjusted_mode);
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
PIPE_CONF_CHECK_I(output_format);
PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
if ((DISPLAY_VER(display) < 8 && !display->platform.haswell) ||
display->platform.valleyview || display->platform.cherryview)
PIPE_CONF_CHECK_BOOL(limited_color_range);
PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
PIPE_CONF_CHECK_BOOL(has_infoframe);
PIPE_CONF_CHECK_BOOL(enhanced_framing);
PIPE_CONF_CHECK_BOOL(fec_enable);
if (!fastset) {
PIPE_CONF_CHECK_BOOL(has_audio);
PIPE_CONF_CHECK_BUFFER(eld, MAX_ELD_BYTES);
}
PIPE_CONF_CHECK_X(gmch_pfit.control);
/* pfit ratios are autocomputed by the hw on gen4+ */
if (DISPLAY_VER(display) < 4)
PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
/*
* Changing the EDP transcoder input mux
* (A_ONOFF vs. A_ON) requires a full modeset.
*/
PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
if (!fastset) {
PIPE_CONF_CHECK_RECT(pipe_src);
PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
PIPE_CONF_CHECK_RECT(pch_pfit.dst);
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
PIPE_CONF_CHECK_I(pixel_rate);
PIPE_CONF_CHECK_X(gamma_mode);
if (display->platform.cherryview)
PIPE_CONF_CHECK_X(cgm_mode);
else
PIPE_CONF_CHECK_X(csc_mode);
PIPE_CONF_CHECK_BOOL(gamma_enable);
PIPE_CONF_CHECK_BOOL(csc_enable);
PIPE_CONF_CHECK_BOOL(wgc_enable);
PIPE_CONF_CHECK_I(linetime);
PIPE_CONF_CHECK_I(ips_linetime);
PIPE_CONF_CHECK_COLOR_LUT(pre_csc_lut, true);
PIPE_CONF_CHECK_COLOR_LUT(post_csc_lut, false);
PIPE_CONF_CHECK_CSC(csc);
PIPE_CONF_CHECK_CSC(output_csc);
}
PIPE_CONF_CHECK_BOOL(double_wide);
if (display->dpll.mgr)
PIPE_CONF_CHECK_P(intel_dpll);
/* FIXME convert everything over the dpll_mgr */
if (display->dpll.mgr || HAS_GMCH(display))
PIPE_CONF_CHECK_PLL(dpll_hw_state);
/* FIXME convert MTL+ platforms over to dpll_mgr */
if (DISPLAY_VER(display) >= 14)
PIPE_CONF_CHECK_PLL_CX0(dpll_hw_state.cx0pll);
PIPE_CONF_CHECK_X(dsi_pll.ctrl);
PIPE_CONF_CHECK_X(dsi_pll.div);
if (display->platform.g4x || DISPLAY_VER(display) >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
if (!fastset || !pipe_config->update_m_n) {
PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_clock);
PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_clock);
}
PIPE_CONF_CHECK_I(port_clock);
PIPE_CONF_CHECK_I(min_voltage_level);
if (current_config->has_psr || pipe_config->has_psr)
exclude_infoframes |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
if (current_config->vrr.enable || pipe_config->vrr.enable)
exclude_infoframes |= intel_hdmi_infoframe_enable(DP_SDP_ADAPTIVE_SYNC);
PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, ~exclude_infoframes);
PIPE_CONF_CHECK_X(infoframes.gcp);
PIPE_CONF_CHECK_INFOFRAME(avi);
PIPE_CONF_CHECK_INFOFRAME(spd);
PIPE_CONF_CHECK_INFOFRAME(hdmi);
if (!fastset) {
PIPE_CONF_CHECK_INFOFRAME(drm);
PIPE_CONF_CHECK_DP_AS_SDP(as_sdp);
}
PIPE_CONF_CHECK_DP_VSC_SDP(vsc);
PIPE_CONF_CHECK_X(sync_mode_slaves_mask);
PIPE_CONF_CHECK_I(master_transcoder);
PIPE_CONF_CHECK_X(joiner_pipes);
PIPE_CONF_CHECK_BOOL(dsc.config.block_pred_enable);
PIPE_CONF_CHECK_BOOL(dsc.config.convert_rgb);
PIPE_CONF_CHECK_BOOL(dsc.config.simple_422);
PIPE_CONF_CHECK_BOOL(dsc.config.native_422);
PIPE_CONF_CHECK_BOOL(dsc.config.native_420);
PIPE_CONF_CHECK_BOOL(dsc.config.vbr_enable);
PIPE_CONF_CHECK_I(dsc.config.line_buf_depth);
PIPE_CONF_CHECK_I(dsc.config.bits_per_component);
PIPE_CONF_CHECK_I(dsc.config.pic_width);
PIPE_CONF_CHECK_I(dsc.config.pic_height);
PIPE_CONF_CHECK_I(dsc.config.slice_width);
PIPE_CONF_CHECK_I(dsc.config.slice_height);
PIPE_CONF_CHECK_I(dsc.config.initial_dec_delay);
PIPE_CONF_CHECK_I(dsc.config.initial_xmit_delay);
PIPE_CONF_CHECK_I(dsc.config.scale_decrement_interval);
PIPE_CONF_CHECK_I(dsc.config.scale_increment_interval);
PIPE_CONF_CHECK_I(dsc.config.initial_scale_value);
PIPE_CONF_CHECK_I(dsc.config.first_line_bpg_offset);
PIPE_CONF_CHECK_I(dsc.config.flatness_min_qp);
PIPE_CONF_CHECK_I(dsc.config.flatness_max_qp);
PIPE_CONF_CHECK_I(dsc.config.slice_bpg_offset);
PIPE_CONF_CHECK_I(dsc.config.nfl_bpg_offset);
PIPE_CONF_CHECK_I(dsc.config.initial_offset);
PIPE_CONF_CHECK_I(dsc.config.final_offset);
PIPE_CONF_CHECK_I(dsc.config.rc_model_size);
PIPE_CONF_CHECK_I(dsc.config.rc_quant_incr_limit0);
PIPE_CONF_CHECK_I(dsc.config.rc_quant_incr_limit1);
PIPE_CONF_CHECK_I(dsc.config.slice_chunk_size);
PIPE_CONF_CHECK_I(dsc.config.second_line_bpg_offset);
PIPE_CONF_CHECK_I(dsc.config.nsl_bpg_offset);
PIPE_CONF_CHECK_BOOL(dsc.compression_enable);
PIPE_CONF_CHECK_I(dsc.num_streams);
PIPE_CONF_CHECK_I(dsc.compressed_bpp_x16);
PIPE_CONF_CHECK_BOOL(splitter.enable);
PIPE_CONF_CHECK_I(splitter.link_count);
PIPE_CONF_CHECK_I(splitter.pixel_overlap);
if (!fastset) {
PIPE_CONF_CHECK_BOOL(vrr.enable);
PIPE_CONF_CHECK_I(vrr.vmin);
PIPE_CONF_CHECK_I(vrr.vmax);
PIPE_CONF_CHECK_I(vrr.flipline);
PIPE_CONF_CHECK_I(vrr.vsync_start);
PIPE_CONF_CHECK_I(vrr.vsync_end);
PIPE_CONF_CHECK_LLI(cmrr.cmrr_m);
PIPE_CONF_CHECK_LLI(cmrr.cmrr_n);
PIPE_CONF_CHECK_BOOL(cmrr.enable);
}
if (!fastset || intel_vrr_always_use_vrr_tg(display)) {
PIPE_CONF_CHECK_I(vrr.pipeline_full);
PIPE_CONF_CHECK_I(vrr.guardband);
}
#undef PIPE_CONF_CHECK_X
#undef PIPE_CONF_CHECK_I
#undef PIPE_CONF_CHECK_LLI
#undef PIPE_CONF_CHECK_BOOL
#undef PIPE_CONF_CHECK_P
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_COLOR_LUT
#undef PIPE_CONF_CHECK_TIMINGS
#undef PIPE_CONF_CHECK_RECT
#undef PIPE_CONF_QUIRK
return ret;
}
static void
intel_verify_planes(struct intel_atomic_state *state)
{
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane,
plane_state, i)
assert_plane(plane, plane_state->is_y_plane ||
plane_state->uapi.visible);
}
static int intel_modeset_pipe(struct intel_atomic_state *state,
struct intel_crtc_state *crtc_state,
const char *reason)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
int ret;
drm_dbg_kms(display->drm, "[CRTC:%d:%s] Full modeset due to %s\n",
crtc->base.base.id, crtc->base.name, reason);
ret = drm_atomic_add_affected_connectors(&state->base,
&crtc->base);
if (ret)
return ret;
ret = intel_dp_tunnel_atomic_add_state_for_crtc(state, crtc);
if (ret)
return ret;
ret = intel_dp_mst_add_topology_state_for_crtc(state, crtc);
if (ret)
return ret;
ret = intel_plane_add_affected(state, crtc);
if (ret)
return ret;
crtc_state->uapi.mode_changed = true;
return 0;
}
/**
* intel_modeset_pipes_in_mask_early - force a full modeset on a set of pipes
* @state: intel atomic state
* @reason: the reason for the full modeset
* @mask: mask of pipes to modeset
*
* Add pipes in @mask to @state and force a full modeset on the enabled ones
* due to the description in @reason.
* This function can be called only before new plane states are computed.
*
* Returns 0 in case of success, negative error code otherwise.
*/
int intel_modeset_pipes_in_mask_early(struct intel_atomic_state *state,
const char *reason, u8 mask)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc *crtc;
for_each_intel_crtc_in_pipe_mask(display->drm, crtc, mask) {
struct intel_crtc_state *crtc_state;
int ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->hw.enable ||
intel_crtc_needs_modeset(crtc_state))
continue;
ret = intel_modeset_pipe(state, crtc_state, reason);
if (ret)
return ret;
}
return 0;
}
static void
intel_crtc_flag_modeset(struct intel_crtc_state *crtc_state)
{
crtc_state->uapi.mode_changed = true;
crtc_state->update_pipe = false;
crtc_state->update_m_n = false;
crtc_state->update_lrr = false;
}
/**
* intel_modeset_all_pipes_late - force a full modeset on all pipes
* @state: intel atomic state
* @reason: the reason for the full modeset
*
* Add all pipes to @state and force a full modeset on the active ones due to
* the description in @reason.
* This function can be called only after new plane states are computed already.
*
* Returns 0 in case of success, negative error code otherwise.
