mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

The difference between the PE and handover entrypoints in the EFI stub is that the former allocates a struct boot_params whereas the latter expects one from the caller. Currently, these are two completely separate entrypoints, duplicating some logic and both relying of efi_exit() to return straight back to the firmware on an error. Simplify this by making the PE entrypoint call the handover entrypoint with NULL as the argument for the struct boot_params parameter. This makes the code easier to follow, and removes the need to support two different calling conventions in the mixed mode asm code. While at it, move the assignment of boot_params_ptr into the function that actually calls into the legacy decompressor, which is where its value is required. Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
966 lines
25 KiB
C
966 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/* -----------------------------------------------------------------------
|
|
*
|
|
* Copyright 2011 Intel Corporation; author Matt Fleming
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/stddef.h>
|
|
|
|
#include <asm/efi.h>
|
|
#include <asm/e820/types.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/boot.h>
|
|
#include <asm/kaslr.h>
|
|
#include <asm/sev.h>
|
|
|
|
#include "efistub.h"
|
|
#include "x86-stub.h"
|
|
|
|
extern char _bss[], _ebss[];
|
|
|
|
const efi_system_table_t *efi_system_table;
|
|
const efi_dxe_services_table_t *efi_dxe_table;
|
|
static efi_loaded_image_t *image = NULL;
|
|
static efi_memory_attribute_protocol_t *memattr;
|
|
|
|
typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t;
|
|
union sev_memory_acceptance_protocol {
|
|
struct {
|
|
efi_status_t (__efiapi * allow_unaccepted_memory)(
|
|
sev_memory_acceptance_protocol_t *);
|
|
};
|
|
struct {
|
|
u32 allow_unaccepted_memory;
|
|
} mixed_mode;
|
|
};
|
|
|
|
static efi_status_t
|
|
preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
|
|
{
|
|
struct pci_setup_rom *rom __free(efi_pool) = NULL;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
uint64_t romsize;
|
|
void *romimage;
|
|
|
|
/*
|
|
* Some firmware images contain EFI function pointers at the place where
|
|
* the romimage and romsize fields are supposed to be. Typically the EFI
|
|
* code is mapped at high addresses, translating to an unrealistically
|
|
* large romsize. The UEFI spec limits the size of option ROMs to 16
|
|
* MiB so we reject any ROMs over 16 MiB in size to catch this.
|
|
*/
|
|
romimage = efi_table_attr(pci, romimage);
|
|
romsize = efi_table_attr(pci, romsize);
|
|
if (!romimage || !romsize || romsize > SZ_16M)
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
size = romsize + sizeof(*rom);
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)&rom);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memory for 'rom'\n");
|
|
return status;
|
|
}
|
|
|
|
memset(rom, 0, sizeof(*rom));
|
|
|
|
rom->data.type = SETUP_PCI;
|
|
rom->data.len = size - sizeof(struct setup_data);
|
|
rom->data.next = 0;
|
|
rom->pcilen = romsize;
|
|
|
|
status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
|
|
PCI_VENDOR_ID, 1, &rom->vendor);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to read rom->vendor\n");
|
|
return status;
|
|
}
|
|
|
|
status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
|
|
PCI_DEVICE_ID, 1, &rom->devid);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to read rom->devid\n");
|
|
return status;
|
|
}
|
|
|
|
status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
|
|
&rom->device, &rom->function);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
memcpy(rom->romdata, romimage, romsize);
|
|
*__rom = no_free_ptr(rom);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* There's no way to return an informative status from this function,
|
|
* because any analysis (and printing of error messages) needs to be
|
|
* done directly at the EFI function call-site.
|
|
*
|
|
* For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
|
|
* just didn't find any PCI devices, but there's no way to tell outside
|
|
* the context of the call.
