mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

Use ACQUIRE() to cleanup conditional locking paths in the CXL driver The ACQUIRE() macro and its associated ACQUIRE_ERR() helpers, like scoped_cond_guard(), arrange for scoped-based conditional locking. Unlike scoped_cond_guard(), these macros arrange for an ERR_PTR() to be retrieved representing the state of the conditional lock. The goal of this conversion is to complete the removal of all explicit unlock calls in the subsystem. I.e. the methods to acquire a lock are solely via guard(), scoped_guard() (for limited cases), or ACQUIRE(). All unlock is implicit / scope-based. In order to make sure all lock sites are converted, the existing rwsem's are consolidated and renamed in 'struct cxl_rwsem'. While that makes the patch noisier it gives a clean cut-off between old-world (explicit unlock allowed), and new world (explicit unlock deleted). Cc: David Lechner <dlechner@baylibre.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Fabio M. De Francesco <fabio.m.de.francesco@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jonathan Cameron <jonathan.cameron@huawei.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Alison Schofield <alison.schofield@intel.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Shiju Jose <shiju.jose@huawei.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com> Reviewed-by: Fabio M. De Francesco <fabio.m.de.francesco@linux.intel.com> Reviewed-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Shiju Jose <shiju.jose@huawei.com> Link: https://patch.msgid.link/20250711234932.671292-9-dan.j.williams@intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com>
1088 lines
28 KiB
C
1088 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright(c) 2023 Intel Corporation. All rights reserved. */
|
|
#include <linux/acpi.h>
|
|
#include <linux/xarray.h>
|
|
#include <linux/fw_table.h>
|
|
#include <linux/node.h>
|
|
#include <linux/overflow.h>
|
|
#include "cxlpci.h"
|
|
#include "cxlmem.h"
|
|
#include "core.h"
|
|
#include "cxl.h"
|
|
|
|
struct dsmas_entry {
|
|
struct range dpa_range;
|
|
u8 handle;
|
|
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
|
|
struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
|
|
int entries;
|
|
int qos_class;
|
|
};
|
|
|
|
static u32 cdat_normalize(u16 entry, u64 base, u8 type)
|
|
{
|
|
u32 value;
|
|
|
|
/*
|
|
* Check for invalid and overflow values
|
|
*/
|
|
if (entry == 0xffff || !entry)
|
|
return 0;
|
|
if (base > (UINT_MAX / (entry)))
|
|
return 0;
|
|
|
|
/*
|
|
* CDAT fields follow the format of HMAT fields. See table 5 Device
|
|
* Scoped Latency and Bandwidth Information Structure in Coherent Device
|
|
* Attribute Table (CDAT) Specification v1.01.
|
|
*/
|
|
value = entry * base;
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
value = DIV_ROUND_UP(value, 1000);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_cdat_header *hdr = &header->cdat;
|
|
struct acpi_cdat_dsmas *dsmas;
|
|
int size = sizeof(*hdr) + sizeof(*dsmas);
|
|
struct xarray *dsmas_xa = arg;
|
|
struct dsmas_entry *dent;
|
|
u16 len;
|
|
int rc;
|
|
|
|
len = le16_to_cpu((__force __le16)hdr->length);
|
|
if (len != size || (unsigned long)hdr + len > end) {
|
|
pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Skip common header */
|
|
dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
|
|
|
|
dent = kzalloc(sizeof(*dent), GFP_KERNEL);
|
|
if (!dent)
|
|
return -ENOMEM;
|
|
|
|
dent->handle = dsmas->dsmad_handle;
|
|
dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
|
|
dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
|
|
le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
|
|
|
|
rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
|
|
if (rc) {
|
|
kfree(dent);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __cxl_access_coordinate_set(struct access_coordinate *coord,
|
|
