linux/drivers/clk/clk-rp1.c
Andrea della Porta 6486341721 clk: rp1: Add support for clocks provided by RP1
RaspberryPi RP1 is an MFD providing, among other peripherals, several
clock generators and PLLs that drives the sub-peripherals.
Add the driver to support the clock providers.

Signed-off-by: Andrea della Porta <andrea.porta@suse.com>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Link: https://lore.kernel.org/r/20250529135052.28398-4-andrea.porta@suse.com
Signed-off-by: Florian Fainelli <florian.fainelli@broadcom.com>
2025-06-16 11:50:33 -07:00

1494 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2023 Raspberry Pi Ltd.
*
* Clock driver for RP1 PCIe multifunction chip.
*/
#include <linux/bitfield.h>
#include <linux/clk-provider.h>
#include <linux/regmap.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/units.h>
#include <dt-bindings/clock/raspberrypi,rp1-clocks.h>
#define PLL_SYS_OFFSET 0x08000
#define PLL_SYS_CS (PLL_SYS_OFFSET + 0x00)
#define PLL_SYS_PWR (PLL_SYS_OFFSET + 0x04)
#define PLL_SYS_FBDIV_INT (PLL_SYS_OFFSET + 0x08)
#define PLL_SYS_FBDIV_FRAC (PLL_SYS_OFFSET + 0x0c)
#define PLL_SYS_PRIM (PLL_SYS_OFFSET + 0x10)
#define PLL_SYS_SEC (PLL_SYS_OFFSET + 0x14)
#define PLL_AUDIO_OFFSET 0x0c000
#define PLL_AUDIO_CS (PLL_AUDIO_OFFSET + 0x00)
#define PLL_AUDIO_PWR (PLL_AUDIO_OFFSET + 0x04)
#define PLL_AUDIO_FBDIV_INT (PLL_AUDIO_OFFSET + 0x08)
#define PLL_AUDIO_FBDIV_FRAC (PLL_AUDIO_OFFSET + 0x0c)
#define PLL_AUDIO_PRIM (PLL_AUDIO_OFFSET + 0x10)
#define PLL_AUDIO_SEC (PLL_AUDIO_OFFSET + 0x14)
#define PLL_AUDIO_TERN (PLL_AUDIO_OFFSET + 0x18)
#define PLL_VIDEO_OFFSET 0x10000
#define PLL_VIDEO_CS (PLL_VIDEO_OFFSET + 0x00)
#define PLL_VIDEO_PWR (PLL_VIDEO_OFFSET + 0x04)
#define PLL_VIDEO_FBDIV_INT (PLL_VIDEO_OFFSET + 0x08)
#define PLL_VIDEO_FBDIV_FRAC (PLL_VIDEO_OFFSET + 0x0c)
#define PLL_VIDEO_PRIM (PLL_VIDEO_OFFSET + 0x10)
#define PLL_VIDEO_SEC (PLL_VIDEO_OFFSET + 0x14)
#define GPCLK_OE_CTRL 0x00000
#define CLK_SYS_OFFSET 0x00014
#define CLK_SYS_CTRL (CLK_SYS_OFFSET + 0x00)
#define CLK_SYS_DIV_INT (CLK_SYS_OFFSET + 0x04)
#define CLK_SYS_SEL (CLK_SYS_OFFSET + 0x0c)
#define CLK_SLOW_OFFSET 0x00024
#define CLK_SLOW_SYS_CTRL (CLK_SLOW_OFFSET + 0x00)
#define CLK_SLOW_SYS_DIV_INT (CLK_SLOW_OFFSET + 0x04)
#define CLK_SLOW_SYS_SEL (CLK_SLOW_OFFSET + 0x0c)
#define CLK_DMA_OFFSET 0x00044
#define CLK_DMA_CTRL (CLK_DMA_OFFSET + 0x00)
#define CLK_DMA_DIV_INT (CLK_DMA_OFFSET + 0x04)
#define CLK_DMA_SEL (CLK_DMA_OFFSET + 0x0c)
#define CLK_UART_OFFSET 0x00054
#define CLK_UART_CTRL (CLK_UART_OFFSET + 0x00)
#define CLK_UART_DIV_INT (CLK_UART_OFFSET + 0x04)