|
|
*/
|
|
static void setup_efi_pci(struct boot_params *params)
|
|
{
|
|
efi_status_t status;
|
|
efi_handle_t *pci_handle __free(efi_pool) = NULL;
|
|
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
struct setup_data *data;
|
|
unsigned long num;
|
|
efi_handle_t h;
|
|
|
|
status = efi_bs_call(locate_handle_buffer, EFI_LOCATE_BY_PROTOCOL,
|
|
&pci_proto, NULL, &num, &pci_handle);
|
|
if (status != EFI_SUCCESS)
|
|
return;
|
|
|
|
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
|
|
for_each_efi_handle(h, pci_handle, num) {
|
|
efi_pci_io_protocol_t *pci = NULL;
|
|
struct pci_setup_rom *rom;
|
|
|
|
status = efi_bs_call(handle_protocol, h, &pci_proto,
|
|
(void **)&pci);
|
|
if (status != EFI_SUCCESS || !pci)
|
|
continue;
|
|
|
|
status = preserve_pci_rom_image(pci, &rom);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
if (data)
|
|
data->next = (unsigned long)rom;
|
|
else
|
|
params->hdr.setup_data = (unsigned long)rom;
|
|
|
|
data = (struct setup_data *)rom;
|
|
}
|
|
}
|
|
|
|
static void retrieve_apple_device_properties(struct boot_params *boot_params)
|
|
{
|
|
efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
|
|
struct setup_data *data, *new;
|
|
efi_status_t status;
|
|
u32 size = 0;
|
|
apple_properties_protocol_t *p;
|
|
|
|
status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
|
|
if (status != EFI_SUCCESS)
|
|
return;
|
|
|
|
if (efi_table_attr(p, version) != 0x10000) {
|
|
efi_err("Unsupported properties proto version\n");
|
|
return;
|
|
}
|
|
|
|
efi_call_proto(p, get_all, NULL, &size);
|
|
if (!size)
|
|
return;
|
|
|
|
do {
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
|
|
size + sizeof(struct setup_data),
|
|
(void **)&new);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memory for 'properties'\n");
|
|
return;
|
|
}
|
|
|
|
status = efi_call_proto(p, get_all, new->data, &size);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
efi_bs_call(free_pool, new);
|
|
} while (status == EFI_BUFFER_TOO_SMALL);
|
|
|
|
new->type = SETUP_APPLE_PROPERTIES;
|
|
new->len = size;
|
|
new->next = 0;
|
|
|
|
data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
|
|
if (!data) {
|
|
boot_params->hdr.setup_data = (unsigned long)new;
|
|
} else {
|
|
while (data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
data->next = (unsigned long)new;
|
|
}
|
|
}
|
|
|
|
static bool apple_match_product_name(void)
|
|
{
|
|
static const char type1_product_matches[][15] = {
|
|
"MacBookPro11,3",
|
|
"MacBookPro11,5",
|
|
"MacBookPro13,3",
|
|
"MacBookPro14,3",
|
|
"MacBookPro15,1",
|
|
"MacBookPro15,3",
|
|
"MacBookPro16,1",
|
|
"MacBookPro16,4",
|
|
};
|
|
const struct efi_smbios_type1_record *record;
|
|
const u8 *product;
|
|
|
|
record = (struct efi_smbios_type1_record *)efi_get_smbios_record(1);
|
|
if (!record)
|
|
return false;
|
|
|
|
product = efi_get_smbios_string(record, product_name);
|
|
if (!product)
|
|
return false;
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(type1_product_matches); i++) {
|
|
if (!strcmp(product, type1_product_matches[i]))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void apple_set_os(void)
|
|
{
|
|
struct {
|
|
unsigned long version;
|
|
efi_status_t (__efiapi *set_os_version)(const char *);
|
|
efi_status_t (__efiapi *set_os_vendor)(const char *);
|
|
} *set_os;
|
|
efi_status_t status;
|
|
|
|
if (!efi_is_64bit() || !apple_match_product_name())
|
|
return;
|
|
|
|
status = efi_bs_call(locate_protocol, &APPLE_SET_OS_PROTOCOL_GUID, NULL,
|
|
(void **)&set_os);
|
|
if (status != EFI_SUCCESS)
|
|
return;
|
|
|
|
if (set_os->version >= 2) {
|
|
status = set_os->set_os_vendor("Apple Inc.");
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Failed to set OS vendor via apple_set_os\n");
|
|
}
|
|
|
|
if (set_os->version > 0) {
|
|
/* The version being set doesn't seem to matter */
|
|
status = set_os->set_os_version("Mac OS X 10.9");