int access, unsigned int val)
|
|
{
|
|
switch (access) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
coord->read_latency = val;
|
|
coord->write_latency = val;
|
|
break;
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
coord->read_latency = val;
|
|
break;
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
coord->write_latency = val;
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
coord->read_bandwidth = val;
|
|
coord->write_bandwidth = val;
|
|
break;
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
coord->read_bandwidth = val;
|
|
break;
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
coord->write_bandwidth = val;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void cxl_access_coordinate_set(struct access_coordinate *coord,
|
|
int access, unsigned int val)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
|
|
__cxl_access_coordinate_set(&coord[i], access, val);
|
|
}
|
|
|
|
static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_cdat_header *hdr = &header->cdat;
|
|
struct acpi_cdat_dslbis *dslbis;
|
|
int size = sizeof(*hdr) + sizeof(*dslbis);
|
|
struct xarray *dsmas_xa = arg;
|
|
struct dsmas_entry *dent;
|
|
__le64 le_base;
|
|
__le16 le_val;
|
|
u64 val;
|
|
u16 len;
|
|
|
|
len = le16_to_cpu((__force __le16)hdr->length);
|
|
if (len != size || (unsigned long)hdr + len > end) {
|
|
pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Skip common header */
|
|
dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
|
|
|
|
/* Skip unrecognized data type */
|
|
if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
|
|
return 0;
|
|
|
|
/* Not a memory type, skip */
|
|
if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
|
|
return 0;
|
|
|
|
dent = xa_load(dsmas_xa, dslbis->handle);
|
|
if (!dent) {
|
|
pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
|
|
return 0;
|
|
}
|
|
|
|
le_base = (__force __le64)dslbis->entry_base_unit;
|
|
le_val = (__force __le16)dslbis->entry[0];
|
|
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
|
|
dslbis->data_type);
|
|
|
|
cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdat_table_parse_output(int rc)
|
|
{
|
|
if (rc < 0)
|
|
return rc;
|
|
if (rc == 0)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cxl_cdat_endpoint_process(struct cxl_port *port,
|
|
struct xarray *dsmas_xa)
|
|
{
|
|
int rc;
|
|
|
|
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
|
|
dsmas_xa, port->cdat.table, port->cdat.length);
|
|
rc = cdat_table_parse_output(rc);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
|
|
dsmas_xa, port->cdat.table, port->cdat.length);
|
|
return cdat_table_parse_output(rc);
|
|
}
|
|
|
|
static int cxl_port_perf_data_calculate(struct cxl_port *port,
|
|
struct xarray *dsmas_xa)
|
|
{
|
|
struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
|
|
struct dsmas_entry *dent;
|
|
int valid_entries = 0;
|
|
unsigned long index;
|
|
int rc;
|
|
|
|
rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
|
|
if (rc) {
|
|
dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
|
|
return rc;
|
|
}
|
|
|
|
struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
|
|
|
|
if (!cxl_root)
|
|
return -ENODEV;
|
|
|
|
if (!cxl_root->ops || !cxl_root->ops->qos_class)
|
|
return -EOPNOTSUPP;
|
|
|
|
xa_for_each(dsmas_xa, index, dent) {
|
|
int qos_class;
|
|
|
|
cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
|
|
dent->entries = 1;
|
|
rc = cxl_root->ops->qos_class(cxl_root,
|
|
&dent->coord[ACCESS_COORDINATE_CPU],
|
|
1, &qos_class);
|
|
if (rc != 1)
|
|
continue;
|
|
|
|
valid_entries++;
|
|
dent->qos_class = qos_class;
|
|
}
|
|
|
|
if (!valid_entries)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
|
|
struct cxl_dpa_perf *dpa_perf)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
dpa_perf->coord[i] = dent->coord[i];
|
|
dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
|
|
}
|
|