#define CLK_UART_SEL (CLK_UART_OFFSET + 0x0c)
#define CLK_ETH_OFFSET 0x00064
#define CLK_ETH_CTRL (CLK_ETH_OFFSET + 0x00)
#define CLK_ETH_DIV_INT (CLK_ETH_OFFSET + 0x04)
#define CLK_ETH_SEL (CLK_ETH_OFFSET + 0x0c)
#define CLK_PWM0_OFFSET 0x00074
#define CLK_PWM0_CTRL (CLK_PWM0_OFFSET + 0x00)
#define CLK_PWM0_DIV_INT (CLK_PWM0_OFFSET + 0x04)
#define CLK_PWM0_DIV_FRAC (CLK_PWM0_OFFSET + 0x08)
#define CLK_PWM0_SEL (CLK_PWM0_OFFSET + 0x0c)
#define CLK_PWM1_OFFSET 0x00084
#define CLK_PWM1_CTRL (CLK_PWM1_OFFSET + 0x00)
#define CLK_PWM1_DIV_INT (CLK_PWM1_OFFSET + 0x04)
#define CLK_PWM1_DIV_FRAC (CLK_PWM1_OFFSET + 0x08)
#define CLK_PWM1_SEL (CLK_PWM1_OFFSET + 0x0c)
#define CLK_AUDIO_IN_OFFSET 0x00094
#define CLK_AUDIO_IN_CTRL (CLK_AUDIO_IN_OFFSET + 0x00)
#define CLK_AUDIO_IN_DIV_INT (CLK_AUDIO_IN_OFFSET + 0x04)
#define CLK_AUDIO_IN_SEL (CLK_AUDIO_IN_OFFSET + 0x0c)
#define CLK_AUDIO_OUT_OFFSET 0x000a4
#define CLK_AUDIO_OUT_CTRL (CLK_AUDIO_OUT_OFFSET + 0x00)
#define CLK_AUDIO_OUT_DIV_INT (CLK_AUDIO_OUT_OFFSET + 0x04)
#define CLK_AUDIO_OUT_SEL (CLK_AUDIO_OUT_OFFSET + 0x0c)
#define CLK_I2S_OFFSET 0x000b4
#define CLK_I2S_CTRL (CLK_I2S_OFFSET + 0x00)
#define CLK_I2S_DIV_INT (CLK_I2S_OFFSET + 0x04)
#define CLK_I2S_SEL (CLK_I2S_OFFSET + 0x0c)
#define CLK_MIPI0_CFG_OFFSET 0x000c4
#define CLK_MIPI0_CFG_CTRL (CLK_MIPI0_CFG_OFFSET + 0x00)
#define CLK_MIPI0_CFG_DIV_INT (CLK_MIPI0_CFG_OFFSET + 0x04)
#define CLK_MIPI0_CFG_SEL (CLK_MIPI0_CFG_OFFSET + 0x0c)
#define CLK_MIPI1_CFG_OFFSET 0x000d4
#define CLK_MIPI1_CFG_CTRL (CLK_MIPI1_CFG_OFFSET + 0x00)
#define CLK_MIPI1_CFG_DIV_INT (CLK_MIPI1_CFG_OFFSET + 0x04)
#define CLK_MIPI1_CFG_SEL (CLK_MIPI1_CFG_OFFSET + 0x0c)
#define CLK_PCIE_AUX_OFFSET 0x000e4
#define CLK_PCIE_AUX_CTRL (CLK_PCIE_AUX_OFFSET + 0x00)
#define CLK_PCIE_AUX_DIV_INT (CLK_PCIE_AUX_OFFSET + 0x04)
#define CLK_PCIE_AUX_SEL (CLK_PCIE_AUX_OFFSET + 0x0c)
#define CLK_USBH0_MICROFRAME_OFFSET 0x000f4
#define CLK_USBH0_MICROFRAME_CTRL (CLK_USBH0_MICROFRAME_OFFSET + 0x00)
#define CLK_USBH0_MICROFRAME_DIV_INT (CLK_USBH0_MICROFRAME_OFFSET + 0x04)
#define CLK_USBH0_MICROFRAME_SEL (CLK_USBH0_MICROFRAME_OFFSET + 0x0c)
#define CLK_USBH1_MICROFRAME_OFFSET 0x00104
#define CLK_USBH1_MICROFRAME_CTRL (CLK_USBH1_MICROFRAME_OFFSET + 0x00)
#define CLK_USBH1_MICROFRAME_DIV_INT (CLK_USBH1_MICROFRAME_OFFSET + 0x04)
#define CLK_USBH1_MICROFRAME_SEL (CLK_USBH1_MICROFRAME_OFFSET + 0x0c)
#define CLK_USBH0_SUSPEND_OFFSET 0x00114
#define CLK_USBH0_SUSPEND_CTRL (CLK_USBH0_SUSPEND_OFFSET + 0x00)
#define CLK_USBH0_SUSPEND_DIV_INT (CLK_USBH0_SUSPEND_OFFSET + 0x04)