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Failed to set OS version via apple_set_os\n");
|
|
}
|
|
}
|
|
|
|
efi_status_t efi_adjust_memory_range_protection(unsigned long start,
|
|
unsigned long size)
|
|
{
|
|
efi_status_t status;
|
|
efi_gcd_memory_space_desc_t desc;
|
|
unsigned long end, next;
|
|
unsigned long rounded_start, rounded_end;
|
|
unsigned long unprotect_start, unprotect_size;
|
|
|
|
rounded_start = rounddown(start, EFI_PAGE_SIZE);
|
|
rounded_end = roundup(start + size, EFI_PAGE_SIZE);
|
|
|
|
if (memattr != NULL) {
|
|
status = efi_call_proto(memattr, set_memory_attributes,
|
|
rounded_start,
|
|
rounded_end - rounded_start,
|
|
EFI_MEMORY_RO);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_warn("Failed to set EFI_MEMORY_RO attribute\n");
|
|
return status;
|
|
}
|
|
|
|
status = efi_call_proto(memattr, clear_memory_attributes,
|
|
rounded_start,
|
|
rounded_end - rounded_start,
|
|
EFI_MEMORY_XP);
|
|
if (status != EFI_SUCCESS)
|
|
efi_warn("Failed to clear EFI_MEMORY_XP attribute\n");
|
|
return status;
|
|
}
|
|
|
|
if (efi_dxe_table == NULL)
|
|
return EFI_SUCCESS;
|
|
|
|
/*
|
|
* Don't modify memory region attributes, they are
|
|
* already suitable, to lower the possibility to
|
|
* encounter firmware bugs.
|
|
*/
|
|
|
|
for (end = start + size; start < end; start = next) {
|
|
|
|
status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
break;
|
|
|
|
next = desc.base_address + desc.length;
|
|
|
|
/*
|
|
* Only system memory is suitable for trampoline/kernel image placement,
|
|
* so only this type of memory needs its attributes to be modified.
|
|
*/
|
|
|
|
if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
|
|
(desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
|
|
continue;
|
|
|
|
unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
|
|
unprotect_size = min(rounded_end, next) - unprotect_start;
|
|
|
|
status = efi_dxe_call(set_memory_space_attributes,
|
|
unprotect_start, unprotect_size,
|
|
EFI_MEMORY_WB);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
|
|
unprotect_start,
|
|
unprotect_start + unprotect_size,
|
|
status);
|
|
break;
|
|
}
|
|
}
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static void setup_unaccepted_memory(void)
|
|
{
|
|
efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
|
|
sev_memory_acceptance_protocol_t *proto;
|
|
efi_status_t status;
|
|
|
|
if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
|
|
return;
|
|
|
|
/*
|
|
* Enable unaccepted memory before calling exit boot services in order
|
|
* for the UEFI to not accept all memory on EBS.
|
|
*/
|
|
status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL,
|
|
(void **)&proto);
|
|
if (status != EFI_SUCCESS)
|
|
return;
|
|
|
|
status = efi_call_proto(proto, allow_unaccepted_memory);
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Memory acceptance protocol failed\n");
|
|
}
|
|
|
|
static efi_char16_t *efistub_fw_vendor(void)
|
|
{
|
|
unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor);
|
|
|
|
return (efi_char16_t *)vendor;
|
|
}
|
|
|
|
static const efi_char16_t apple[] = L"Apple";
|
|
|
|
static void setup_quirks(struct boot_params *boot_params)
|
|
{
|
|
if (!memcmp(efistub_fw_vendor(), apple, sizeof(apple))) {
|
|
if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
|
|
retrieve_apple_device_properties(boot_params);
|
|
|
|
apple_set_os();
|
|
}
|
|
}
|
|
|
|
static void setup_graphics(struct boot_params *boot_params)
|
|
{
|
|
struct screen_info *si = memset(&boot_params->screen_info, 0, sizeof(*si));
|
|
|
|
efi_setup_gop(si);
|
|
}
|
|
|
|
static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
|
|
{
|
|
efi_bs_call(exit, handle, status, 0, NULL);
|
|
for(;;)
|
|
asm("hlt");
|
|
}
|
|
|
|
/*
|
|
* Because the x86 boot code expects to be passed a boot_params we
|
|
* need to create one ourselves (usually the bootloader would create
|
|
* one for us).