*/
int intel_modeset_all_pipes_late(struct intel_atomic_state *state,
const char *reason)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc *crtc;
for_each_intel_crtc(display->drm, crtc) {
struct intel_crtc_state *crtc_state;
int ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->hw.active ||
intel_crtc_needs_modeset(crtc_state))
continue;
ret = intel_modeset_pipe(state, crtc_state, reason);
if (ret)
return ret;
intel_crtc_flag_modeset(crtc_state);
crtc_state->update_planes |= crtc_state->active_planes;
crtc_state->async_flip_planes = 0;
crtc_state->do_async_flip = false;
}
return 0;
}
int intel_modeset_commit_pipes(struct intel_display *display,
u8 pipe_mask,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_atomic_state *state;
struct intel_crtc *crtc;
int ret;
state = drm_atomic_state_alloc(display->drm);
if (!state)
return -ENOMEM;
state->acquire_ctx = ctx;
to_intel_atomic_state(state)->internal = true;
for_each_intel_crtc_in_pipe_mask(display->drm, crtc, pipe_mask) {
struct intel_crtc_state *crtc_state =
intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
crtc_state->uapi.connectors_changed = true;
}
ret = drm_atomic_commit(state);
out:
drm_atomic_state_put(state);
return ret;
}
/*
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
{
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
struct intel_crtc_state *first_crtc_state = NULL;
struct intel_crtc_state *other_crtc_state = NULL;
enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
int i;
/* look at all crtc's that are going to be enabled in during modeset */
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (!crtc_state->hw.active ||
!intel_crtc_needs_modeset(crtc_state))
continue;
if (first_crtc_state) {
other_crtc_state = crtc_state;
break;
} else {
first_crtc_state = crtc_state;
first_pipe = crtc->pipe;
}
}
/* No workaround needed? */
if (!first_crtc_state)
return 0;
/* w/a possibly needed, check how many crtc's are already enabled. */
for_each_intel_crtc(state->base.dev, crtc) {
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->hsw_workaround_pipe = INVALID_PIPE;
if (!crtc_state->hw.active ||
intel_crtc_needs_modeset(crtc_state))
continue;
/* 2 or more enabled crtcs means no need for w/a */
if (enabled_pipe != INVALID_PIPE)
return 0;
enabled_pipe = crtc->pipe;
}
if (enabled_pipe != INVALID_PIPE)
first_crtc_state->hsw_workaround_pipe = enabled_pipe;
else if (other_crtc_state)
other_crtc_state->hsw_workaround_pipe = first_pipe;
return 0;
}
u8 intel_calc_active_pipes(struct intel_atomic_state *state,
u8 active_pipes)
{
const struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc_state->hw.active)
active_pipes |= BIT(crtc->pipe);
else
active_pipes &= ~BIT(crtc->pipe);
}
return active_pipes;
}
static int intel_modeset_checks(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
state->modeset = true;
if (display->platform.haswell)
return hsw_mode_set_planes_workaround(state);
return 0;
}
static bool lrr_params_changed(const struct drm_display_mode *old_adjusted_mode,
const struct drm_display_mode *new_adjusted_mode)
{
return old_adjusted_mode->crtc_vblank_start != new_adjusted_mode->crtc_vblank_start ||
old_adjusted_mode->crtc_vblank_end != new_adjusted_mode->crtc_vblank_end ||
old_adjusted_mode->crtc_vtotal != new_adjusted_mode->crtc_vtotal;
}
static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state)
{
struct intel_display *display = to_intel_display(new_crtc_state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
/* only allow LRR when the timings stay within the VRR range */
if (old_crtc_state->vrr.in_range != new_crtc_state->vrr.in_range)
new_crtc_state->update_lrr = false;
if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) {
drm_dbg_kms(display->drm, "[CRTC:%d:%s] fastset requirement not met, forcing full modeset\n",
crtc->base.base.id, crtc->base.name);
} else {
if (allow_vblank_delay_fastset(old_crtc_state))
new_crtc_state->update_lrr = true;
new_crtc_state->uapi.mode_changed = false;
}
if (intel_compare_link_m_n(&old_crtc_state->dp_m_n,
&new_crtc_state->dp_m_n))
new_crtc_state->update_m_n = false;
if (!lrr_params_changed(&old_crtc_state->hw.adjusted_mode,
&new_crtc_state->hw.adjusted_mode))
new_crtc_state->update_lrr = false;
if (intel_crtc_needs_modeset(new_crtc_state))
intel_crtc_flag_modeset(new_crtc_state);
else
new_crtc_state->update_pipe = true;
}
static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state __maybe_unused *crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
int ret;
ret = intel_crtc_atomic_check(state, crtc);
if (ret) {
drm_dbg_atomic(display->drm,
"[CRTC:%d:%s] atomic driver check failed\n",
crtc->base.base.id, crtc->base.name);
return ret;
}
}
return 0;
}
static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
u8 transcoders)
{
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->hw.enable &&
transcoders & BIT(new_crtc_state->cpu_transcoder) &&
intel_crtc_needs_modeset(new_crtc_state))
return true;
}
return false;
}
static bool intel_pipes_need_modeset(struct intel_atomic_state *state,
u8 pipes)
{
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->hw.enable &&
pipes & BIT(crtc->pipe) &&
intel_crtc_needs_modeset(new_crtc_state))
return true;
}
return false;
}
static int intel_atomic_check_joiner(struct intel_atomic_state *state,
struct intel_crtc *primary_crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *primary_crtc_state =
intel_atomic_get_new_crtc_state(state, primary_crtc);
struct intel_crtc *secondary_crtc;
if (!primary_crtc_state->joiner_pipes)
return 0;
/* sanity check */
if (drm_WARN_ON(display->drm,
primary_crtc->pipe != joiner_primary_pipe(primary_crtc_state)))
return -EINVAL;
if (primary_crtc_state->joiner_pipes & ~joiner_pipes(display)) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] Cannot act as joiner primary "
"(need 0x%x as pipes, only 0x%x possible)\n",
primary_crtc->base.base.id, primary_crtc->base.name,
primary_crtc_state->joiner_pipes, joiner_pipes(display));
return -EINVAL;
}
for_each_intel_crtc_in_pipe_mask(display->drm, secondary_crtc,
intel_crtc_joiner_secondary_pipes(primary_crtc_state)) {
struct intel_crtc_state *secondary_crtc_state;
int ret;
secondary_crtc_state = intel_atomic_get_crtc_state(&state->base, secondary_crtc);
if (IS_ERR(secondary_crtc_state))
return PTR_ERR(secondary_crtc_state);
/* primary being enabled, secondary was already configured? */
if (secondary_crtc_state->uapi.enable) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] secondary is enabled as normal CRTC, but "
"[CRTC:%d:%s] claiming this CRTC for joiner.\n",
secondary_crtc->base.base.id, secondary_crtc->base.name,
primary_crtc->base.base.id, primary_crtc->base.name);
return -EINVAL;
}
/*
* The state copy logic assumes the primary crtc gets processed
* before the secondary crtc during the main compute_config loop.
* This works because the crtcs are created in pipe order,
* and the hardware requires primary pipe < secondary pipe as well.
* Should that change we need to rethink the logic.
*/
if (WARN_ON(drm_crtc_index(&primary_crtc->base) >
drm_crtc_index(&secondary_crtc->base)))
return -EINVAL;
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] Used as secondary for joiner primary [CRTC:%d:%s]\n",
secondary_crtc->base.base.id, secondary_crtc->base.name,
primary_crtc->base.base.id, primary_crtc->base.name);
secondary_crtc_state->joiner_pipes =
primary_crtc_state->joiner_pipes;
ret = copy_joiner_crtc_state_modeset(state, secondary_crtc);
if (ret)
return ret;
}
return 0;
}
static void kill_joiner_secondaries(struct intel_atomic_state *state,
struct intel_crtc *primary_crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *primary_crtc_state =
intel_atomic_get_new_crtc_state(state, primary_crtc);
struct intel_crtc *secondary_crtc;
for_each_intel_crtc_in_pipe_mask(display->drm, secondary_crtc,
intel_crtc_joiner_secondary_pipes(primary_crtc_state)) {
struct intel_crtc_state *secondary_crtc_state =
intel_atomic_get_new_crtc_state(state, secondary_crtc);
secondary_crtc_state->joiner_pipes = 0;
intel_crtc_copy_uapi_to_hw_state_modeset(state, secondary_crtc);
}
primary_crtc_state->joiner_pipes = 0;
}
/**
* DOC: asynchronous flip implementation
*
* Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC
* flag. Currently async flip is only supported via the drmModePageFlip IOCTL.
* Correspondingly, support is currently added for primary plane only.
*
* Async flip can only change the plane surface address, so anything else
* changing is rejected from the intel_async_flip_check_hw() function.
* Once this check is cleared, flip done interrupt is enabled using
* the intel_crtc_enable_flip_done() function.
*
* As soon as the surface address register is written, flip done interrupt is
* generated and the requested events are sent to the userspace in the interrupt
* handler itself. The timestamp and sequence sent during the flip done event
* correspond to the last vblank and have no relation to the actual time when
* the flip done event was sent.
*/
static int intel_async_flip_check_uapi(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *old_plane_state;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
if (!new_crtc_state->uapi.async_flip)
return 0;
if (!new_crtc_state->uapi.active) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] not active\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_needs_modeset(new_crtc_state)) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] modeset required\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
/*
* FIXME: joiner+async flip is busted currently.
* Remove this check once the issues are fixed.
*/
if (new_crtc_state->joiner_pipes) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] async flip disallowed with joiner\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
/*
* TODO: Async flip is only supported through the page flip IOCTL
* as of now. So support currently added for primary plane only.
* Support for other planes on platforms on which supports
* this(vlv/chv and icl+) should be added when async flip is
* enabled in the atomic IOCTL path.
*/
if (!plane->async_flip) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] async flip not supported\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (!old_plane_state->uapi.fb || !new_plane_state->uapi.fb) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] no old or new framebuffer\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_async_flip_check_hw(struct intel_atomic_state *state, struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state, *new_crtc_state;
const struct intel_plane_state *new_plane_state, *old_plane_state;
struct intel_plane *plane;
int i;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->uapi.async_flip)
return 0;
if (!new_crtc_state->hw.active) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] not active\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (intel_crtc_needs_modeset(new_crtc_state)) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] modeset required\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
if (old_crtc_state->active_planes != new_crtc_state->active_planes) {
drm_dbg_kms(display->drm,
"[CRTC:%d:%s] Active planes cannot be in async flip\n",
crtc->base.base.id, crtc->base.name);
return -EINVAL;
}
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
/*
* Only async flip capable planes should be in the state
* if we're really about to ask the hardware to perform
* an async flip. We should never get this far otherwise.