#define CLK_USBH0_SUSPEND_SEL (CLK_USBH0_SUSPEND_OFFSET + 0x0c)
#define CLK_USBH1_SUSPEND_OFFSET 0x00124
#define CLK_USBH1_SUSPEND_CTRL (CLK_USBH1_SUSPEND_OFFSET + 0x00)
#define CLK_USBH1_SUSPEND_DIV_INT (CLK_USBH1_SUSPEND_OFFSET + 0x04)
#define CLK_USBH1_SUSPEND_SEL (CLK_USBH1_SUSPEND_OFFSET + 0x0c)
#define CLK_ETH_TSU_OFFSET 0x00134
#define CLK_ETH_TSU_CTRL (CLK_ETH_TSU_OFFSET + 0x00)
#define CLK_ETH_TSU_DIV_INT (CLK_ETH_TSU_OFFSET + 0x04)
#define CLK_ETH_TSU_SEL (CLK_ETH_TSU_OFFSET + 0x0c)
#define CLK_ADC_OFFSET 0x00144
#define CLK_ADC_CTRL (CLK_ADC_OFFSET + 0x00)
#define CLK_ADC_DIV_INT (CLK_ADC_OFFSET + 0x04)
#define CLK_ADC_SEL (CLK_ADC_OFFSET + 0x0c)
#define CLK_SDIO_TIMER_OFFSET 0x00154
#define CLK_SDIO_TIMER_CTRL (CLK_SDIO_TIMER_OFFSET + 0x00)
#define CLK_SDIO_TIMER_DIV_INT (CLK_SDIO_TIMER_OFFSET + 0x04)
#define CLK_SDIO_TIMER_SEL (CLK_SDIO_TIMER_OFFSET + 0x0c)
#define CLK_SDIO_ALT_SRC_OFFSET 0x00164
#define CLK_SDIO_ALT_SRC_CTRL (CLK_SDIO_ALT_SRC_OFFSET + 0x00)
#define CLK_SDIO_ALT_SRC_DIV_INT (CLK_SDIO_ALT_SRC_OFFSET + 0x04)
#define CLK_SDIO_ALT_SRC_SEL (CLK_SDIO_ALT_SRC_OFFSET + 0x0c)
#define CLK_GP0_OFFSET 0x00174
#define CLK_GP0_CTRL (CLK_GP0_OFFSET + 0x00)
#define CLK_GP0_DIV_INT (CLK_GP0_OFFSET + 0x04)
#define CLK_GP0_DIV_FRAC (CLK_GP0_OFFSET + 0x08)
#define CLK_GP0_SEL (CLK_GP0_OFFSET + 0x0c)
#define CLK_GP1_OFFSET 0x00184
#define CLK_GP1_CTRL (CLK_GP1_OFFSET + 0x00)
#define CLK_GP1_DIV_INT (CLK_GP1_OFFSET + 0x04)
#define CLK_GP1_DIV_FRAC (CLK_GP1_OFFSET + 0x08)
#define CLK_GP1_SEL (CLK_GP1_OFFSET + 0x0c)
#define CLK_GP2_OFFSET 0x00194
#define CLK_GP2_CTRL (CLK_GP2_OFFSET + 0x00)
#define CLK_GP2_DIV_INT (CLK_GP2_OFFSET + 0x04)
#define CLK_GP2_DIV_FRAC (CLK_GP2_OFFSET + 0x08)
#define CLK_GP2_SEL (CLK_GP2_OFFSET + 0x0c)
#define CLK_GP3_OFFSET 0x001a4
#define CLK_GP3_CTRL (CLK_GP3_OFFSET + 0x00)
#define CLK_GP3_DIV_INT (CLK_GP3_OFFSET + 0x04)
#define CLK_GP3_DIV_FRAC (CLK_GP3_OFFSET + 0x08)
#define CLK_GP3_SEL (CLK_GP3_OFFSET + 0x0c)
#define CLK_GP4_OFFSET 0x001b4
#define CLK_GP4_CTRL (CLK_GP4_OFFSET + 0x00)
#define CLK_GP4_DIV_INT (CLK_GP4_OFFSET + 0x04)
#define CLK_GP4_DIV_FRAC (CLK_GP4_OFFSET + 0x08)
#define CLK_GP4_SEL (CLK_GP4_OFFSET + 0x0c)
#define CLK_GP5_OFFSET 0x001c4
#define CLK_GP5_CTRL (CLK_GP5_OFFSET + 0x00)
#define CLK_GP5_DIV_INT (CLK_GP5_OFFSET + 0x04)
#define CLK_GP5_DIV_FRAC (CLK_GP5_OFFSET + 0x08)
#define CLK_GP5_SEL (CLK_GP5_OFFSET + 0x0c)
#define CLK_SYS_RESUS_CTRL 0x0020c
#define CLK_SLOW_SYS_RESUS_CTRL 0x00214
#define FC0_OFFSET 0x0021c
#define FC0_REF_KHZ (FC0_OFFSET + 0x00)
#define FC0_MIN_KHZ (FC0_OFFSET + 0x04)
