linux/drivers/crypto/marvell/octeontx2/otx2_cpt_reqmgr.h
Amit Singh Tomar fbfe4f47d9 crypto: octeontx2 - Rework how engine group number is obtained
By default, otx2_cpt_get_kcrypto_eng_grp_num() returns the engine group
number of SE engine type. Add an engine type parameter to support
retrieving the engine group number for different engine types.

Since otx2_cpt_get_kcrypto_eng_grp_num() always returns the kernel crypto
engine group number, rename it to otx2_cpt_get_eng_grp_num().

Signed-off-by: Amit Singh Tomar <amitsinght@marvell.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2025-06-13 17:26:16 +08:00

561 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only
* Copyright (C) 2020 Marvell.
*/
#ifndef __OTX2_CPT_REQMGR_H
#define __OTX2_CPT_REQMGR_H
#include "otx2_cpt_common.h"
/* Completion code size and initial value */
#define OTX2_CPT_COMPLETION_CODE_SIZE 8
#define OTX2_CPT_COMPLETION_CODE_INIT OTX2_CPT_COMP_E_NOTDONE
/*
* Maximum total number of SG buffers is 100, we divide it equally
* between input and output
*/
#define OTX2_CPT_MAX_SG_IN_CNT 50
#define OTX2_CPT_MAX_SG_OUT_CNT 50
/* DMA mode direct or SG */
#define OTX2_CPT_DMA_MODE_DIRECT 0
#define OTX2_CPT_DMA_MODE_SG 1
/* Context source CPTR or DPTR */
#define OTX2_CPT_FROM_CPTR 0
#define OTX2_CPT_FROM_DPTR 1
#define OTX2_CPT_MAX_REQ_SIZE 65535
#define SG_COMPS_MAX 4
#define SGV2_COMPS_MAX 3
#define SG_COMP_3 3
#define SG_COMP_2 2
#define SG_COMP_1 1
#define OTX2_CPT_DPTR_RPTR_ALIGN 8
#define OTX2_CPT_RES_ADDR_ALIGN 32
union otx2_cpt_opcode {
u16 flags;
struct {
u8 major;
u8 minor;
} s;
};
struct otx2_cptvf_request {
u32 param1;
u32 param2;
u16 dlen;
union otx2_cpt_opcode opcode;
dma_addr_t cptr_dma;
void *cptr;
};
/*
* CPT_INST_S software command definitions
* Words EI (0-3)
*/
union otx2_cpt_iq_cmd_word0 {
u64 u;
struct {
__be16 opcode;
__be16 param1;
__be16 param2;
__be16 dlen;
} s;
};
union otx2_cpt_iq_cmd_word3 {
u64 u;
struct {
u64 cptr:61;
u64 grp:3;
} s;
};
struct otx2_cpt_iq_command {
union otx2_cpt_iq_cmd_word0 cmd;
u64 dptr;
u64 rptr;
union otx2_cpt_iq_cmd_word3 cptr;
};
struct otx2_cpt_pending_entry {
void *completion_addr; /* Completion address */
void *info;
/* Kernel async request callback */
void (*callback)(int status, void *arg1, void *arg2);
struct crypto_async_request *areq; /* Async request callback arg */
u8 resume_sender; /* Notify sender to resume sending requests */
u8 busy; /* Entry status (free/busy) */
};
struct otx2_cpt_pending_queue {
struct otx2_cpt_pending_entry *head; /* Head of the queue */
u32 front; /* Process work from here */
u32 rear; /* Append new work here */
u32 pending_count; /* Pending requests count */
u32 qlen; /* Queue length */
spinlock_t lock; /* Queue lock */
};
struct otx2_cpt_buf_ptr {
u8 *vptr;
dma_addr_t dma_addr;
u16 size;
};
union otx2_cpt_ctrl_info {
u32 flags;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u32 reserved_6_31:26;
u32 grp:3; /* Group bits */