*/
if (drm_WARN_ON(display->drm,
new_crtc_state->do_async_flip && !plane->async_flip))
return -EINVAL;
/*
* Only check async flip capable planes other planes
* may be involved in the initial commit due to
* the wm0/ddb optimization.
*
* TODO maybe should track which planes actually
* were requested to do the async flip...
*/
if (!plane->async_flip)
continue;
if (!intel_plane_can_async_flip(plane, new_plane_state->hw.fb->format->format,
new_plane_state->hw.fb->modifier)) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] pixel format %p4cc / modifier 0x%llx does not support async flip\n",
plane->base.base.id, plane->base.name,
&new_plane_state->hw.fb->format->format,
new_plane_state->hw.fb->modifier);
return -EINVAL;
}
/*
* We turn the first async flip request into a sync flip
* so that we can reconfigure the plane (eg. change modifier).
*/
if (!new_crtc_state->do_async_flip)
continue;
if (old_plane_state->view.color_plane[0].mapping_stride !=
new_plane_state->view.color_plane[0].mapping_stride) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Stride cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.fb->modifier !=
new_plane_state->hw.fb->modifier) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Modifier cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.fb->format !=
new_plane_state->hw.fb->format) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Pixel format cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.rotation !=
new_plane_state->hw.rotation) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Rotation cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (skl_plane_aux_dist(old_plane_state, 0) !=
skl_plane_aux_dist(new_plane_state, 0)) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] AUX_DIST cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) ||
!drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Size/co-ordinates cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) {
drm_dbg_kms(display->drm,
"[PLANES:%d:%s] Alpha value cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.pixel_blend_mode !=
new_plane_state->hw.pixel_blend_mode) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Pixel blend mode cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Color encoding cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Color range cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
/* plane decryption is allow to change only in synchronous flips */
if (old_plane_state->decrypt != new_plane_state->decrypt) {
drm_dbg_kms(display->drm,
"[PLANE:%d:%s] Decryption cannot be changed in async flip\n",
plane->base.base.id, plane->base.name);
return -EINVAL;
}
}
return 0;
}
static int intel_joiner_add_affected_crtcs(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
const struct intel_plane_state *plane_state;
struct intel_crtc_state *crtc_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
u8 affected_pipes = 0;
u8 modeset_pipes = 0;
int i;
/*
* Any plane which is in use by the joiner needs its crtc.
* Pull those in first as this will not have happened yet
* if the plane remains disabled according to uapi.
*/
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
crtc = to_intel_crtc(plane_state->hw.crtc);
if (!crtc)
continue;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
/* Now pull in all joined crtcs */
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
affected_pipes |= crtc_state->joiner_pipes;
if (intel_crtc_needs_modeset(crtc_state))
modeset_pipes |= crtc_state->joiner_pipes;
}
for_each_intel_crtc_in_pipe_mask(display->drm, crtc, affected_pipes) {
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
for_each_intel_crtc_in_pipe_mask(display->drm, crtc, modeset_pipes) {
int ret;
crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
crtc_state->uapi.mode_changed = true;
ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
if (ret)
return ret;
ret = intel_plane_add_affected(state, crtc);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
/* Kill old joiner link, we may re-establish afterwards */
if (intel_crtc_needs_modeset(crtc_state) &&
intel_crtc_is_joiner_primary(crtc_state))
kill_joiner_secondaries(state, crtc);
}
return 0;
}
static int intel_atomic_check_config(struct intel_atomic_state *state,
struct intel_link_bw_limits *limits,
enum pipe *failed_pipe)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int ret;
int i;
*failed_pipe = INVALID_PIPE;
ret = intel_joiner_add_affected_crtcs(state);
if (ret)
return ret;
ret = intel_fdi_add_affected_crtcs(state);
if (ret)
return ret;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state)) {
if (intel_crtc_is_joiner_secondary(new_crtc_state))
copy_joiner_crtc_state_nomodeset(state, crtc);
else
intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc);
continue;
}
if (drm_WARN_ON(display->drm, intel_crtc_is_joiner_secondary(new_crtc_state)))
continue;
ret = intel_crtc_prepare_cleared_state(state, crtc);
if (ret)
goto fail;
if (!new_crtc_state->hw.enable)
continue;
ret = intel_modeset_pipe_config(state, crtc, limits);
if (ret)
goto fail;
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (drm_WARN_ON(display->drm, intel_crtc_is_joiner_secondary(new_crtc_state)))
continue;
if (!new_crtc_state->hw.enable)
continue;
ret = intel_modeset_pipe_config_late(state, crtc);
if (ret)
goto fail;
}
fail:
if (ret)
*failed_pipe = crtc->pipe;
return ret;
}
static int intel_atomic_check_config_and_link(struct intel_atomic_state *state)
{
struct intel_link_bw_limits new_limits;
struct intel_link_bw_limits old_limits;
int ret;
intel_link_bw_init_limits(state, &new_limits);
old_limits = new_limits;
while (true) {
enum pipe failed_pipe;
ret = intel_atomic_check_config(state, &new_limits,
&failed_pipe);
if (ret) {
/*
* The bpp limit for a pipe is below the minimum it supports, set the
* limit to the minimum and recalculate the config.
*/
if (ret == -EINVAL &&
intel_link_bw_set_bpp_limit_for_pipe(state,
&old_limits,
&new_limits,
failed_pipe))
continue;
break;
}
old_limits = new_limits;
ret = intel_link_bw_atomic_check(state, &new_limits);
if (ret != -EAGAIN)
break;
}
return ret;
}
/**
* intel_atomic_check - validate state object
* @dev: drm device
* @_state: state to validate
*/
int intel_atomic_check(struct drm_device *dev,
struct drm_atomic_state *_state)
{
struct intel_display *display = to_intel_display(dev);
struct intel_atomic_state *state = to_intel_atomic_state(_state);
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
int ret, i;
bool any_ms = false;
if (!intel_display_driver_check_access(display))
return -ENODEV;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
/*
* crtc's state no longer considered to be inherited
* after the first userspace/client initiated commit.
*/
if (!state->internal)
new_crtc_state->inherited = false;
if (new_crtc_state->inherited != old_crtc_state->inherited)
new_crtc_state->uapi.mode_changed = true;
if (new_crtc_state->uapi.scaling_filter !=
old_crtc_state->uapi.scaling_filter)
new_crtc_state->uapi.mode_changed = true;
}
intel_vrr_check_modeset(state);
ret = drm_atomic_helper_check_modeset(dev, &state->base);
if (ret)
goto fail;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = intel_async_flip_check_uapi(state, crtc);
if (ret)
return ret;
}
ret = intel_atomic_check_config_and_link(state);
if (ret)
goto fail;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
if (intel_crtc_is_joiner_secondary(new_crtc_state)) {
drm_WARN_ON(display->drm, new_crtc_state->uapi.enable);
continue;
}
ret = intel_atomic_check_joiner(state, crtc);
if (ret)
goto fail;
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
intel_joiner_adjust_pipe_src(new_crtc_state);
intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
}
/**
* Check if fastset is allowed by external dependencies like other
* pipes and transcoders.
*
* Right now it only forces a fullmodeset when the MST master
* transcoder did not changed but the pipe of the master transcoder
* needs a fullmodeset so all slaves also needs to do a fullmodeset or
* in case of port synced crtcs, if one of the synced crtcs
* needs a full modeset, all other synced crtcs should be
* forced a full modeset.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state))
continue;
if (intel_dp_mst_crtc_needs_modeset(state, crtc))
intel_crtc_flag_modeset(new_crtc_state);
if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
enum transcoder master = new_crtc_state->mst_master_transcoder;
if (intel_cpu_transcoders_need_modeset(state, BIT(master)))
intel_crtc_flag_modeset(new_crtc_state);
}
if (is_trans_port_sync_mode(new_crtc_state)) {
u8 trans = new_crtc_state->sync_mode_slaves_mask;
if (new_crtc_state->master_transcoder != INVALID_TRANSCODER)
trans |= BIT(new_crtc_state->master_transcoder);
if (intel_cpu_transcoders_need_modeset(state, trans))
intel_crtc_flag_modeset(new_crtc_state);
}
if (new_crtc_state->joiner_pipes) {
if (intel_pipes_need_modeset(state, new_crtc_state->joiner_pipes))
intel_crtc_flag_modeset(new_crtc_state);
}
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
any_ms = true;
intel_dpll_release(state, crtc);
}
if (any_ms && !check_digital_port_conflicts(state)) {
drm_dbg_kms(display->drm,
"rejecting conflicting digital port configuration\n");
ret = -EINVAL;
goto fail;
}
ret = intel_plane_atomic_check(state);
if (ret)
goto fail;
ret = intel_compute_global_watermarks(state);
if (ret)
goto fail;
ret = intel_bw_atomic_check(state, any_ms);
if (ret)
goto fail;
ret = intel_cdclk_atomic_check(state, &any_ms);
if (ret)
goto fail;
if (intel_any_crtc_needs_modeset(state))
any_ms = true;
if (any_ms) {
ret = intel_modeset_checks(state);
if (ret)
goto fail;
ret = intel_modeset_calc_cdclk(state);
if (ret)
return ret;
}
ret = intel_pmdemand_atomic_check(state);
if (ret)
goto fail;
ret = intel_atomic_check_crtcs(state);
if (ret)
goto fail;
ret = intel_fbc_atomic_check(state);
if (ret)
goto fail;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
intel_color_assert_luts(new_crtc_state);
ret = intel_async_flip_check_hw(state, crtc);
if (ret)
goto fail;
/* Either full modeset or fastset (or neither), never both */
drm_WARN_ON(display->drm,
intel_crtc_needs_modeset(new_crtc_state) &&
intel_crtc_needs_fastset(new_crtc_state));
if (!intel_crtc_needs_modeset(new_crtc_state) &&
!intel_crtc_needs_fastset(new_crtc_state))
continue;
intel_crtc_state_dump(new_crtc_state, state,
intel_crtc_needs_modeset(new_crtc_state) ?
"modeset" : "fastset");
}
return 0;
fail:
if (ret == -EDEADLK)
return ret;
/*
* FIXME would probably be nice to know which crtc specifically
* caused the failure, in cases where we can pinpoint it.