#define FC0_MAX_KHZ (FC0_OFFSET + 0x08)
#define FC0_DELAY (FC0_OFFSET + 0x0c)
#define FC0_INTERVAL (FC0_OFFSET + 0x10)
#define FC0_SRC (FC0_OFFSET + 0x14)
#define FC0_STATUS (FC0_OFFSET + 0x18)
#define FC0_RESULT (FC0_OFFSET + 0x1c)
#define FC_SIZE 0x20
#define FC_COUNT 8
#define FC_NUM(idx, off) ((idx) * 32 + (off))
#define AUX_SEL 1
#define VIDEO_CLOCKS_OFFSET 0x4000
#define VIDEO_CLK_VEC_CTRL (VIDEO_CLOCKS_OFFSET + 0x0000)
#define VIDEO_CLK_VEC_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0004)
#define VIDEO_CLK_VEC_SEL (VIDEO_CLOCKS_OFFSET + 0x000c)
#define VIDEO_CLK_DPI_CTRL (VIDEO_CLOCKS_OFFSET + 0x0010)
#define VIDEO_CLK_DPI_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0014)
#define VIDEO_CLK_DPI_SEL (VIDEO_CLOCKS_OFFSET + 0x001c)
#define VIDEO_CLK_MIPI0_DPI_CTRL (VIDEO_CLOCKS_OFFSET + 0x0020)
#define VIDEO_CLK_MIPI0_DPI_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0024)
#define VIDEO_CLK_MIPI0_DPI_DIV_FRAC (VIDEO_CLOCKS_OFFSET + 0x0028)
#define VIDEO_CLK_MIPI0_DPI_SEL (VIDEO_CLOCKS_OFFSET + 0x002c)
#define VIDEO_CLK_MIPI1_DPI_CTRL (VIDEO_CLOCKS_OFFSET + 0x0030)
#define VIDEO_CLK_MIPI1_DPI_DIV_INT (VIDEO_CLOCKS_OFFSET + 0x0034)
#define VIDEO_CLK_MIPI1_DPI_DIV_FRAC (VIDEO_CLOCKS_OFFSET + 0x0038)
#define VIDEO_CLK_MIPI1_DPI_SEL (VIDEO_CLOCKS_OFFSET + 0x003c)
#define DIV_INT_8BIT_MAX GENMASK(7, 0) /* max divide for most clocks */
#define DIV_INT_16BIT_MAX GENMASK(15, 0) /* max divide for GPx, PWM */
#define DIV_INT_24BIT_MAX GENMASK(23, 0) /* max divide for CLK_SYS */
#define FC0_STATUS_DONE BIT(4)
#define FC0_STATUS_RUNNING BIT(8)
#define FC0_RESULT_FRAC_SHIFT 5
#define PLL_PRIM_DIV1_MASK GENMASK(18, 16)
#define PLL_PRIM_DIV2_MASK GENMASK(14, 12)
#define PLL_SEC_DIV_MASK GENMASK(12, 8)
#define PLL_CS_LOCK BIT(31)
#define PLL_CS_REFDIV_MASK BIT(1)
#define PLL_PWR_PD BIT(0)
#define PLL_PWR_DACPD BIT(1)
#define PLL_PWR_DSMPD BIT(2)
#define PLL_PWR_POSTDIVPD BIT(3)
#define PLL_PWR_4PHASEPD BIT(4)
#define PLL_PWR_VCOPD BIT(5)
#define PLL_PWR_MASK GENMASK(5, 0)
#define PLL_SEC_RST BIT(16)
#define PLL_SEC_IMPL BIT(31)
/* PLL phase output for both PRI and SEC */
#define PLL_PH_EN BIT(4)
#define PLL_PH_PHASE_SHIFT 0
#define RP1_PLL_PHASE_0 0
#define RP1_PLL_PHASE_90 1
#define RP1_PLL_PHASE_180 2
#define RP1_PLL_PHASE_270 3
/* Clock fields for all clocks */
#define CLK_CTRL_ENABLE BIT(11)
#define CLK_CTRL_AUXSRC_MASK GENMASK(9, 5)
#define CLK_CTRL_SRC_SHIFT 0
#define CLK_DIV_FRAC_BITS 16
#define LOCK_TIMEOUT_US 100000
#define LOCK_POLL_DELAY_US 5
#define MAX_CLK_PARENTS 16
#define PLL_DIV_INVALID 19
/*
* Secondary PLL channel output divider table.