|
|
*/
|
|
static efi_status_t efi_allocate_bootparams(efi_handle_t handle,
|
|
struct boot_params **bp)
|
|
{
|
|
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
|
|
struct boot_params *boot_params;
|
|
struct setup_header *hdr;
|
|
efi_status_t status;
|
|
unsigned long alloc;
|
|
char *cmdline_ptr;
|
|
|
|
status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
|
|
return status;
|
|
}
|
|
|
|
status = efi_allocate_pages(PARAM_SIZE, &alloc, ULONG_MAX);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
boot_params = memset((void *)alloc, 0x0, PARAM_SIZE);
|
|
hdr = &boot_params->hdr;
|
|
|
|
/* Assign the setup_header fields that the kernel actually cares about */
|
|
hdr->root_flags = 1;
|
|
hdr->vid_mode = 0xffff;
|
|
|
|
hdr->type_of_loader = 0x21;
|
|
hdr->initrd_addr_max = INT_MAX;
|
|
|
|
/* Convert unicode cmdline to ascii */
|
|
cmdline_ptr = efi_convert_cmdline(image);
|
|
if (!cmdline_ptr) {
|
|
efi_free(PARAM_SIZE, alloc);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr,
|
|
&boot_params->ext_cmd_line_ptr);
|
|
|
|
*bp = boot_params;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static void add_e820ext(struct boot_params *params,
|
|
struct setup_data *e820ext, u32 nr_entries)
|
|
{
|
|
struct setup_data *data;
|
|
|
|
e820ext->type = SETUP_E820_EXT;
|
|
e820ext->len = nr_entries * sizeof(struct boot_e820_entry);
|
|
e820ext->next = 0;
|
|
|
|
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)(unsigned long)data->next;
|
|
|
|
if (data)
|
|
data->next = (unsigned long)e820ext;
|
|
else
|
|
params->hdr.setup_data = (unsigned long)e820ext;
|
|
}
|
|
|
|
static efi_status_t
|
|
setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
|
|
{
|
|
struct boot_e820_entry *entry = params->e820_table;
|
|
struct efi_info *efi = ¶ms->efi_info;
|
|
struct boot_e820_entry *prev = NULL;
|
|
u32 nr_entries;
|
|
u32 nr_desc;
|
|
int i;
|
|
|
|
nr_entries = 0;
|
|
nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
|
|
|
|
for (i = 0; i < nr_desc; i++) {
|
|
efi_memory_desc_t *d;
|
|
unsigned int e820_type = 0;
|
|
unsigned long m = efi->efi_memmap;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
m |= (u64)efi->efi_memmap_hi << 32;
|
|
#endif
|
|
|
|
d = efi_memdesc_ptr(m, efi->efi_memdesc_size, i);
|
|
switch (d->type) {
|
|
case EFI_RESERVED_TYPE:
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
case EFI_MEMORY_MAPPED_IO:
|
|
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
|
|
case EFI_PAL_CODE:
|
|
e820_type = E820_TYPE_RESERVED;
|
|
break;
|
|
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_TYPE_UNUSABLE;
|
|
break;
|
|
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_TYPE_ACPI;
|
|
break;
|
|
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
if (efi_soft_reserve_enabled() &&
|
|
(d->attribute & EFI_MEMORY_SP))
|
|
e820_type = E820_TYPE_SOFT_RESERVED;
|
|
else
|
|
e820_type = E820_TYPE_RAM;
|
|
break;
|
|
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_TYPE_NVS;
|
|
break;
|
|
|
|
case EFI_PERSISTENT_MEMORY:
|
|
e820_type = E820_TYPE_PMEM;
|
|
break;
|
|
|
|
case EFI_UNACCEPTED_MEMORY:
|
|
if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
|
|
continue;
|
|
e820_type = E820_TYPE_RAM;
|
|
process_unaccepted_memory(d->phys_addr,
|
|
d->phys_addr + PAGE_SIZE * d->num_pages);
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/* Merge adjacent mappings */
|
|
if (prev && prev->type == e820_type &&
|
|
(prev->addr + prev->size) == d->phys_addr) {
|
|