*/
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i)
intel_crtc_state_dump(new_crtc_state, state, "failed");
return ret;
}
static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
{
int ret;
ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base);
if (ret < 0)
return ret;
return 0;
}
void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc);
if (DISPLAY_VER(display) != 2 || crtc_state->active_planes)
intel_set_cpu_fifo_underrun_reporting(display, crtc->pipe, true);
if (crtc_state->has_pch_encoder) {
enum pipe pch_transcoder =
intel_crtc_pch_transcoder(crtc);
intel_set_pch_fifo_underrun_reporting(display, pch_transcoder, true);
}
}
static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
const struct intel_crtc_state *new_crtc_state)
{
struct intel_display *display = to_intel_display(new_crtc_state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
/*
* Update pipe size and adjust fitter if needed: the reason for this is
* that in compute_mode_changes we check the native mode (not the pfit
* mode) to see if we can flip rather than do a full mode set. In the
* fastboot case, we'll flip, but if we don't update the pipesrc and
* pfit state, we'll end up with a big fb scanned out into the wrong
* sized surface.
*/
intel_set_pipe_src_size(new_crtc_state);
/* on skylake this is done by detaching scalers */
if (DISPLAY_VER(display) >= 9) {
if (new_crtc_state->pch_pfit.enabled)
skl_pfit_enable(new_crtc_state);
} else if (HAS_PCH_SPLIT(display)) {
if (new_crtc_state->pch_pfit.enabled)
ilk_pfit_enable(new_crtc_state);
else if (old_crtc_state->pch_pfit.enabled)
ilk_pfit_disable(old_crtc_state);
}
/*
* The register is supposedly single buffered so perhaps
* not 100% correct to do this here. But SKL+ calculate
* this based on the adjust pixel rate so pfit changes do
* affect it and so it must be updated for fastsets.
* HSW/BDW only really need this here for fastboot, after
* that the value should not change without a full modeset.
*/
if (DISPLAY_VER(display) >= 9 ||
display->platform.broadwell || display->platform.haswell)
hsw_set_linetime_wm(new_crtc_state);
if (new_crtc_state->update_m_n)
intel_cpu_transcoder_set_m1_n1(crtc, new_crtc_state->cpu_transcoder,
&new_crtc_state->dp_m_n);
if (new_crtc_state->update_lrr)
intel_set_transcoder_timings_lrr(new_crtc_state);
}
static void commit_pipe_pre_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
drm_WARN_ON(display->drm, new_crtc_state->use_dsb || new_crtc_state->use_flipq);
/*
* During modesets pipe configuration was programmed as the
* CRTC was enabled.
*/
if (!modeset) {
if (intel_crtc_needs_color_update(new_crtc_state))
intel_color_commit_arm(NULL, new_crtc_state);
if (DISPLAY_VER(display) >= 9 || display->platform.broadwell)
bdw_set_pipe_misc(NULL, new_crtc_state);
if (intel_crtc_needs_fastset(new_crtc_state))
intel_pipe_fastset(old_crtc_state, new_crtc_state);
}
intel_psr2_program_trans_man_trk_ctl(NULL, new_crtc_state);
intel_atomic_update_watermarks(state, crtc);
}
static void commit_pipe_post_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
drm_WARN_ON(display->drm, new_crtc_state->use_dsb || new_crtc_state->use_flipq);
/*
* Disable the scaler(s) after the plane(s) so that we don't
* get a catastrophic underrun even if the two operations
* end up happening in two different frames.
*/
if (DISPLAY_VER(display) >= 9 && !modeset)
skl_detach_scalers(NULL, new_crtc_state);
if (!modeset &&
intel_crtc_needs_color_update(new_crtc_state) &&
!intel_color_uses_dsb(new_crtc_state) &&
HAS_DOUBLE_BUFFERED_LUT(display))
intel_color_load_luts(new_crtc_state);
if (intel_crtc_vrr_enabling(state, crtc))
intel_vrr_enable(new_crtc_state);
}
static void intel_enable_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_crtc *pipe_crtc;
if (!intel_crtc_needs_modeset(new_crtc_state))
return;
for_each_intel_crtc_in_pipe_mask_reverse(display->drm, pipe_crtc,
intel_crtc_joined_pipe_mask(new_crtc_state)) {
const struct intel_crtc_state *pipe_crtc_state =
intel_atomic_get_new_crtc_state(state, pipe_crtc);
/* VRR will be enable later, if required */
intel_crtc_update_active_timings(pipe_crtc_state, false);
}
intel_psr_notify_pipe_change(state, crtc, true);
display->funcs.display->crtc_enable(state, crtc);
/* vblanks work again, re-enable pipe CRC. */
intel_crtc_enable_pipe_crc(crtc);
}
static void intel_pre_update_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
if (old_crtc_state->inherited ||
intel_crtc_needs_modeset(new_crtc_state)) {
if (HAS_DPT(display))
intel_dpt_configure(crtc);
}
if (!modeset) {
if (new_crtc_state->preload_luts &&
intel_crtc_needs_color_update(new_crtc_state))
intel_color_load_luts(new_crtc_state);
intel_pre_plane_update(state, crtc);
if (intel_crtc_needs_fastset(new_crtc_state))
intel_encoders_update_pipe(state, crtc);
if (DISPLAY_VER(display) >= 11 &&
intel_crtc_needs_fastset(new_crtc_state))
icl_set_pipe_chicken(new_crtc_state);
if (vrr_params_changed(old_crtc_state, new_crtc_state) ||
cmrr_params_changed(old_crtc_state, new_crtc_state))
intel_vrr_set_transcoder_timings(new_crtc_state);
}
intel_fbc_update(state, crtc);
drm_WARN_ON(display->drm, !intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF));
if (!modeset &&
intel_crtc_needs_color_update(new_crtc_state) &&
!new_crtc_state->use_dsb && !new_crtc_state->use_flipq)
intel_color_commit_noarm(NULL, new_crtc_state);
if (!new_crtc_state->use_dsb && !new_crtc_state->use_flipq)
intel_crtc_planes_update_noarm(NULL, state, crtc);
}
static void intel_update_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (new_crtc_state->use_flipq) {
intel_flipq_enable(new_crtc_state);
intel_crtc_prepare_vblank_event(new_crtc_state, &crtc->flipq_event);
intel_flipq_add(crtc, INTEL_FLIPQ_PLANE_1, 0, INTEL_DSB_0,
new_crtc_state->dsb_commit);
} else if (new_crtc_state->use_dsb) {
intel_crtc_prepare_vblank_event(new_crtc_state, &crtc->dsb_event);
intel_dsb_commit(new_crtc_state->dsb_commit);
} else {
/* Perform vblank evasion around commit operation */
intel_pipe_update_start(state, crtc);
if (new_crtc_state->dsb_commit)
intel_dsb_commit(new_crtc_state->dsb_commit);
commit_pipe_pre_planes(state, crtc);
intel_crtc_planes_update_arm(NULL, state, crtc);
commit_pipe_post_planes(state, crtc);
intel_pipe_update_end(state, crtc);
}
/*
* VRR/Seamless M/N update may need to update frame timings.
*
* FIXME Should be synchronized with the start of vblank somehow...
*/
if (intel_crtc_vrr_enabling(state, crtc) ||
new_crtc_state->update_m_n || new_crtc_state->update_lrr)
intel_crtc_update_active_timings(new_crtc_state,
new_crtc_state->vrr.enable);
/*
* We usually enable FIFO underrun interrupts as part of the
* CRTC enable sequence during modesets. But when we inherit a
* valid pipe configuration from the BIOS we need to take care
* of enabling them on the CRTC's first fastset.
*/
if (intel_crtc_needs_fastset(new_crtc_state) &&
old_crtc_state->inherited)
intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
}
static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc *pipe_crtc;
/*
* We need to disable pipe CRC before disabling the pipe,
* or we race against vblank off.
*/
for_each_intel_crtc_in_pipe_mask(display->drm, pipe_crtc,
intel_crtc_joined_pipe_mask(old_crtc_state))
intel_crtc_disable_pipe_crc(pipe_crtc);
intel_psr_notify_pipe_change(state, crtc, false);
display->funcs.display->crtc_disable(state, crtc);
for_each_intel_crtc_in_pipe_mask(display->drm, pipe_crtc,
intel_crtc_joined_pipe_mask(old_crtc_state)) {
const struct intel_crtc_state *new_pipe_crtc_state =
intel_atomic_get_new_crtc_state(state, pipe_crtc);
pipe_crtc->active = false;
intel_fbc_disable(pipe_crtc);
if (!new_pipe_crtc_state->hw.active)
intel_initial_watermarks(state, pipe_crtc);
}
}
static void intel_commit_modeset_disables(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
u8 disable_pipes = 0;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (!intel_crtc_needs_modeset(new_crtc_state))
continue;
/*
* Needs to be done even for pipes
* that weren't enabled previously.
*/
intel_pre_plane_update(state, crtc);
if (!old_crtc_state->hw.active)
continue;
disable_pipes |= BIT(crtc->pipe);
}
for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) {
if ((disable_pipes & BIT(crtc->pipe)) == 0)
continue;
intel_crtc_disable_planes(state, crtc);
drm_vblank_work_flush_all(&crtc->base);
}
/* Only disable port sync and MST slaves */
for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) {
if ((disable_pipes & BIT(crtc->pipe)) == 0)
continue;
if (intel_crtc_is_joiner_secondary(old_crtc_state))
continue;
/* In case of Transcoder port Sync master slave CRTCs can be
* assigned in any order and we need to make sure that
* slave CRTCs are disabled first and then master CRTC since
* Slave vblanks are masked till Master Vblanks.
*/
if (!is_trans_port_sync_slave(old_crtc_state) &&
!intel_dp_mst_is_slave_trans(old_crtc_state))
continue;
intel_old_crtc_state_disables(state, crtc);
disable_pipes &= ~intel_crtc_joined_pipe_mask(old_crtc_state);
}
/* Disable everything else left on */
for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i) {
if ((disable_pipes & BIT(crtc->pipe)) == 0)
continue;
if (intel_crtc_is_joiner_secondary(old_crtc_state))
continue;
intel_old_crtc_state_disables(state, crtc);
disable_pipes &= ~intel_crtc_joined_pipe_mask(old_crtc_state);
}
drm_WARN_ON(display->drm, disable_pipes);
}
static void intel_commit_modeset_enables(struct intel_atomic_state *state)
{
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.active)
continue;
intel_enable_crtc(state, crtc);
intel_pre_update_crtc(state, crtc);
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (!new_crtc_state->hw.active)
continue;
intel_update_crtc(state, crtc);
}
}
static void skl_commit_modeset_enables(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc *crtc;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
u8 update_pipes = 0, modeset_pipes = 0;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if (!new_crtc_state->hw.active)
continue;
/* ignore allocations for crtc's that have been turned off. */
if (!intel_crtc_needs_modeset(new_crtc_state)) {
entries[pipe] = old_crtc_state->wm.skl.ddb;
update_pipes |= BIT(pipe);
} else {
modeset_pipes |= BIT(pipe);
}
}
/*
* Whenever the number of active pipes changes, we need to make sure we
* update the pipes in the right order so that their ddb allocations
* never overlap with each other between CRTC updates. Otherwise we'll
* cause pipe underruns and other bad stuff.