dpa_perf->dpa_range = dent->dpa_range;
|
|
dpa_perf->qos_class = dent->qos_class;
|
|
dev_dbg(dev,
|
|
"DSMAS: dpa: %pra qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
|
|
&dent->dpa_range, dpa_perf->qos_class,
|
|
dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
|
|
dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
|
|
dent->coord[ACCESS_COORDINATE_CPU].read_latency,
|
|
dent->coord[ACCESS_COORDINATE_CPU].write_latency);
|
|
}
|
|
|
|
static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
|
|
struct xarray *dsmas_xa)
|
|
{
|
|
struct device *dev = cxlds->dev;
|
|
struct dsmas_entry *dent;
|
|
unsigned long index;
|
|
|
|
xa_for_each(dsmas_xa, index, dent) {
|
|
bool found = false;
|
|
|
|
for (int i = 0; i < cxlds->nr_partitions; i++) {
|
|
struct resource *res = &cxlds->part[i].res;
|
|
struct range range = {
|
|
.start = res->start,
|
|
.end = res->end,
|
|
};
|
|
|
|
if (range_contains(&range, &dent->dpa_range)) {
|
|
update_perf_entry(dev, dent,
|
|
&cxlds->part[i].perf);
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
dev_dbg(dev, "no partition for dsmas dpa: %pra\n",
|
|
&dent->dpa_range);
|
|
}
|
|
}
|
|
|
|
static int match_cxlrd_qos_class(struct device *dev, void *data)
|
|
{
|
|
int dev_qos_class = *(int *)data;
|
|
struct cxl_root_decoder *cxlrd;
|
|
|
|
if (!is_root_decoder(dev))
|
|
return 0;
|
|
|
|
cxlrd = to_cxl_root_decoder(dev);
|
|
if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
|
|
return 0;
|
|
|
|
if (cxlrd->qos_class == dev_qos_class)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
|
|
{
|
|
*dpa_perf = (struct cxl_dpa_perf) {
|
|
.qos_class = CXL_QOS_CLASS_INVALID,
|
|
};
|
|
}
|
|
|
|
static bool cxl_qos_match(struct cxl_port *root_port,
|
|
struct cxl_dpa_perf *dpa_perf)
|
|
{
|
|
if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
|
|
return false;
|
|
|
|
if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
|
|
match_cxlrd_qos_class))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int match_cxlrd_hb(struct device *dev, void *data)
|
|
{
|
|
struct device *host_bridge = data;
|
|
struct cxl_switch_decoder *cxlsd;
|
|
struct cxl_root_decoder *cxlrd;
|
|
|
|
if (!is_root_decoder(dev))
|
|
return 0;
|
|
|
|
cxlrd = to_cxl_root_decoder(dev);
|
|
cxlsd = &cxlrd->cxlsd;
|
|
|
|
guard(rwsem_read)(&cxl_rwsem.region);
|
|
for (int i = 0; i < cxlsd->nr_targets; i++) {
|
|
if (host_bridge == cxlsd->target[i]->dport_dev)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cxl_qos_class_verify(struct cxl_memdev *cxlmd)
|
|
{
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct cxl_port *root_port;
|
|
|
|
struct cxl_root *cxl_root __free(put_cxl_root) =
|
|
find_cxl_root(cxlmd->endpoint);
|
|
|
|
/*
|
|
* No need to reset_dpa_perf() here as find_cxl_root() is guaranteed to
|
|
* succeed when called in the cxl_endpoint_port_probe() path.
|
|
*/
|
|
if (!cxl_root)
|
|
return;
|
|
|
|
root_port = &cxl_root->port;
|
|
|
|
/*
|
|
* Save userspace from needing to check if a qos class has any matches
|
|
* by hiding qos class info if the memdev is not mapped by a root
|
|
* decoder, or the partition class does not match any root decoder
|
|
* class.
|
|
*/
|
|
if (!device_for_each_child(&root_port->dev,
|
|
cxlmd->endpoint->host_bridge,
|
|
match_cxlrd_hb)) {
|
|
for (int i = 0; i < cxlds->nr_partitions; i++) {
|
|
struct cxl_dpa_perf *perf = &cxlds->part[i].perf;
|
|
|
|
reset_dpa_perf(perf);
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < cxlds->nr_partitions; i++) {
|
|
struct cxl_dpa_perf *perf = &cxlds->part[i].perf;
|
|
|
|
if (!cxl_qos_match(root_port, perf))
|
|
reset_dpa_perf(perf);
|
|
}
|
|
}
|
|
|
|
static void discard_dsmas(struct xarray *xa)
|
|
{
|
|
unsigned long index;
|
|
void *ent;
|
|
|
|
xa_for_each(xa, index, ent) {
|
|
xa_erase(xa, index);
|
|
kfree(ent);
|
|
}
|
|
xa_destroy(xa);
|
|
}
|
|
DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