prev->size += d->num_pages << 12;
|
|
continue;
|
|
}
|
|
|
|
if (nr_entries == ARRAY_SIZE(params->e820_table)) {
|
|
u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
|
|
sizeof(struct setup_data);
|
|
|
|
if (!e820ext || e820ext_size < need)
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
|
|
/* boot_params map full, switch to e820 extended */
|
|
entry = (struct boot_e820_entry *)e820ext->data;
|
|
}
|
|
|
|
entry->addr = d->phys_addr;
|
|
entry->size = d->num_pages << PAGE_SHIFT;
|
|
entry->type = e820_type;
|
|
prev = entry++;
|
|
nr_entries++;
|
|
}
|
|
|
|
if (nr_entries > ARRAY_SIZE(params->e820_table)) {
|
|
u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
|
|
|
|
add_e820ext(params, e820ext, nr_e820ext);
|
|
nr_entries -= nr_e820ext;
|
|
}
|
|
|
|
params->e820_entries = (u8)nr_entries;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
|
|
u32 *e820ext_size)
|
|
{
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
|
|
size = sizeof(struct setup_data) +
|
|
sizeof(struct e820_entry) * nr_desc;
|
|
|
|
if (*e820ext) {
|
|
efi_bs_call(free_pool, *e820ext);
|
|
*e820ext = NULL;
|
|
*e820ext_size = 0;
|
|
}
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)e820ext);
|
|
if (status == EFI_SUCCESS)
|
|
*e820ext_size = size;
|
|
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t allocate_e820(struct boot_params *params,
|
|
struct setup_data **e820ext,
|
|
u32 *e820ext_size)
|
|
{
|
|
struct efi_boot_memmap *map __free(efi_pool) = NULL;
|
|
efi_status_t status;
|
|
__u32 nr_desc;
|
|
|
|
status = efi_get_memory_map(&map, false);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
nr_desc = map->map_size / map->desc_size;
|
|
if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) {
|
|
u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) +
|
|
EFI_MMAP_NR_SLACK_SLOTS;
|
|
|
|
status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
|
|
return allocate_unaccepted_bitmap(nr_desc, map);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
struct exit_boot_struct {
|
|
struct boot_params *boot_params;
|
|
struct efi_info *efi;
|
|
};
|
|
|
|
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
|
|
void *priv)
|
|
{
|
|
const char *signature;
|
|
struct exit_boot_struct *p = priv;
|
|
|
|
signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
|
|
: EFI32_LOADER_SIGNATURE;
|
|
memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
|
|
|
|
efi_set_u64_split((unsigned long)efi_system_table,
|
|
&p->efi->efi_systab, &p->efi->efi_systab_hi);
|
|
p->efi->efi_memdesc_size = map->desc_size;
|
|
p->efi->efi_memdesc_version = map->desc_ver;
|
|
efi_set_u64_split((unsigned long)map->map,
|
|
&p->efi->efi_memmap, &p->efi->efi_memmap_hi);
|
|
p->efi->efi_memmap_size = map->map_size;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
|
|
{
|
|
struct setup_data *e820ext = NULL;
|
|
__u32 e820ext_size = 0;
|
|
efi_status_t status;
|
|
struct exit_boot_struct priv;
|
|
|
|
priv.boot_params = boot_params;
|
|
priv.efi = &boot_params->efi_info;
|
|
|
|
status = allocate_e820(boot_params, &e820ext, &e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
/* Might as well exit boot services now */
|
|
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
/* Historic? */
|
|
boot_params->alt_mem_k = 32 * 1024;
|
|
|
|
status = setup_e820(boot_params, e820ext, e820ext_size);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
static bool have_unsupported_snp_features(void)
|
|
{
|
|
u64 unsupported;
|
|
|
|