*
* So first lets enable all pipes that do not need a fullmodeset as
* those don't have any external dependency.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
intel_pre_update_crtc(state, crtc);
}
intel_dbuf_mbus_pre_ddb_update(state);
while (update_pipes) {
/*
* Commit in reverse order to make joiner primary
* send the uapi events after secondaries are done.
*/
for_each_oldnew_intel_crtc_in_state_reverse(state, crtc, old_crtc_state,
new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
entries, I915_MAX_PIPES, pipe))
continue;
entries[pipe] = new_crtc_state->wm.skl.ddb;
update_pipes &= ~BIT(pipe);
intel_update_crtc(state, crtc);
/*
* If this is an already active pipe, it's DDB changed,
* and this isn't the last pipe that needs updating
* then we need to wait for a vblank to pass for the
* new ddb allocation to take effect.
*/
if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
&old_crtc_state->wm.skl.ddb) &&
(update_pipes | modeset_pipes))
intel_crtc_wait_for_next_vblank(crtc);
}
}
intel_dbuf_mbus_post_ddb_update(state);
update_pipes = modeset_pipes;
/*
* Enable all pipes that needs a modeset and do not depends on other
* pipes
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((modeset_pipes & BIT(pipe)) == 0)
continue;
if (intel_crtc_is_joiner_secondary(new_crtc_state))
continue;
if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
is_trans_port_sync_master(new_crtc_state))
continue;
modeset_pipes &= ~intel_crtc_joined_pipe_mask(new_crtc_state);
intel_enable_crtc(state, crtc);
}
/*
* Then we enable all remaining pipes that depend on other
* pipes: MST slaves and port sync masters
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((modeset_pipes & BIT(pipe)) == 0)
continue;
if (intel_crtc_is_joiner_secondary(new_crtc_state))
continue;
modeset_pipes &= ~intel_crtc_joined_pipe_mask(new_crtc_state);
intel_enable_crtc(state, crtc);
}
/*
* Finally we do the plane updates/etc. for all pipes that got enabled.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
intel_pre_update_crtc(state, crtc);
}
/*
* Commit in reverse order to make joiner primary
* send the uapi events after secondaries are done.
*/
for_each_new_intel_crtc_in_state_reverse(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
if ((update_pipes & BIT(pipe)) == 0)
continue;
drm_WARN_ON(display->drm,
skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
entries, I915_MAX_PIPES, pipe));
entries[pipe] = new_crtc_state->wm.skl.ddb;
update_pipes &= ~BIT(pipe);
intel_update_crtc(state, crtc);
}
drm_WARN_ON(display->drm, modeset_pipes);
drm_WARN_ON(display->drm, update_pipes);
}
static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
{
struct drm_i915_private *i915 = to_i915(intel_state->base.dev);
struct drm_plane *plane;
struct drm_plane_state *new_plane_state;
long ret;
int i;
for_each_new_plane_in_state(&intel_state->base, plane, new_plane_state, i) {
if (new_plane_state->fence) {
ret = dma_fence_wait_timeout(new_plane_state->fence, false,
i915_fence_timeout(i915));
if (ret <= 0)
break;
dma_fence_put(new_plane_state->fence);
new_plane_state->fence = NULL;
}
}
}
static void intel_atomic_dsb_wait_commit(struct intel_crtc_state *crtc_state)
{
if (crtc_state->dsb_commit)
intel_dsb_wait(crtc_state->dsb_commit);
intel_color_wait_commit(crtc_state);
}
static void intel_atomic_dsb_cleanup(struct intel_crtc_state *crtc_state)
{
if (crtc_state->dsb_commit) {
intel_dsb_cleanup(crtc_state->dsb_commit);
crtc_state->dsb_commit = NULL;
}
intel_color_cleanup_commit(crtc_state);
}
static void intel_atomic_cleanup_work(struct work_struct *work)
{
struct intel_atomic_state *state =
container_of(work, struct intel_atomic_state, cleanup_work);
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *old_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_old_intel_crtc_in_state(state, crtc, old_crtc_state, i)
intel_atomic_dsb_cleanup(old_crtc_state);
drm_atomic_helper_cleanup_planes(display->drm, &state->base);
drm_atomic_helper_commit_cleanup_done(&state->base);
drm_atomic_state_put(&state->base);
}
static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct intel_plane *plane;
struct intel_plane_state *plane_state;
int i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
struct drm_framebuffer *fb = plane_state->hw.fb;
int cc_plane;
int ret;
if (!fb)
continue;
cc_plane = intel_fb_rc_ccs_cc_plane(fb);
if (cc_plane < 0)
continue;
/*
* The layout of the fast clear color value expected by HW
* (the DRM ABI requiring this value to be located in fb at
* offset 0 of cc plane, plane #2 previous generations or
* plane #1 for flat ccs):
* - 4 x 4 bytes per-channel value
* (in surface type specific float/int format provided by the fb user)
* - 8 bytes native color value used by the display
* (converted/written by GPU during a fast clear operation using the
* above per-channel values)
*
* The commit's FB prepare hook already ensured that FB obj is pinned and the
* caller made sure that the object is synced wrt. the related color clear value
* GPU write on it.
*/
ret = intel_bo_read_from_page(intel_fb_bo(fb),
fb->offsets[cc_plane] + 16,
&plane_state->ccval,
sizeof(plane_state->ccval));
/* The above could only fail if the FB obj has an unexpected backing store type. */
drm_WARN_ON(display->drm, ret);
}
}
static void intel_atomic_dsb_prepare(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->hw.active)
return;
if (state->base.legacy_cursor_update)
return;
/* FIXME deal with everything */
new_crtc_state->use_flipq =
intel_flipq_supported(display) &&
!new_crtc_state->do_async_flip &&
!new_crtc_state->vrr.enable &&
!new_crtc_state->has_psr &&
!intel_crtc_needs_modeset(new_crtc_state) &&
!intel_crtc_needs_fastset(new_crtc_state) &&
!intel_crtc_needs_color_update(new_crtc_state);
new_crtc_state->use_dsb =
!new_crtc_state->use_flipq &&
!new_crtc_state->do_async_flip &&
(DISPLAY_VER(display) >= 20 || !new_crtc_state->has_psr) &&
!intel_crtc_needs_modeset(new_crtc_state) &&
!intel_crtc_needs_fastset(new_crtc_state);
intel_color_prepare_commit(state, crtc);
}
static void intel_atomic_dsb_finish(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_display *display = to_intel_display(state);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state->use_flipq &&
!new_crtc_state->use_dsb &&
!new_crtc_state->dsb_color)
return;
/*
* Rough estimate:
* ~64 registers per each plane * 8 planes = 512
* Double that for pipe stuff and other overhead.
*/
new_crtc_state->dsb_commit = intel_dsb_prepare(state, crtc, INTEL_DSB_0,
new_crtc_state->use_dsb ||
new_crtc_state->use_flipq ? 1024 : 16);
if (!new_crtc_state->dsb_commit) {
new_crtc_state->use_flipq = false;
new_crtc_state->use_dsb = false;
intel_color_cleanup_commit(new_crtc_state);
return;
}
if (new_crtc_state->use_flipq || new_crtc_state->use_dsb) {
/* Wa_18034343758 */
if (new_crtc_state->use_flipq)
intel_flipq_wait_dmc_halt(new_crtc_state->dsb_commit, crtc);
if (intel_crtc_needs_color_update(new_crtc_state))
intel_color_commit_noarm(new_crtc_state->dsb_commit,
new_crtc_state);
intel_crtc_planes_update_noarm(new_crtc_state->dsb_commit,
state, crtc);
/*
* Ensure we have "Frame Change" event when PSR state is
* SRDENT(PSR1) or DEEP_SLEEP(PSR2). Otherwise DSB vblank
* evasion hangs as PIPEDSL is reading as 0.
*/
intel_psr_trigger_frame_change_event(new_crtc_state->dsb_commit,
state, crtc);
if (new_crtc_state->use_dsb)
intel_dsb_vblank_evade(state, new_crtc_state->dsb_commit);
if (intel_crtc_needs_color_update(new_crtc_state))
intel_color_commit_arm(new_crtc_state->dsb_commit,
new_crtc_state);
bdw_set_pipe_misc(new_crtc_state->dsb_commit,
new_crtc_state);
intel_psr2_program_trans_man_trk_ctl(new_crtc_state->dsb_commit,
new_crtc_state);
intel_crtc_planes_update_arm(new_crtc_state->dsb_commit,
state, crtc);
if (DISPLAY_VER(display) >= 9)
skl_detach_scalers(new_crtc_state->dsb_commit,
new_crtc_state);
/* Wa_18034343758 */
if (new_crtc_state->use_flipq)
intel_flipq_unhalt_dmc(new_crtc_state->dsb_commit, crtc);
}
if (intel_color_uses_chained_dsb(new_crtc_state))
intel_dsb_chain(state, new_crtc_state->dsb_commit,
new_crtc_state->dsb_color, true);
else if (intel_color_uses_gosub_dsb(new_crtc_state))
intel_dsb_gosub(new_crtc_state->dsb_commit,
new_crtc_state->dsb_color);
if (new_crtc_state->use_dsb && !intel_color_uses_chained_dsb(new_crtc_state)) {
intel_dsb_wait_vblanks(new_crtc_state->dsb_commit, 1);
intel_vrr_send_push(new_crtc_state->dsb_commit, new_crtc_state);
intel_dsb_wait_vblank_delay(state, new_crtc_state->dsb_commit);
intel_vrr_check_push_sent(new_crtc_state->dsb_commit,
new_crtc_state);
intel_dsb_interrupt(new_crtc_state->dsb_commit);
}
intel_dsb_finish(new_crtc_state->dsb_commit);
}
static void intel_atomic_commit_tail(struct intel_atomic_state *state)
{
struct intel_display *display = to_intel_display(state);
struct drm_i915_private __maybe_unused *dev_priv = to_i915(display->drm);
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
struct intel_power_domain_mask put_domains[I915_MAX_PIPES] = {};
intel_wakeref_t wakeref = NULL;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
intel_atomic_dsb_prepare(state, crtc);
intel_atomic_commit_fence_wait(state);
intel_td_flush(display);
intel_atomic_prepare_plane_clear_colors(state);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
intel_fbc_prepare_dirty_rect(state, crtc);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
intel_atomic_dsb_finish(state, crtc);
drm_atomic_helper_wait_for_dependencies(&state->base);
drm_dp_mst_atomic_wait_for_dependencies(&state->base);
intel_atomic_global_state_wait_for_dependencies(state);
/*
* During full modesets we write a lot of registers, wait
* for PLLs, etc. Doing that while DC states are enabled
* is not a good idea.