|
|
|
|
void cxl_endpoint_parse_cdat(struct cxl_port *port)
|
|
{
|
|
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct xarray __dsmas_xa;
|
|
struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
|
|
int rc;
|
|
|
|
xa_init(&__dsmas_xa);
|
|
if (!port->cdat.table)
|
|
return;
|
|
|
|
rc = cxl_cdat_endpoint_process(port, dsmas_xa);
|
|
if (rc < 0) {
|
|
dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
|
|
return;
|
|
}
|
|
|
|
rc = cxl_port_perf_data_calculate(port, dsmas_xa);
|
|
if (rc) {
|
|
dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
|
|
return;
|
|
}
|
|
|
|
cxl_memdev_set_qos_class(cxlds, dsmas_xa);
|
|
cxl_qos_class_verify(cxlmd);
|
|
cxl_memdev_update_perf(cxlmd);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, "CXL");
|
|
|
|
static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_cdat_sslbis_table {
|
|
struct acpi_cdat_header header;
|
|
struct acpi_cdat_sslbis sslbis_header;
|
|
struct acpi_cdat_sslbe entries[];
|
|
} *tbl = (struct acpi_cdat_sslbis_table *)header;
|
|
int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
|
|
struct acpi_cdat_sslbis *sslbis;
|
|
struct cxl_port *port = arg;
|
|
struct device *dev = &port->dev;
|
|
int remain, entries, i;
|
|
u16 len;
|
|
|
|
len = le16_to_cpu((__force __le16)header->cdat.length);
|
|
remain = len - size;
|
|
if (!remain || remain % sizeof(tbl->entries[0]) ||
|
|
(unsigned long)header + len > end) {
|
|
dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sslbis = &tbl->sslbis_header;
|
|
/* Unrecognized data type, we can skip */
|
|
if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
|
|
return 0;
|
|
|
|
entries = remain / sizeof(tbl->entries[0]);
|
|
if (struct_size(tbl, entries, entries) != len)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < entries; i++) {
|
|
u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
|
|
u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
|
|
__le64 le_base;
|
|
__le16 le_val;
|
|
struct cxl_dport *dport;
|
|
unsigned long index;
|
|
u16 dsp_id;
|
|
u64 val;
|
|
|
|
switch (x) {
|
|
case ACPI_CDAT_SSLBIS_US_PORT:
|
|
dsp_id = y;
|
|
break;
|
|
case ACPI_CDAT_SSLBIS_ANY_PORT:
|
|
switch (y) {
|
|
case ACPI_CDAT_SSLBIS_US_PORT:
|
|
dsp_id = x;
|
|
break;
|
|
case ACPI_CDAT_SSLBIS_ANY_PORT:
|
|
dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
|
|
break;
|
|
default:
|
|
dsp_id = y;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
dsp_id = x;
|
|
break;
|
|
}
|
|
|
|
le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
|
|
le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
|
|
val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
|
|
sslbis->data_type);
|
|
|
|
xa_for_each(&port->dports, index, dport) {
|
|
if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
|
|
dsp_id == dport->port_id) {
|
|
cxl_access_coordinate_set(dport->coord,
|
|
sslbis->data_type,
|
|
val);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cxl_switch_parse_cdat(struct cxl_port *port)
|
|
{
|
|
int rc;
|
|
|
|
if (!port->cdat.table)
|
|
return;
|
|
|
|
rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
|
|
port, port->cdat.table, port->cdat.length);
|
|
rc = cdat_table_parse_output(rc);
|
|
if (rc)
|
|
dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, "CXL");
|
|
|
|
static void __cxl_coordinates_combine(struct access_coordinate *out,
|
|
struct access_coordinate *c1,
|
|
struct access_coordinate *c2)
|
|
{
|
|
if (c1->write_bandwidth && c2->write_bandwidth)
|
|
out->write_bandwidth = min(c1->write_bandwidth,
|
|
c2->write_bandwidth);
|
|
out->write_latency = c1->write_latency + c2->write_latency;
|
|
|
|
if (c1->read_bandwidth && c2->read_bandwidth)
|
|
out->read_bandwidth = min(c1->read_bandwidth,
|
|
c2->read_bandwidth);
|
|
out->read_latency = c1->read_latency + c2->read_latency;
|
|
}
|
|
|
|
/**
|
|
* cxl_coordinates_combine - Combine the two input coordinates