unsupported = snp_get_unsupported_features(sev_get_status());
|
|
if (unsupported) {
|
|
efi_err("Unsupported SEV-SNP features detected: 0x%llx\n",
|
|
unsupported);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void efi_get_seed(void *seed, int size)
|
|
{
|
|
efi_get_random_bytes(size, seed);
|
|
|
|
/*
|
|
* This only updates seed[0] when running on 32-bit, but in that case,
|
|
* seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
|
|
*/
|
|
*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
|
|
}
|
|
|
|
static void error(char *str)
|
|
{
|
|
efi_warn("Decompression failed: %s\n", str);
|
|
}
|
|
|
|
static const char *cmdline_memmap_override;
|
|
|
|
static efi_status_t parse_options(const char *cmdline)
|
|
{
|
|
static const char opts[][14] = {
|
|
"mem=", "memmap=", "hugepages="
|
|
};
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(opts); i++) {
|
|
const char *p = strstr(cmdline, opts[i]);
|
|
|
|
if (p == cmdline || (p > cmdline && isspace(p[-1]))) {
|
|
cmdline_memmap_override = opts[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
return efi_parse_options(cmdline);
|
|
}
|
|
|
|
static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry,
|
|
struct boot_params *boot_params)
|
|
{
|
|
unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
|
|
unsigned long addr, alloc_size, entry;
|
|
efi_status_t status;
|
|
u32 seed[2] = {};
|
|
|
|
boot_params_ptr = boot_params;
|
|
|
|
/* determine the required size of the allocation */
|
|
alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
|
|
MIN_KERNEL_ALIGN);
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
|
|
u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
|
|
static const efi_char16_t ami[] = L"American Megatrends";
|
|
|
|
efi_get_seed(seed, sizeof(seed));
|
|
|
|
virt_addr += (range * seed[1]) >> 32;
|
|
virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
|
|
|
|
/*
|
|
* Older Dell systems with AMI UEFI firmware v2.0 may hang
|
|
* while decompressing the kernel if physical address
|
|
* randomization is enabled.
|
|
*
|
|
* https://bugzilla.kernel.org/show_bug.cgi?id=218173
|
|
*/
|
|
if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION &&
|
|
!memcmp(efistub_fw_vendor(), ami, sizeof(ami))) {
|
|
efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n");
|
|
seed[0] = 0;
|
|
} else if (cmdline_memmap_override) {
|
|
efi_info("%s detected on the kernel command line - disabling physical KASLR\n",
|
|
cmdline_memmap_override);
|
|
seed[0] = 0;
|
|
}
|
|
|
|
boot_params->hdr.loadflags |= KASLR_FLAG;
|
|
}
|
|
|
|
status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
|
|
seed[0], EFI_LOADER_CODE,
|
|
LOAD_PHYSICAL_ADDR,
|
|
EFI_X86_KERNEL_ALLOC_LIMIT);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
entry = decompress_kernel((void *)addr, virt_addr, error);
|
|
if (entry == ULONG_MAX) {
|
|
efi_free(alloc_size, addr);
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
*kernel_entry = addr + entry;
|
|
|
|
return efi_adjust_memory_range_protection(addr, kernel_text_size);
|
|
}
|
|
|
|
static void __noreturn enter_kernel(unsigned long kernel_addr,
|
|
struct boot_params *boot_params)
|
|
{
|
|
/* enter decompressed kernel with boot_params pointer in RSI/ESI */
|
|
asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
|
|
|
|
unreachable();
|
|
}
|
|
|
|
/*
|
|
* On success, this routine will jump to the relocated image directly and never
|
|
* return. On failure, it will exit to the firmware via efi_exit() instead of
|
|
* returning.