*
* During fastsets and other updates we also need to
* disable DC states due to the following scenario:
* 1. DC5 exit and PSR exit happen
* 2. Some or all _noarm() registers are written
* 3. Due to some long delay PSR is re-entered
* 4. DC5 entry -> DMC saves the already written new
* _noarm() registers and the old not yet written
* _arm() registers
* 5. DC5 exit -> DMC restores a mixture of old and
* new register values and arms the update
* 6. PSR exit -> hardware latches a mixture of old and
* new register values -> corrupted frame, or worse
* 7. New _arm() registers are finally written
* 8. Hardware finally latches a complete set of new
* register values, and subsequent frames will be OK again
*
* Also note that due to the pipe CSC hardware issues on
* SKL/GLK DC states must remain off until the pipe CSC
* state readout has happened. Otherwise we risk corrupting
* the CSC latched register values with the readout (see
* skl_read_csc() and skl_color_commit_noarm()).
*/
wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF);
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (intel_crtc_needs_modeset(new_crtc_state) ||
intel_crtc_needs_fastset(new_crtc_state))
intel_modeset_get_crtc_power_domains(new_crtc_state, &put_domains[crtc->pipe]);
}
intel_commit_modeset_disables(state);
intel_dp_tunnel_atomic_alloc_bw(state);
/* FIXME: Eventually get rid of our crtc->config pointer */
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
crtc->config = new_crtc_state;
/*
* In XE_LPD+ Pmdemand combines many parameters such as voltage index,
* plls, cdclk frequency, QGV point selection parameter etc. Voltage
* index, cdclk/ddiclk frequencies are supposed to be configured before
* the cdclk config is set.
*/
intel_pmdemand_pre_plane_update(state);
if (state->modeset) {
drm_atomic_helper_update_legacy_modeset_state(display->drm, &state->base);
intel_set_cdclk_pre_plane_update(state);
intel_modeset_verify_disabled(state);
}
intel_sagv_pre_plane_update(state);
/* Complete the events for pipes that have now been disabled */
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
bool modeset = intel_crtc_needs_modeset(new_crtc_state);
/* Complete events for now disable pipes here. */
if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
spin_lock_irq(&display->drm->event_lock);
drm_crtc_send_vblank_event(&crtc->base,
new_crtc_state->uapi.event);
spin_unlock_irq(&display->drm->event_lock);
new_crtc_state->uapi.event = NULL;
}
}
intel_encoders_update_prepare(state);
intel_dbuf_pre_plane_update(state);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->do_async_flip)
intel_crtc_enable_flip_done(state, crtc);
}
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
display->funcs.display->commit_modeset_enables(state);
/* FIXME probably need to sequence this properly */
intel_program_dpkgc_latency(state);
intel_wait_for_vblank_workers(state);
/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
* already, but still need the state for the delayed optimization. To
* fix this:
* - wrap the optimization/post_plane_update stuff into a per-crtc work.
* - schedule that vblank worker _before_ calling hw_done
* - at the start of commit_tail, cancel it _synchrously
* - switch over to the vblank wait helper in the core after that since
* we don't need out special handling any more.
*/
drm_atomic_helper_wait_for_flip_done(display->drm, &state->base);
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
if (new_crtc_state->do_async_flip)
intel_crtc_disable_flip_done(state, crtc);
intel_atomic_dsb_wait_commit(new_crtc_state);
if (!state->base.legacy_cursor_update && !new_crtc_state->use_dsb)
intel_vrr_check_push_sent(NULL, new_crtc_state);
if (new_crtc_state->use_flipq)
intel_flipq_disable(new_crtc_state);
}
/*
* Now that the vblank has passed, we can go ahead and program the
* optimal watermarks on platforms that need two-step watermark
* programming.
*
* TODO: Move this (and other cleanup) to an async worker eventually.
*/
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So re-enable underrun reporting after some planes get enabled.
*
* We do this before .optimize_watermarks() so that we have a
* chance of catching underruns with the intermediate watermarks
* vs. the new plane configuration.
*/
if (DISPLAY_VER(display) == 2 && planes_enabling(old_crtc_state, new_crtc_state))
intel_set_cpu_fifo_underrun_reporting(display, crtc->pipe, true);
intel_optimize_watermarks(state, crtc);
}
intel_dbuf_post_plane_update(state);
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
intel_post_plane_update(state, crtc);
intel_modeset_put_crtc_power_domains(crtc, &put_domains[crtc->pipe]);
intel_modeset_verify_crtc(state, crtc);
intel_post_plane_update_after_readout(state, crtc);
/*
* DSB cleanup is done in cleanup_work aligning with framebuffer
* cleanup. So copy and reset the dsb structure to sync with
* commit_done and later do dsb cleanup in cleanup_work.
*
* FIXME get rid of this funny new->old swapping
*/
old_crtc_state->dsb_color = fetch_and_zero(&new_crtc_state->dsb_color);
old_crtc_state->dsb_commit = fetch_and_zero(&new_crtc_state->dsb_commit);
}
/* Underruns don't always raise interrupts, so check manually */
intel_check_cpu_fifo_underruns(display);
intel_check_pch_fifo_underruns(display);
if (state->modeset)
intel_verify_planes(state);
intel_sagv_post_plane_update(state);
if (state->modeset)
intel_set_cdclk_post_plane_update(state);
intel_pmdemand_post_plane_update(state);
drm_atomic_helper_commit_hw_done(&state->base);
intel_atomic_global_state_commit_done(state);
if (state->modeset) {
/* As one of the primary mmio accessors, KMS has a high
* likelihood of triggering bugs in unclaimed access. After we
* finish modesetting, see if an error has been flagged, and if
* so enable debugging for the next modeset - and hope we catch
* the culprit.
*/
intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
}
/*
* Delay re-enabling DC states by 17 ms to avoid the off->on->off
* toggling overhead at and above 60 FPS.
*/
intel_display_power_put_async_delay(display, POWER_DOMAIN_DC_OFF, wakeref, 17);
intel_display_rpm_put(display, state->wakeref);
/*
* Defer the cleanup of the old state to a separate worker to not
* impede the current task (userspace for blocking modesets) that
* are executed inline. For out-of-line asynchronous modesets/flips,
* deferring to a new worker seems overkill, but we would place a
* schedule point (cond_resched()) here anyway to keep latencies
* down.
*/
INIT_WORK(&state->cleanup_work, intel_atomic_cleanup_work);
queue_work(display->wq.cleanup, &state->cleanup_work);
}
static void intel_atomic_commit_work(struct work_struct *work)
{
struct intel_atomic_state *state =
container_of(work, struct intel_atomic_state, base.commit_work);
intel_atomic_commit_tail(state);
}
static void intel_atomic_track_fbs(struct intel_atomic_state *state)
{
struct intel_plane_state *old_plane_state, *new_plane_state;
struct intel_plane *plane;
int i;
for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
new_plane_state, i)
intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
to_intel_frontbuffer(new_plane_state->hw.fb),
plane->frontbuffer_bit);
}
static int intel_atomic_setup_commit(struct intel_atomic_state *state, bool nonblock)
{
int ret;
ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
if (ret)
return ret;
ret = intel_atomic_global_state_setup_commit(state);
if (ret)
return ret;
return 0;
}
static int intel_atomic_swap_state(struct intel_atomic_state *state)
{
int ret;
ret = drm_atomic_helper_swap_state(&state->base, true);
if (ret)
return ret;
intel_atomic_swap_global_state(state);
intel_dpll_swap_state(state);
intel_atomic_track_fbs(state);
return 0;
}
int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *_state,
bool nonblock)
{
struct intel_display *display = to_intel_display(dev);
struct intel_atomic_state *state = to_intel_atomic_state(_state);
int ret = 0;
state->wakeref = intel_display_rpm_get(display);
/*
* The intel_legacy_cursor_update() fast path takes care
* of avoiding the vblank waits for simple cursor
* movement and flips. For cursor on/off and size changes,
* we want to perform the vblank waits so that watermark
* updates happen during the correct frames. Gen9+ have
* double buffered watermarks and so shouldn't need this.
*
* Unset state->legacy_cursor_update before the call to
* drm_atomic_helper_setup_commit() because otherwise
* drm_atomic_helper_wait_for_flip_done() is a noop and
* we get FIFO underruns because we didn't wait
* for vblank.
*
* FIXME doing watermarks and fb cleanup from a vblank worker
* (assuming we had any) would solve these problems.