u32 dma_mode:2; /* DMA mode */
u32 se_req:1; /* To SE core */
#else
u32 se_req:1; /* To SE core */
u32 dma_mode:2; /* DMA mode */
u32 grp:3; /* Group bits */
u32 reserved_6_31:26;
#endif
} s;
};
struct otx2_cpt_req_info {
/* Kernel async request callback */
void (*callback)(int status, void *arg1, void *arg2);
struct crypto_async_request *areq; /* Async request callback arg */
struct otx2_cptvf_request req;/* Request information (core specific) */
union otx2_cpt_ctrl_info ctrl;/* User control information */
struct otx2_cpt_buf_ptr in[OTX2_CPT_MAX_SG_IN_CNT];
struct otx2_cpt_buf_ptr out[OTX2_CPT_MAX_SG_OUT_CNT];
u8 *iv_out; /* IV to send back */
u16 rlen; /* Output length */
u8 in_cnt; /* Number of input buffers */
u8 out_cnt; /* Number of output buffers */
u8 req_type; /* Type of request */
u8 is_enc; /* Is a request an encryption request */
u8 is_trunc_hmac;/* Is truncated hmac used */
};
struct otx2_cpt_inst_info {
struct otx2_cpt_pending_entry *pentry;
struct otx2_cpt_req_info *req;
struct pci_dev *pdev;
void *completion_addr;
u8 *out_buffer;
u8 *in_buffer;
dma_addr_t dptr_baddr;
dma_addr_t rptr_baddr;
dma_addr_t comp_baddr;
unsigned long time_in;
u32 dlen;
u32 dma_len;
u64 gthr_sz;
u64 sctr_sz;
u8 extra_time;
};
struct otx2_cpt_sglist_component {
__be16 len0;
__be16 len1;
__be16 len2;
__be16 len3;
__be64 ptr0;
__be64 ptr1;
__be64 ptr2;
__be64 ptr3;
};
struct cn10kb_cpt_sglist_component {
u16 len0;
u16 len1;
u16 len2;
u16 valid_segs;
u64 ptr0;
u64 ptr1;
u64 ptr2;
};
static inline void otx2_cpt_info_destroy(struct pci_dev *pdev,
struct otx2_cpt_inst_info *info)
{
struct otx2_cpt_req_info *req;
int i;
if (info->dptr_baddr)
dma_unmap_single(&pdev->dev, info->dptr_baddr,
info->dma_len, DMA_BIDIRECTIONAL);
if (info->req) {
req = info->req;
for (i = 0; i < req->out_cnt; i++) {
if (req->out[i].dma_addr)
dma_unmap_single(&pdev->dev,
req->out[i].dma_addr,
req->out[i].size,
DMA_BIDIRECTIONAL);
}
for (i = 0; i < req->in_cnt; i++) {
if (req->in[i].dma_addr)
dma_unmap_single(&pdev->dev,
req->in[i].dma_addr,
req->in[i].size,
DMA_BIDIRECTIONAL);
}
}
kfree(info);
}
static inline int setup_sgio_components(struct pci_dev *pdev,
struct otx2_cpt_buf_ptr *list,
int buf_count, u8 *buffer)
{
struct otx2_cpt_sglist_component *sg_ptr;
int components;
int i, j;
if (unlikely(!list)) {
dev_err(&pdev->dev, "Input list pointer is NULL\n");
return -EINVAL;
}
for (i = 0; i < buf_count; i++) {
if (unlikely(!list[i].vptr))
continue;
list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr,
list[i].size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) {
dev_err(&pdev->dev, "Dma mapping failed\n");
goto sg_cleanup;
}
}
components = buf_count / SG_COMPS_MAX;
sg_ptr = (struct otx2_cpt_sglist_component *)buffer;
for (i = 0; i < components; i++) {
sg_ptr->len0 = cpu_to_be16(list[i * SG_COMPS_MAX + 0].size);
sg_ptr->len1 = cpu_to_be16(list[i * SG_COMPS_MAX + 1].size);
sg_ptr->len2 = cpu_to_be16(list[i * SG_COMPS_MAX + 2].size);