|
|
*
|
|
* @out: Output coordinate of c1 and c2 combined
|
|
* @c1: input coordinates
|
|
* @c2: input coordinates
|
|
*/
|
|
void cxl_coordinates_combine(struct access_coordinate *out,
|
|
struct access_coordinate *c1,
|
|
struct access_coordinate *c2)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
|
|
__cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
|
|
}
|
|
|
|
MODULE_IMPORT_NS("CXL");
|
|
|
|
static void cxl_bandwidth_add(struct access_coordinate *coord,
|
|
struct access_coordinate *c1,
|
|
struct access_coordinate *c2)
|
|
{
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
coord[i].read_bandwidth = c1[i].read_bandwidth +
|
|
c2[i].read_bandwidth;
|
|
coord[i].write_bandwidth = c1[i].write_bandwidth +
|
|
c2[i].write_bandwidth;
|
|
}
|
|
}
|
|
|
|
static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
|
|
struct resource *dpa_res)
|
|
{
|
|
struct range dpa = {
|
|
.start = dpa_res->start,
|
|
.end = dpa_res->end,
|
|
};
|
|
|
|
return range_contains(&perf->dpa_range, &dpa);
|
|
}
|
|
|
|
static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled)
|
|
{
|
|
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct cxl_dpa_perf *perf;
|
|
|
|
if (cxled->part < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
perf = &cxlds->part[cxled->part].perf;
|
|
|
|
if (!perf)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!dpa_perf_contains(perf, cxled->dpa_res))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return perf;
|
|
}
|
|
|
|
/*
|
|
* Transient context for containing the current calculation of bandwidth when
|
|
* doing walking the port hierarchy to deal with shared upstream link.
|
|
*/
|
|
struct cxl_perf_ctx {
|
|
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
|
|
struct cxl_port *port;
|
|
};
|
|
|
|
/**
|
|
* cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
|
|
* @cxlr: CXL region for the bandwidth calculation
|
|
* @cxled: endpoint decoder to start on
|
|
* @usp_xa: (output) the xarray that collects all the bandwidth coordinates
|
|
* indexed by the upstream device with data of 'struct cxl_perf_ctx'.
|
|
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
|
|
*
|
|
* Return: 0 for success or -errno
|
|
*
|
|
* Collects aggregated endpoint bandwidth and store the bandwidth in
|
|
* an xarray indexed by the upstream device of the switch or the RP
|
|
* device. Each endpoint consists the minimum of the bandwidth from DSLBIS
|
|
* from the endpoint CDAT, the endpoint upstream link bandwidth, and the
|
|
* bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
|
|
* the downstream port that's associated with the endpoint. If the
|
|
* device is directly connected to a RP, then no SSLBIS is involved.
|
|
*/
|
|
static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
|
|
struct cxl_endpoint_decoder *cxled,
|
|
struct xarray *usp_xa,
|
|
bool *gp_is_root)
|
|
{
|
|
struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
|
|
struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
|
|
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
|
|
struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
|
|
struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
|
|
struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
|
|
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
|
|
struct cxl_dev_state *cxlds = cxlmd->cxlds;
|
|
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
|
|
struct cxl_perf_ctx *perf_ctx;
|
|
struct cxl_dpa_perf *perf;
|
|
unsigned long index;
|
|
void *ptr;
|
|
int rc;
|
|
|
|
if (!dev_is_pci(cxlds->dev))
|
|
return -ENODEV;
|
|
|
|
if (cxlds->rcd)
|
|
return -ENODEV;
|
|
|
|
perf = cxled_get_dpa_perf(cxled);
|
|
if (IS_ERR(perf))
|
|
return PTR_ERR(perf);
|
|
|
|
*gp_is_root = is_cxl_root(gp_port);
|
|
|
|
/*
|
|
* If the grandparent is cxl root, then index is the root port,
|
|
* otherwise it's the parent switch upstream device.