*/
if (DISPLAY_VER(display) < 9 && state->base.legacy_cursor_update) {
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
if (new_crtc_state->wm.need_postvbl_update ||
new_crtc_state->update_wm_post)
state->base.legacy_cursor_update = false;
}
ret = intel_atomic_prepare_commit(state);
if (ret) {
drm_dbg_atomic(display->drm,
"Preparing state failed with %i\n", ret);
intel_display_rpm_put(display, state->wakeref);
return ret;
}
ret = intel_atomic_setup_commit(state, nonblock);
if (!ret)
ret = intel_atomic_swap_state(state);
if (ret) {
drm_atomic_helper_unprepare_planes(dev, &state->base);
intel_display_rpm_put(display, state->wakeref);
return ret;
}
drm_atomic_state_get(&state->base);
INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
if (nonblock && state->modeset) {
queue_work(display->wq.modeset, &state->base.commit_work);
} else if (nonblock) {
queue_work(display->wq.flip, &state->base.commit_work);
} else {
if (state->modeset)
flush_workqueue(display->wq.modeset);
intel_atomic_commit_tail(state);
}
return 0;
}
static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_encoder *source_encoder;
u32 possible_clones = 0;
for_each_intel_encoder(display->drm, source_encoder) {
if (encoders_cloneable(encoder, source_encoder))
possible_clones |= drm_encoder_mask(&source_encoder->base);
}
return possible_clones;
}
static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
{
struct intel_display *display = to_intel_display(encoder);
struct intel_crtc *crtc;
u32 possible_crtcs = 0;
for_each_intel_crtc_in_pipe_mask(display->drm, crtc, encoder->pipe_mask)
possible_crtcs |= drm_crtc_mask(&crtc->base);
return possible_crtcs;
}
static bool ilk_has_edp_a(struct intel_display *display)
{
if (!display->platform.mobile)
return false;
if ((intel_de_read(display, DP_A) & DP_DETECTED) == 0)
return false;
if (display->platform.ironlake && (intel_de_read(display, FUSE_STRAP) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static bool intel_ddi_crt_present(struct intel_display *display)
{
if (DISPLAY_VER(display) >= 9)
return false;
if (display->platform.haswell_ult || display->platform.broadwell_ult)
return false;
if (HAS_PCH_LPT_H(display) &&
intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
return false;
/* DDI E can't be used if DDI A requires 4 lanes */
if (intel_de_read(display, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
return false;
if (!display->vbt.int_crt_support)
return false;
return true;
}
bool assert_port_valid(struct intel_display *display, enum port port)
{
return !drm_WARN(display->drm, !(DISPLAY_RUNTIME_INFO(display)->port_mask & BIT(port)),
"Platform does not support port %c\n", port_name(port));
}
void intel_setup_outputs(struct intel_display *display)
{
struct intel_encoder *encoder;
bool dpd_is_edp = false;
intel_pps_unlock_regs_wa(display);
if (!HAS_DISPLAY(display))
return;
if (HAS_DDI(display)) {
if (intel_ddi_crt_present(display))
intel_crt_init(display);
intel_bios_for_each_encoder(display, intel_ddi_init);
if (display->platform.geminilake || display->platform.broxton)
vlv_dsi_init(display);
} else if (HAS_PCH_SPLIT(display)) {
int found;
/*
* intel_edp_init_connector() depends on this completing first,
* to prevent the registration of both eDP and LVDS and the
* incorrect sharing of the PPS.
*/
intel_lvds_init(display);
intel_crt_init(display);
dpd_is_edp = intel_dp_is_port_edp(display, PORT_D);
if (ilk_has_edp_a(display))
g4x_dp_init(display, DP_A, PORT_A);
if (intel_de_read(display, PCH_HDMIB) & SDVO_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(display, PCH_SDVOB, PORT_B);
if (!found)
g4x_hdmi_init(display, PCH_HDMIB, PORT_B);
if (!found && (intel_de_read(display, PCH_DP_B) & DP_DETECTED))
g4x_dp_init(display, PCH_DP_B, PORT_B);
}
if (intel_de_read(display, PCH_HDMIC) & SDVO_DETECTED)
g4x_hdmi_init(display, PCH_HDMIC, PORT_C);
if (!dpd_is_edp && intel_de_read(display, PCH_HDMID) & SDVO_DETECTED)
g4x_hdmi_init(display, PCH_HDMID, PORT_D);
if (intel_de_read(display, PCH_DP_C) & DP_DETECTED)
g4x_dp_init(display, PCH_DP_C, PORT_C);
if (intel_de_read(display, PCH_DP_D) & DP_DETECTED)
g4x_dp_init(display, PCH_DP_D, PORT_D);
} else if (display->platform.valleyview || display->platform.cherryview) {
bool has_edp, has_port;
if (display->platform.valleyview && display->vbt.int_crt_support)
intel_crt_init(display);
/*
* The DP_DETECTED bit is the latched state of the DDC
* SDA pin at boot. However since eDP doesn't require DDC
* (no way to plug in a DP->HDMI dongle) the DDC pins for
* eDP ports may have been muxed to an alternate function.
* Thus we can't rely on the DP_DETECTED bit alone to detect
* eDP ports. Consult the VBT as well as DP_DETECTED to
* detect eDP ports.
*
* Sadly the straps seem to be missing sometimes even for HDMI
* ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
* and VBT for the presence of the port. Additionally we can't
* trust the port type the VBT declares as we've seen at least
* HDMI ports that the VBT claim are DP or eDP.
*/
has_edp = intel_dp_is_port_edp(display, PORT_B);
has_port = intel_bios_is_port_present(display, PORT_B);
if (intel_de_read(display, VLV_DP_B) & DP_DETECTED || has_port)
has_edp &= g4x_dp_init(display, VLV_DP_B, PORT_B);
if ((intel_de_read(display, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
g4x_hdmi_init(display, VLV_HDMIB, PORT_B);
has_edp = intel_dp_is_port_edp(display, PORT_C);
has_port = intel_bios_is_port_present(display, PORT_C);
if (intel_de_read(display, VLV_DP_C) & DP_DETECTED || has_port)
has_edp &= g4x_dp_init(display, VLV_DP_C, PORT_C);
if ((intel_de_read(display, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
g4x_hdmi_init(display, VLV_HDMIC, PORT_C);
if (display->platform.cherryview) {
/*
* eDP not supported on port D,
* so no need to worry about it
*/
has_port = intel_bios_is_port_present(display, PORT_D);
if (intel_de_read(display, CHV_DP_D) & DP_DETECTED || has_port)
g4x_dp_init(display, CHV_DP_D, PORT_D);
if (intel_de_read(display, CHV_HDMID) & SDVO_DETECTED || has_port)
g4x_hdmi_init(display, CHV_HDMID, PORT_D);
}
vlv_dsi_init(display);
} else if (display->platform.pineview) {
intel_lvds_init(display);
intel_crt_init(display);
} else if (IS_DISPLAY_VER(display, 3, 4)) {
bool found = false;
if (display->platform.mobile)
intel_lvds_init(display);
intel_crt_init(display);
if (intel_de_read(display, GEN3_SDVOB) & SDVO_DETECTED) {
drm_dbg_kms(display->drm, "probing SDVOB\n");
found = intel_sdvo_init(display, GEN3_SDVOB, PORT_B);
if (!found && display->platform.g4x) {
drm_dbg_kms(display->drm,
"probing HDMI on SDVOB\n");
g4x_hdmi_init(display, GEN4_HDMIB, PORT_B);
}
if (!found && display->platform.g4x)
g4x_dp_init(display, DP_B, PORT_B);
}
/* Before G4X SDVOC doesn't have its own detect register */
if (intel_de_read(display, GEN3_SDVOB) & SDVO_DETECTED) {
drm_dbg_kms(display->drm, "probing SDVOC\n");
found = intel_sdvo_init(display, GEN3_SDVOC, PORT_C);
}
if (!found && (intel_de_read(display, GEN3_SDVOC) & SDVO_DETECTED)) {
if (display->platform.g4x) {
drm_dbg_kms(display->drm,
"probing HDMI on SDVOC\n");
g4x_hdmi_init(display, GEN4_HDMIC, PORT_C);
}
if (display->platform.g4x)
g4x_dp_init(display, DP_C, PORT_C);
}
if (display->platform.g4x && (intel_de_read(display, DP_D) & DP_DETECTED))
g4x_dp_init(display, DP_D, PORT_D);
if (SUPPORTS_TV(display))
intel_tv_init(display);
} else if (DISPLAY_VER(display) == 2) {
if (display->platform.i85x)
intel_lvds_init(display);
intel_crt_init(display);
intel_dvo_init(display);
}
for_each_intel_encoder(display->drm, encoder) {
encoder->base.possible_crtcs =
intel_encoder_possible_crtcs(encoder);
encoder->base.possible_clones =
intel_encoder_possible_clones(encoder);
}
intel_init_pch_refclk(display);
drm_helper_move_panel_connectors_to_head(display->drm);
}
static int max_dotclock(struct intel_display *display)
{
int max_dotclock = display->cdclk.max_dotclk_freq;
if (HAS_ULTRAJOINER(display))
max_dotclock *= 4;
else if (HAS_UNCOMPRESSED_JOINER(display) || HAS_BIGJOINER(display))
max_dotclock *= 2;
return max_dotclock;
}
enum drm_mode_status intel_mode_valid(struct drm_device *dev,
const struct drm_display_mode *mode)
{
struct intel_display *display = to_intel_display(dev);
int hdisplay_max, htotal_max;
int vdisplay_max, vtotal_max;
/*
* Can't reject DBLSCAN here because Xorg ddxen can add piles
* of DBLSCAN modes to the output's mode list when they detect
* the scaling mode property on the connector. And they don't
* ask the kernel to validate those modes in any way until
* modeset time at which point the client gets a protocol error.
* So in order to not upset those clients we silently ignore the
* DBLSCAN flag on such connectors. For other connectors we will
* reject modes with the DBLSCAN flag in encoder->compute_config().
* And we always reject DBLSCAN modes in connector->mode_valid()
* as we never want such modes on the connector's mode list.
*/
if (mode->vscan > 1)
return MODE_NO_VSCAN;
if (mode->flags & DRM_MODE_FLAG_HSKEW)
return MODE_H_ILLEGAL;
if (mode->flags & (DRM_MODE_FLAG_CSYNC |
DRM_MODE_FLAG_NCSYNC |
DRM_MODE_FLAG_PCSYNC))
return MODE_HSYNC;
if (mode->flags & (DRM_MODE_FLAG_BCAST |
DRM_MODE_FLAG_PIXMUX |
DRM_MODE_FLAG_CLKDIV2))
return MODE_BAD;
/*
* Reject clearly excessive dotclocks early to
* avoid having to worry about huge integers later.
*/
if (mode->clock > max_dotclock(display))
return MODE_CLOCK_HIGH;
/* Transcoder timing limits */
if (DISPLAY_VER(display) >= 11) {
hdisplay_max = 16384;
vdisplay_max = 8192;
htotal_max = 16384;
vtotal_max = 8192;
} else if (DISPLAY_VER(display) >= 9 ||
display->platform.broadwell || display->platform.haswell) {
hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else if (DISPLAY_VER(display) >= 3) {
hdisplay_max = 4096;
vdisplay_max = 4096;
htotal_max = 8192;
vtotal_max = 8192;
} else {
hdisplay_max = 2048;
vdisplay_max = 2048;
htotal_max = 4096;
vtotal_max = 4096;
}
if (mode->hdisplay > hdisplay_max ||
mode->hsync_start > htotal_max ||
mode->hsync_end > htotal_max ||
mode->htotal > htotal_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > vdisplay_max ||
mode->vsync_start > vtotal_max ||
mode->vsync_end > vtotal_max ||
mode->vtotal > vtotal_max)
return MODE_V_ILLEGAL;
return MODE_OK;
}
enum drm_mode_status intel_cpu_transcoder_mode_valid(struct intel_display *display,
const struct drm_display_mode *mode)
{
/*
* Additional transcoder timing limits,
* excluding BXT/GLK DSI transcoders.