sg_ptr->len3 = cpu_to_be16(list[i * SG_COMPS_MAX + 3].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * SG_COMPS_MAX + 0].dma_addr);
sg_ptr->ptr1 = cpu_to_be64(list[i * SG_COMPS_MAX + 1].dma_addr);
sg_ptr->ptr2 = cpu_to_be64(list[i * SG_COMPS_MAX + 2].dma_addr);
sg_ptr->ptr3 = cpu_to_be64(list[i * SG_COMPS_MAX + 3].dma_addr);
sg_ptr++;
}
components = buf_count % SG_COMPS_MAX;
switch (components) {
case SG_COMP_3:
sg_ptr->len2 = cpu_to_be16(list[i * SG_COMPS_MAX + 2].size);
sg_ptr->ptr2 = cpu_to_be64(list[i * SG_COMPS_MAX + 2].dma_addr);
fallthrough;
case SG_COMP_2:
sg_ptr->len1 = cpu_to_be16(list[i * SG_COMPS_MAX + 1].size);
sg_ptr->ptr1 = cpu_to_be64(list[i * SG_COMPS_MAX + 1].dma_addr);
fallthrough;
case SG_COMP_1:
sg_ptr->len0 = cpu_to_be16(list[i * SG_COMPS_MAX + 0].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * SG_COMPS_MAX + 0].dma_addr);
break;
default:
break;
}
return 0;
sg_cleanup:
for (j = 0; j < i; j++) {
if (list[j].dma_addr) {
dma_unmap_single(&pdev->dev, list[j].dma_addr,
list[j].size, DMA_BIDIRECTIONAL);
}
list[j].dma_addr = 0;
}
return -EIO;
}
static inline int sgv2io_components_setup(struct pci_dev *pdev,
struct otx2_cpt_buf_ptr *list,
int buf_count, u8 *buffer)
{
struct cn10kb_cpt_sglist_component *sg_ptr;
int components;
int i, j;
if (unlikely(!list)) {
dev_err(&pdev->dev, "Input list pointer is NULL\n");
return -EFAULT;
}
for (i = 0; i < buf_count; i++) {
if (unlikely(!list[i].vptr))
continue;
list[i].dma_addr = dma_map_single(&pdev->dev, list[i].vptr,
list[i].size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev, list[i].dma_addr))) {
dev_err(&pdev->dev, "Dma mapping failed\n");
goto sg_cleanup;
}
}
components = buf_count / SGV2_COMPS_MAX;
sg_ptr = (struct cn10kb_cpt_sglist_component *)buffer;
for (i = 0; i < components; i++) {
sg_ptr->len0 = list[i * SGV2_COMPS_MAX + 0].size;
sg_ptr->len1 = list[i * SGV2_COMPS_MAX + 1].size;
sg_ptr->len2 = list[i * SGV2_COMPS_MAX + 2].size;
sg_ptr->ptr0 = list[i * SGV2_COMPS_MAX + 0].dma_addr;
sg_ptr->ptr1 = list[i * SGV2_COMPS_MAX + 1].dma_addr;
sg_ptr->ptr2 = list[i * SGV2_COMPS_MAX + 2].dma_addr;
sg_ptr->valid_segs = SGV2_COMPS_MAX;
sg_ptr++;
}
components = buf_count % SGV2_COMPS_MAX;
sg_ptr->valid_segs = components;
switch (components) {
case SG_COMP_2:
sg_ptr->len1 = list[i * SGV2_COMPS_MAX + 1].size;
sg_ptr->ptr1 = list[i * SGV2_COMPS_MAX + 1].dma_addr;
fallthrough;
case SG_COMP_1:
sg_ptr->len0 = list[i * SGV2_COMPS_MAX + 0].size;
sg_ptr->ptr0 = list[i * SGV2_COMPS_MAX + 0].dma_addr;
break;
default:
break;
}
return 0;
sg_cleanup:
for (j = 0; j < i; j++) {
if (list[j].dma_addr) {
dma_unmap_single(&pdev->dev, list[j].dma_addr,
list[j].size, DMA_BIDIRECTIONAL);
}
list[j].dma_addr = 0;
}
return -EIO;
}
static inline struct otx2_cpt_inst_info *
cn10k_sgv2_info_create(struct pci_dev *pdev, struct otx2_cpt_req_info *req,
gfp_t gfp)
{
u32 dlen = 0, g_len, s_len, sg_len, info_len;