|
|
*/
|
|
if (*gp_is_root)
|
|
index = (unsigned long)endpoint->parent_dport->dport_dev;
|
|
else
|
|
index = (unsigned long)parent_port->uport_dev;
|
|
|
|
perf_ctx = xa_load(usp_xa, index);
|
|
if (!perf_ctx) {
|
|
struct cxl_perf_ctx *c __free(kfree) =
|
|
kzalloc(sizeof(*perf_ctx), GFP_KERNEL);
|
|
|
|
if (!c)
|
|
return -ENOMEM;
|
|
ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return xa_err(ptr);
|
|
perf_ctx = no_free_ptr(c);
|
|
perf_ctx->port = parent_port;
|
|
}
|
|
|
|
/* Direct upstream link from EP bandwidth */
|
|
rc = cxl_pci_get_bandwidth(pdev, pci_coord);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/*
|
|
* Min of upstream link bandwidth and Endpoint CDAT bandwidth from
|
|
* DSLBIS.
|
|
*/
|
|
cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);
|
|
|
|
/*
|
|
* If grandparent port is root, then there's no switch involved and
|
|
* the endpoint is connected to a root port.
|
|
*/
|
|
if (!*gp_is_root) {
|
|
/*
|
|
* Retrieve the switch SSLBIS for switch downstream port
|
|
* associated with the endpoint bandwidth.
|
|
*/
|
|
rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Min of the earlier coordinates with the switch SSLBIS
|
|
* bandwidth
|
|
*/
|
|
cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
|
|
}
|
|
|
|
/*
|
|
* Aggregate the computed bandwidth with the current aggregated bandwidth
|
|
* of the endpoints with the same switch upstream device or RP.
|
|
*/
|
|
cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_perf_xa(struct xarray *xa)
|
|
{
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
if (!xa)
|
|
return;
|
|
|
|
xa_for_each(xa, index, ctx)
|
|
kfree(ctx);
|
|
xa_destroy(xa);
|
|
kfree(xa);
|
|
}
|
|
DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))
|
|
|
|
/**
|
|
* cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
|
|
* @cxlr: The region being operated on
|
|
* @input_xa: xarray indexed by upstream device of a switch with data of 'struct
|
|
* cxl_perf_ctx'
|
|
* @gp_is_root: (output) bool of whether the grandparent is cxl root.
|
|
*
|
|
* Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
|
|
* or ERR_PTR(-errno)
|
|
*
|
|
* Iterate through the xarray. Take the minimum of the downstream calculated
|
|
* bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
|
|
* switch if exists. Sum the resulting bandwidth under the switch upstream
|
|
* device or a RP device. The function can be iterated over multiple switches
|
|
* if the switches are present.
|
|
*/
|
|
static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
|
|
struct xarray *input_xa,
|
|
bool *gp_is_root)
|
|
{
|
|
struct xarray *res_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*res_xa), GFP_KERNEL);
|
|
struct access_coordinate coords[ACCESS_COORDINATE_MAX];
|
|
struct cxl_perf_ctx *ctx, *us_ctx;
|
|
unsigned long index, us_index;
|
|
int dev_count = 0;
|
|
int gp_count = 0;
|
|
void *ptr;
|
|
int rc;
|
|
|
|
if (!res_xa)
|
|
return ERR_PTR(-ENOMEM);
|
|
xa_init(res_xa);
|
|
|
|
xa_for_each(input_xa, index, ctx) {
|
|
struct device *dev = (struct device *)index;
|
|
struct cxl_port *port = ctx->port;
|
|
struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
|
|
struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
|
|
struct cxl_dport *dport = port->parent_dport;
|
|
bool is_root = false;
|
|
|
|
dev_count++;
|
|
if (is_cxl_root(gp_port)) {
|
|
is_root = true;
|
|
gp_count++;
|
|
}
|
|
|
|
/*
|
|
* If the grandparent is cxl root, then index is the root port,
|
|
* otherwise it's the parent switch upstream device.
|
|
*/
|
|
if (is_root)
|
|
us_index = (unsigned long)port->parent_dport->dport_dev;
|
|
else
|
|
us_index = (unsigned long)parent_port->uport_dev;
|
|
|
|
us_ctx = xa_load(res_xa, us_index);
|
|
if (!us_ctx) {
|
|
struct cxl_perf_ctx *n __free(kfree) =
|
|
kzalloc(sizeof(*n), GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return ERR_PTR(xa_err(ptr));
|
|
us_ctx = no_free_ptr(n);
|
|
us_ctx->port = parent_port;
|
|
}
|
|
|
|
/*
|
|
* If the device isn't an upstream PCIe port, there's something
|
|
* wrong with the topology.