*/
if (DISPLAY_VER(display) >= 5) {
if (mode->hdisplay < 64 ||
mode->htotal - mode->hdisplay < 32)
return MODE_H_ILLEGAL;
if (mode->vtotal - mode->vdisplay < 5)
return MODE_V_ILLEGAL;
} else {
if (mode->htotal - mode->hdisplay < 32)
return MODE_H_ILLEGAL;
if (mode->vtotal - mode->vdisplay < 3)
return MODE_V_ILLEGAL;
}
/*
* Cantiga+ cannot handle modes with a hsync front porch of 0.
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
*/
if ((DISPLAY_VER(display) >= 5 || display->platform.g4x) &&
mode->hsync_start == mode->hdisplay)
return MODE_H_ILLEGAL;
return MODE_OK;
}
enum drm_mode_status
intel_mode_valid_max_plane_size(struct intel_display *display,
const struct drm_display_mode *mode,
int num_joined_pipes)
{
int plane_width_max, plane_height_max;
/*
* intel_mode_valid() should be
* sufficient on older platforms.
*/
if (DISPLAY_VER(display) < 9)
return MODE_OK;
/*
* Most people will probably want a fullscreen
* plane so let's not advertize modes that are
* too big for that.
*/
if (DISPLAY_VER(display) >= 30) {
plane_width_max = 6144 * num_joined_pipes;
plane_height_max = 4800;
} else if (DISPLAY_VER(display) >= 11) {
plane_width_max = 5120 * num_joined_pipes;
plane_height_max = 4320;
} else {
plane_width_max = 5120;
plane_height_max = 4096;
}
if (mode->hdisplay > plane_width_max)
return MODE_H_ILLEGAL;
if (mode->vdisplay > plane_height_max)
return MODE_V_ILLEGAL;
return MODE_OK;
}
static const struct intel_display_funcs skl_display_funcs = {
.get_pipe_config = hsw_get_pipe_config,
.crtc_enable = hsw_crtc_enable,
.crtc_disable = hsw_crtc_disable,
.commit_modeset_enables = skl_commit_modeset_enables,
.get_initial_plane_config = skl_get_initial_plane_config,
.fixup_initial_plane_config = skl_fixup_initial_plane_config,
};
static const struct intel_display_funcs ddi_display_funcs = {
.get_pipe_config = hsw_get_pipe_config,
.crtc_enable = hsw_crtc_enable,
.crtc_disable = hsw_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
.fixup_initial_plane_config = i9xx_fixup_initial_plane_config,
};
static const struct intel_display_funcs pch_split_display_funcs = {
.get_pipe_config = ilk_get_pipe_config,
.crtc_enable = ilk_crtc_enable,
.crtc_disable = ilk_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
.fixup_initial_plane_config = i9xx_fixup_initial_plane_config,
};
static const struct intel_display_funcs vlv_display_funcs = {
.get_pipe_config = i9xx_get_pipe_config,
.crtc_enable = valleyview_crtc_enable,
.crtc_disable = i9xx_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
.fixup_initial_plane_config = i9xx_fixup_initial_plane_config,
};
static const struct intel_display_funcs i9xx_display_funcs = {
.get_pipe_config = i9xx_get_pipe_config,
.crtc_enable = i9xx_crtc_enable,
.crtc_disable = i9xx_crtc_disable,
.commit_modeset_enables = intel_commit_modeset_enables,
.get_initial_plane_config = i9xx_get_initial_plane_config,
.fixup_initial_plane_config = i9xx_fixup_initial_plane_config,
};
/**
* intel_init_display_hooks - initialize the display modesetting hooks
* @display: display device private
*/
void intel_init_display_hooks(struct intel_display *display)
{
if (DISPLAY_VER(display) >= 9) {
display->funcs.display = &skl_display_funcs;
} else if (HAS_DDI(display)) {
display->funcs.display = &ddi_display_funcs;
} else if (HAS_PCH_SPLIT(display)) {
display->funcs.display = &pch_split_display_funcs;
} else if (display->platform.cherryview ||
display->platform.valleyview) {
display->funcs.display = &vlv_display_funcs;
} else {
display->funcs.display = &i9xx_display_funcs;
}
}
int intel_initial_commit(struct intel_display *display)
{
struct drm_atomic_state *state = NULL;
struct drm_modeset_acquire_ctx ctx;
struct intel_crtc *crtc;
int ret = 0;
state = drm_atomic_state_alloc(display->drm);
if (!state)
return -ENOMEM;
drm_modeset_acquire_init(&ctx, 0);
state->acquire_ctx = &ctx;
to_intel_atomic_state(state)->internal = true;
retry:
for_each_intel_crtc(display->drm, crtc) {
struct intel_crtc_state *crtc_state =
intel_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
if (!crtc_state->hw.active)
crtc_state->inherited = false;
if (crtc_state->hw.active) {
struct intel_encoder *encoder;
ret = drm_atomic_add_affected_planes(state, &crtc->base);
if (ret)
goto out;
/*
* FIXME hack to force a LUT update to avoid the
* plane update forcing the pipe gamma on without
* having a proper LUT loaded. Remove once we
* have readout for pipe gamma enable.
*/
crtc_state->uapi.color_mgmt_changed = true;
for_each_intel_encoder_mask(display->drm, encoder,
crtc_state->uapi.encoder_mask) {
if (encoder->initial_fastset_check &&
!encoder->initial_fastset_check(encoder, crtc_state)) {
ret = drm_atomic_add_affected_connectors(state,
&crtc->base);
if (ret)
goto out;
}
}
}
}
ret = drm_atomic_commit(state);
out:
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
drm_atomic_state_put(state);
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return ret;
}
void i830_enable_pipe(struct intel_display *display, enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
enum transcoder cpu_transcoder = (enum transcoder)pipe;
/* 640x480@60Hz, ~25175 kHz */
struct dpll clock = {
.m1 = 18,
.m2 = 7,
.p1 = 13,
.p2 = 4,
.n = 2,
};
u32 dpll, fp;
int i;
drm_WARN_ON(display->drm,
i9xx_calc_dpll_params(48000, &clock) != 25154);
drm_dbg_kms(display->drm,
"enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
pipe_name(pipe), clock.vco, clock.dot);
fp = i9xx_dpll_compute_fp(&clock);
dpll = DPLL_DVO_2X_MODE |
DPLL_VGA_MODE_DIS |
((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
PLL_P2_DIVIDE_BY_4 |
PLL_REF_INPUT_DREFCLK |
DPLL_VCO_ENABLE;
intel_de_write(display, TRANS_HTOTAL(display, cpu_transcoder),
HACTIVE(640 - 1) | HTOTAL(800 - 1));
intel_de_write(display, TRANS_HBLANK(display, cpu_transcoder),
HBLANK_START(640 - 1) | HBLANK_END(800 - 1));
intel_de_write(display, TRANS_HSYNC(display, cpu_transcoder),
HSYNC_START(656 - 1) | HSYNC_END(752 - 1));
intel_de_write(display, TRANS_VTOTAL(display, cpu_transcoder),
VACTIVE(480 - 1) | VTOTAL(525 - 1));
intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder),
VBLANK_START(480 - 1) | VBLANK_END(525 - 1));
intel_de_write(display, TRANS_VSYNC(display, cpu_transcoder),
VSYNC_START(490 - 1) | VSYNC_END(492 - 1));
intel_de_write(display, PIPESRC(display, pipe),
PIPESRC_WIDTH(640 - 1) | PIPESRC_HEIGHT(480 - 1));
intel_de_write(display, FP0(pipe), fp);
intel_de_write(display, FP1(pipe), fp);
/*
* Apparently we need to have VGA mode enabled prior to changing
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
* dividers, even though the register value does change.
*/
intel_de_write(display, DPLL(display, pipe),
dpll & ~DPLL_VGA_MODE_DIS);
intel_de_write(display, DPLL(display, pipe), dpll);
/* Wait for the clocks to stabilize. */
intel_de_posting_read(display, DPLL(display, pipe));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
intel_de_write(display, DPLL(display, pipe), dpll);
/* We do this three times for luck */
for (i = 0; i < 3 ; i++) {
intel_de_write(display, DPLL(display, pipe), dpll);
intel_de_posting_read(display, DPLL(display, pipe));
udelay(150); /* wait for warmup */
}
intel_de_write(display, TRANSCONF(display, pipe), TRANSCONF_ENABLE);
intel_de_posting_read(display, TRANSCONF(display, pipe));
intel_wait_for_pipe_scanline_moving(crtc);
}
void i830_disable_pipe(struct intel_display *display, enum pipe pipe)
{
struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
drm_dbg_kms(display->drm, "disabling pipe %c due to force quirk\n",
pipe_name(pipe));
drm_WARN_ON(display->drm,
intel_de_read(display, DSPCNTR(display, PLANE_A)) & DISP_ENABLE);
drm_WARN_ON(display->drm,
intel_de_read(display, DSPCNTR(display, PLANE_B)) & DISP_ENABLE);
drm_WARN_ON(display->drm,
intel_de_read(display, DSPCNTR(display, PLANE_C)) & DISP_ENABLE);
drm_WARN_ON(display->drm,
intel_de_read(display, CURCNTR(display, PIPE_A)) & MCURSOR_MODE_MASK);
drm_WARN_ON(display->drm,
intel_de_read(display, CURCNTR(display, PIPE_B)) & MCURSOR_MODE_MASK);
intel_de_write(display, TRANSCONF(display, pipe), 0);
intel_de_posting_read(display, TRANSCONF(display, pipe));
intel_wait_for_pipe_scanline_stopped(crtc);
intel_de_write(display, DPLL(display, pipe), DPLL_VGA_MODE_DIS);
intel_de_posting_read(display, DPLL(display, pipe));
}
bool intel_scanout_needs_vtd_wa(struct intel_display *display)
{
struct drm_i915_private *i915 = to_i915(display->drm);
return IS_DISPLAY_VER(display, 6, 11) && i915_vtd_active(i915);
}