struct otx2_cpt_inst_info *info;
u32 total_mem_len;
int i;
/* Allocate memory to meet below alignment requirement:
* ------------------------------------
* | struct otx2_cpt_inst_info |
* | (No alignment required) |
* | --------------------------------|
* | | padding for ARCH_DMA_MINALIGN |
* | | alignment |
* |------------------------------------|
* | SG List Gather/Input memory |
* | Length = multiple of 32Bytes |
* | Alignment = 8Byte |
* |---------------------------------- |
* | SG List Scatter/Output memory |
* | Length = multiple of 32Bytes |
* | Alignment = 8Byte |
* | -------------------------------|
* | | padding for 32B alignment |
* |------------------------------------|
* | Result response memory |
* | Alignment = 32Byte |
* ------------------------------------
*/
info_len = sizeof(*info);
g_len = ((req->in_cnt + 2) / 3) *
sizeof(struct cn10kb_cpt_sglist_component);
s_len = ((req->out_cnt + 2) / 3) *
sizeof(struct cn10kb_cpt_sglist_component);
sg_len = g_len + s_len;
/* Allocate extra memory for SG and response address alignment */
total_mem_len = ALIGN(info_len, OTX2_CPT_DPTR_RPTR_ALIGN);
total_mem_len += (ARCH_DMA_MINALIGN - 1) &
~(OTX2_CPT_DPTR_RPTR_ALIGN - 1);
total_mem_len += ALIGN(sg_len, OTX2_CPT_RES_ADDR_ALIGN);
total_mem_len += sizeof(union otx2_cpt_res_s);
info = kzalloc(total_mem_len, gfp);
if (unlikely(!info))
return NULL;
for (i = 0; i < req->in_cnt; i++)
dlen += req->in[i].size;
info->dlen = dlen;
info->in_buffer = PTR_ALIGN((u8 *)info + info_len, ARCH_DMA_MINALIGN);
info->out_buffer = info->in_buffer + g_len;
info->gthr_sz = req->in_cnt;
info->sctr_sz = req->out_cnt;
/* Setup gather (input) components */
if (sgv2io_components_setup(pdev, req->in, req->in_cnt,
info->in_buffer)) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
goto destroy_info;
}
if (sgv2io_components_setup(pdev, req->out, req->out_cnt,
info->out_buffer)) {
dev_err(&pdev->dev, "Failed to setup scatter list\n");
goto destroy_info;
}
info->dma_len = total_mem_len - info_len;
info->dptr_baddr = dma_map_single(&pdev->dev, info->in_buffer,
info->dma_len, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
goto destroy_info;
}
info->rptr_baddr = info->dptr_baddr + g_len;
/*
* Get buffer for union otx2_cpt_res_s response
* structure and its physical address
*/
info->completion_addr = PTR_ALIGN((info->in_buffer + sg_len),
OTX2_CPT_RES_ADDR_ALIGN);
info->comp_baddr = ALIGN((info->dptr_baddr + sg_len),
OTX2_CPT_RES_ADDR_ALIGN);
return info;
destroy_info:
otx2_cpt_info_destroy(pdev, info);
return NULL;
}
/* SG list header size in bytes */
#define SG_LIST_HDR_SIZE 8
static inline struct otx2_cpt_inst_info *
otx2_sg_info_create(struct pci_dev *pdev, struct otx2_cpt_req_info *req,
gfp_t gfp)
{
struct otx2_cpt_inst_info *info;
u32 dlen, info_len;
u16 g_len, s_len;
u32 total_mem_len;
if (unlikely(req->in_cnt > OTX2_CPT_MAX_SG_IN_CNT ||
req->out_cnt > OTX2_CPT_MAX_SG_OUT_CNT)) {