|
|
*/
|
|
if (!dev_is_pci(dev))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* Retrieve the upstream link bandwidth */
|
|
rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
|
|
if (rc)
|
|
return ERR_PTR(-ENXIO);
|
|
|
|
/*
|
|
* Take the min of downstream bandwidth and the upstream link
|
|
* bandwidth.
|
|
*/
|
|
cxl_coordinates_combine(coords, coords, ctx->coord);
|
|
|
|
/*
|
|
* Take the min of the calculated bandwdith and the upstream
|
|
* switch SSLBIS bandwidth if there's a parent switch
|
|
*/
|
|
if (!is_root)
|
|
cxl_coordinates_combine(coords, coords, dport->coord);
|
|
|
|
/*
|
|
* Aggregate the calculated bandwidth common to an upstream
|
|
* switch.
|
|
*/
|
|
cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
|
|
}
|
|
|
|
/* Asymmetric topology detected. */
|
|
if (gp_count) {
|
|
if (gp_count != dev_count) {
|
|
dev_dbg(&cxlr->dev,
|
|
"Asymmetric hierarchy detected, bandwidth not updated\n");
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
}
|
|
*gp_is_root = true;
|
|
}
|
|
|
|
return no_free_ptr(res_xa);
|
|
}
|
|
|
|
/**
|
|
* cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
|
|
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
|
|
* below each root port device.
|
|
*
|
|
* Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
|
|
*/
|
|
static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
|
|
{
|
|
struct xarray *hb_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*hb_xa), GFP_KERNEL);
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
if (!hb_xa)
|
|
return ERR_PTR(-ENOMEM);
|
|
xa_init(hb_xa);
|
|
|
|
xa_for_each(xa, index, ctx) {
|
|
struct cxl_port *port = ctx->port;
|
|
unsigned long hb_index = (unsigned long)port->uport_dev;
|
|
struct cxl_perf_ctx *hb_ctx;
|
|
void *ptr;
|
|
|
|
hb_ctx = xa_load(hb_xa, hb_index);
|
|
if (!hb_ctx) {
|
|
struct cxl_perf_ctx *n __free(kfree) =
|
|
kzalloc(sizeof(*n), GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return ERR_PTR(-ENOMEM);
|
|
ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return ERR_PTR(xa_err(ptr));
|
|
hb_ctx = no_free_ptr(n);
|
|
hb_ctx->port = port;
|
|
}
|
|
|
|
cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
|
|
}
|
|
|
|
return no_free_ptr(hb_xa);
|
|
}
|
|
|
|
/**
|
|
* cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
|
|
* @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
|
|
* below each host bridge.
|
|
*
|
|
* Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
|
|
*/
|
|
static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
|
|
{
|
|
struct xarray *mw_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*mw_xa), GFP_KERNEL);
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
if (!mw_xa)
|
|
return ERR_PTR(-ENOMEM);
|
|
xa_init(mw_xa);
|
|
|
|
xa_for_each(xa, index, ctx) {
|
|
struct cxl_port *port = ctx->port;
|
|
struct cxl_port *parent_port;
|
|
struct cxl_perf_ctx *mw_ctx;
|
|
struct cxl_dport *dport;
|
|
unsigned long mw_index;
|
|
void *ptr;
|
|
|
|
parent_port = to_cxl_port(port->dev.parent);
|
|
mw_index = (unsigned long)parent_port->uport_dev;
|
|
|
|
mw_ctx = xa_load(mw_xa, mw_index);
|
|
if (!mw_ctx) {
|
|
struct cxl_perf_ctx *n __free(kfree) =
|
|
kzalloc(sizeof(*n), GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return ERR_PTR(-ENOMEM);
|
|
ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
|
|
if (xa_is_err(ptr))
|
|
return ERR_PTR(xa_err(ptr));
|
|
mw_ctx = no_free_ptr(n);
|
|
}
|
|
|
|
dport = port->parent_dport;
|
|
cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
|
|
cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
|
|
}
|
|
|
|
return no_free_ptr(mw_xa);
|
|
}
|
|
|
|
/**
|
|
* cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
|
|
* @cxlr: The region being operated on
|
|
* @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
|
|
*/
|
|
static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
|
|
struct xarray *input_xa)
|
|
{
|
|
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
|
|
struct cxl_perf_ctx *ctx;
|
|
unsigned long index;
|
|
|
|
memset(coord, 0, sizeof(coord));
|
|
xa_for_each(input_xa, index, ctx)
|
|
cxl_bandwidth_add(coord, coord, ctx->coord);
|
|
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
|
|
cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
|
|
* the region
|
|
* @cxlr: the cxl region to recalculate
|
|
*
|
|
* The function walks the topology from bottom up and calculates the bandwidth. It
|
|
* starts at the endpoints, processes at the switches if any, processes at the rootport
|
|
* level, at the host bridge level, and finally aggregates at the region.