|
|
*/
|
|
void __noreturn efi_stub_entry(efi_handle_t handle,
|
|
efi_system_table_t *sys_table_arg,
|
|
struct boot_params *boot_params)
|
|
|
|
{
|
|
efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
|
|
const struct linux_efi_initrd *initrd = NULL;
|
|
unsigned long kernel_entry;
|
|
struct setup_header *hdr;
|
|
efi_status_t status;
|
|
|
|
efi_system_table = sys_table_arg;
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
efi_exit(handle, EFI_INVALID_PARAMETER);
|
|
|
|
if (!IS_ENABLED(CONFIG_EFI_HANDOVER_PROTOCOL) || !boot_params) {
|
|
status = efi_allocate_bootparams(handle, &boot_params);
|
|
if (status != EFI_SUCCESS)
|
|
efi_exit(handle, status);
|
|
}
|
|
|
|
hdr = &boot_params->hdr;
|
|
|
|
if (have_unsupported_snp_features())
|
|
efi_exit(handle, EFI_UNSUPPORTED);
|
|
|
|
if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) {
|
|
efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
|
|
if (efi_dxe_table &&
|
|
efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
|
|
efi_warn("Ignoring DXE services table: invalid signature\n");
|
|
efi_dxe_table = NULL;
|
|
}
|
|
}
|
|
|
|
/* grab the memory attributes protocol if it exists */
|
|
efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
|
|
|
|
status = efi_setup_5level_paging();
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("efi_setup_5level_paging() failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
status = parse_options(CONFIG_CMDLINE);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail;
|
|
}
|
|
#endif
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
|
|
unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
|
|
((u64)boot_params->ext_cmd_line_ptr << 32));
|
|
status = parse_options((char *)cmdline_paddr);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (efi_mem_encrypt > 0)
|
|
hdr->xloadflags |= XLF_MEM_ENCRYPTION;
|
|
|
|
status = efi_decompress_kernel(&kernel_entry, boot_params);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to decompress kernel\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* At this point, an initrd may already have been loaded by the
|
|
* bootloader and passed via bootparams. We permit an initrd loaded
|
|
* from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
|
|
*
|
|
* If the device path is not present, any command-line initrd=
|
|
* arguments will be processed only if image is not NULL, which will be
|
|
* the case only if we were loaded via the PE entry point.
|
|
*/
|
|
status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
|
|
&initrd);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
if (initrd && initrd->size > 0) {
|
|
efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
|
|
&boot_params->ext_ramdisk_image);
|
|
efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
|
|
&boot_params->ext_ramdisk_size);
|
|
}
|
|
|
|
|
|
/*
|
|
* If the boot loader gave us a value for secure_boot then we use that,
|
|
* otherwise we ask the BIOS.
|
|
*/
|
|
if (boot_params->secure_boot == efi_secureboot_mode_unset)
|
|
boot_params->secure_boot = efi_get_secureboot();
|
|
|
|
/* Ask the firmware to clear memory on unclean shutdown */
|
|
efi_enable_reset_attack_mitigation();
|
|
|
|
efi_random_get_seed();
|
|
|
|
efi_retrieve_eventlog();
|
|
|
|
setup_graphics(boot_params);
|
|
|
|
setup_efi_pci(boot_params);
|
|
|
|
setup_quirks(boot_params);
|
|
|
|
setup_unaccepted_memory();
|
|
|
|
status = exit_boot(boot_params, handle);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("exit_boot() failed!\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Call the SEV init code while still running with the firmware's
|
|
* GDT/IDT, so #VC exceptions will be handled by EFI.
|
|
*/
|
|
sev_enable(boot_params);
|
|
|
|
efi_5level_switch();
|
|
|
|
enter_kernel(kernel_entry, boot_params);
|
|
fail:
|
|
efi_err("efi_stub_entry() failed!\n");
|
|
|
|
efi_exit(handle, status);
|
|
}
|
|
|
|
efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
|
|
efi_system_table_t *sys_table_arg)
|
|
{
|
|
efi_stub_entry(handle, sys_table_arg, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
|
|
void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
|
|
struct boot_params *boot_params)
|
|
{
|
|
memset(_bss, 0, _ebss - _bss);
|
|
efi_stub_entry(handle, sys_table_arg, boot_params);
|
|
}
|
|
|
|
#ifndef CONFIG_EFI_MIXED
|
|
extern __alias(efi_handover_entry)
|
|
void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
|
|
struct boot_params *boot_params);
|
|
|
|
extern __alias(efi_handover_entry)
|
|
void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
|
|
struct boot_params *boot_params);
|
|
#endif
|
|
#endif
|