dev_err(&pdev->dev, "Error too many sg components\n");
return NULL;
}
/* Allocate memory to meet below alignment requirement:
* ------------------------------------
* | struct otx2_cpt_inst_info |
* | (No alignment required) |
* | --------------------------------|
* | | padding for ARCH_DMA_MINALIGN |
* | | alignment |
* |------------------------------------|
* | SG List Header of 8 Byte |
* |------------------------------------|
* | SG List Gather/Input memory |
* | Length = multiple of 32Bytes |
* | Alignment = 8Byte |
* |---------------------------------- |
* | SG List Scatter/Output memory |
* | Length = multiple of 32Bytes |
* | Alignment = 8Byte |
* | -------------------------------|
* | | padding for 32B alignment |
* |------------------------------------|
* | Result response memory |
* | Alignment = 32Byte |
* ------------------------------------
*/
info_len = sizeof(*info);
g_len = ((req->in_cnt + 3) / 4) *
sizeof(struct otx2_cpt_sglist_component);
s_len = ((req->out_cnt + 3) / 4) *
sizeof(struct otx2_cpt_sglist_component);
dlen = g_len + s_len + SG_LIST_HDR_SIZE;
/* Allocate extra memory for SG and response address alignment */
total_mem_len = ALIGN(info_len, OTX2_CPT_DPTR_RPTR_ALIGN);
total_mem_len += (ARCH_DMA_MINALIGN - 1) &
~(OTX2_CPT_DPTR_RPTR_ALIGN - 1);
total_mem_len += ALIGN(dlen, OTX2_CPT_RES_ADDR_ALIGN);
total_mem_len += sizeof(union otx2_cpt_res_s);
info = kzalloc(total_mem_len, gfp);
if (unlikely(!info))
return NULL;
info->dlen = dlen;
info->in_buffer = PTR_ALIGN((u8 *)info + info_len, ARCH_DMA_MINALIGN);
info->out_buffer = info->in_buffer + SG_LIST_HDR_SIZE + g_len;
((u16 *)info->in_buffer)[0] = req->out_cnt;
((u16 *)info->in_buffer)[1] = req->in_cnt;
((u16 *)info->in_buffer)[2] = 0;
((u16 *)info->in_buffer)[3] = 0;
cpu_to_be64s((u64 *)info->in_buffer);
/* Setup gather (input) components */
if (setup_sgio_components(pdev, req->in, req->in_cnt,
&info->in_buffer[8])) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
goto destroy_info;
}
if (setup_sgio_components(pdev, req->out, req->out_cnt,
info->out_buffer)) {
dev_err(&pdev->dev, "Failed to setup scatter list\n");
goto destroy_info;
}
info->dma_len = total_mem_len - info_len;
info->dptr_baddr = dma_map_single(&pdev->dev, info->in_buffer,
info->dma_len, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
goto destroy_info;
}
/*
* Get buffer for union otx2_cpt_res_s response
* structure and its physical address
*/
info->completion_addr = PTR_ALIGN((info->in_buffer + dlen),
OTX2_CPT_RES_ADDR_ALIGN);
info->comp_baddr = ALIGN((info->dptr_baddr + dlen),
OTX2_CPT_RES_ADDR_ALIGN);
return info;
destroy_info:
otx2_cpt_info_destroy(pdev, info);
return NULL;
}
struct otx2_cptlf_wqe;
int otx2_cpt_do_request(struct pci_dev *pdev, struct otx2_cpt_req_info *req,
int cpu_num);
void otx2_cpt_post_process(struct otx2_cptlf_wqe *wqe);
int otx2_cpt_get_eng_grp_num(struct pci_dev *pdev,
enum otx2_cpt_eng_type);
#endif /* __OTX2_CPT_REQMGR_H */