|
|
*/
|
|
void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
|
|
{
|
|
struct xarray *working_xa;
|
|
int root_count = 0;
|
|
bool is_root;
|
|
int rc;
|
|
|
|
lockdep_assert_held(&cxl_rwsem.dpa);
|
|
|
|
struct xarray *usp_xa __free(free_perf_xa) =
|
|
kzalloc(sizeof(*usp_xa), GFP_KERNEL);
|
|
|
|
if (!usp_xa)
|
|
return;
|
|
|
|
xa_init(usp_xa);
|
|
|
|
/* Collect bandwidth data from all the endpoints. */
|
|
for (int i = 0; i < cxlr->params.nr_targets; i++) {
|
|
struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];
|
|
|
|
is_root = false;
|
|
rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
|
|
if (rc)
|
|
return;
|
|
root_count += is_root;
|
|
}
|
|
|
|
/* Detect asymmetric hierarchy with some direct attached endpoints. */
|
|
if (root_count && root_count != cxlr->params.nr_targets) {
|
|
dev_dbg(&cxlr->dev,
|
|
"Asymmetric hierarchy detected, bandwidth not updated\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Walk up one or more switches to deal with the bandwidth of the
|
|
* switches if they exist. Endpoints directly attached to RPs skip
|
|
* over this part.
|
|
*/
|
|
if (!root_count) {
|
|
do {
|
|
working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
|
|
&is_root);
|
|
if (IS_ERR(working_xa))
|
|
return;
|
|
free_perf_xa(usp_xa);
|
|
usp_xa = working_xa;
|
|
} while (!is_root);
|
|
}
|
|
|
|
/* Handle the bandwidth at the root port of the hierarchy */
|
|
working_xa = cxl_rp_gather_bandwidth(usp_xa);
|
|
if (IS_ERR(working_xa))
|
|
return;
|
|
free_perf_xa(usp_xa);
|
|
usp_xa = working_xa;
|
|
|
|
/* Handle the bandwidth at the host bridge of the hierarchy */
|
|
working_xa = cxl_hb_gather_bandwidth(usp_xa);
|
|
if (IS_ERR(working_xa))
|
|
return;
|
|
free_perf_xa(usp_xa);
|
|
usp_xa = working_xa;
|
|
|
|
/*
|
|
* Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
|
|
* update the region bandwidth with the final calculated values.
|
|
*/
|
|
cxl_region_update_bandwidth(cxlr, usp_xa);
|
|
}
|
|
|
|
void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
|
|
struct cxl_endpoint_decoder *cxled)
|
|
{
|
|
struct cxl_dpa_perf *perf;
|
|
|
|
lockdep_assert_held(&cxl_rwsem.dpa);
|
|
|
|
perf = cxled_get_dpa_perf(cxled);
|
|
if (IS_ERR(perf))
|
|
return;
|
|
|
|
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
|
|
/* Get total bandwidth and the worst latency for the cxl region */
|
|
cxlr->coord[i].read_latency = max_t(unsigned int,
|
|
cxlr->coord[i].read_latency,
|
|
perf->coord[i].read_latency);
|
|
cxlr->coord[i].write_latency = max_t(unsigned int,
|
|
cxlr->coord[i].write_latency,
|
|
perf->coord[i].write_latency);
|
|
cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
|
|
cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
|
|
}
|
|
}
|
|
|
|
int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
|
|
enum access_coordinate_class access)
|
|
{
|
|
return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
|
|
}
|
|
|
|
bool cxl_need_node_perf_attrs_update(int nid)
|
|
{
|
|
return !acpi_node_backed_by_real_pxm(nid);
|
|
}
|