* Divider values range from 8 to 19, where
* 19 means invalid.
*/
static const struct clk_div_table pll_sec_div_table[] = {
{ 0x00, PLL_DIV_INVALID },
{ 0x01, PLL_DIV_INVALID },
{ 0x02, PLL_DIV_INVALID },
{ 0x03, PLL_DIV_INVALID },
{ 0x04, PLL_DIV_INVALID },
{ 0x05, PLL_DIV_INVALID },
{ 0x06, PLL_DIV_INVALID },
{ 0x07, PLL_DIV_INVALID },
{ 0x08, 8 },
{ 0x09, 9 },
{ 0x0a, 10 },
{ 0x0b, 11 },
{ 0x0c, 12 },
{ 0x0d, 13 },
{ 0x0e, 14 },
{ 0x0f, 15 },
{ 0x10, 16 },
{ 0x11, 17 },
{ 0x12, 18 },
{ 0x13, PLL_DIV_INVALID },
{ 0x14, PLL_DIV_INVALID },
{ 0x15, PLL_DIV_INVALID },
{ 0x16, PLL_DIV_INVALID },
{ 0x17, PLL_DIV_INVALID },
{ 0x18, PLL_DIV_INVALID },
{ 0x19, PLL_DIV_INVALID },
{ 0x1a, PLL_DIV_INVALID },
{ 0x1b, PLL_DIV_INVALID },
{ 0x1c, PLL_DIV_INVALID },
{ 0x1d, PLL_DIV_INVALID },
{ 0x1e, PLL_DIV_INVALID },
{ 0x1f, PLL_DIV_INVALID },
{ 0 }
};
struct rp1_clockman {
struct device *dev;
void __iomem *regs;
struct regmap *regmap;
spinlock_t regs_lock; /* spinlock for all clocks */
/* Must be last */
struct clk_hw_onecell_data onecell;
};
struct rp1_pll_core_data {
u32 cs_reg;
u32 pwr_reg;
u32 fbdiv_int_reg;
u32 fbdiv_frac_reg;
u32 fc0_src;
};
struct rp1_pll_data {
u32 ctrl_reg;
u32 fc0_src;
};
struct rp1_pll_ph_data {
unsigned int phase;
unsigned int fixed_divider;
u32 ph_reg;
u32 fc0_src;
};
struct rp1_pll_divider_data {
u32 sec_reg;
u32 fc0_src;
};
struct rp1_clock_data {
int num_std_parents;
int num_aux_parents;
u32 oe_mask;
u32 clk_src_mask;
u32 ctrl_reg;
u32 div_int_reg;
u32 div_frac_reg;
u32 sel_reg;
u32 div_int_max;
unsigned long max_freq;
u32 fc0_src;
};
struct rp1_clk_desc {
struct clk_hw *(*clk_register)(struct rp1_clockman *clockman,
struct rp1_clk_desc *desc);
const void *data;
struct clk_hw hw;
struct rp1_clockman *clockman;
unsigned long cached_rate;
struct clk_divider div;
};
static inline
void clockman_write(struct rp1_clockman *clockman, u32 reg, u32 val)
{
regmap_write(clockman->regmap, reg, val);
}
static inline u32 clockman_read(struct rp1_clockman *clockman, u32 reg)
{
u32 val;
regmap_read(clockman->regmap, reg, &val);
return val;
}
static int rp1_pll_core_is_on(struct clk_hw *hw)
{
struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_core->clockman;
const struct rp1_pll_core_data *data = pll_core->data;
u32 pwr = clockman_read(clockman, data->pwr_reg);
return (pwr & PLL_PWR_PD) || (pwr & PLL_PWR_POSTDIVPD);
}
static int rp1_pll_core_on(struct clk_hw *hw)
{
struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_core->clockman;
const struct rp1_pll_core_data *data = pll_core->data;
u32 fbdiv_frac, val;
int ret;
spin_lock(&clockman->regs_lock);
if (!(clockman_read(clockman, data->cs_reg) & PLL_CS_LOCK)) {
/* Reset to a known state. */
clockman_write(clockman, data->pwr_reg, PLL_PWR_MASK);
clockman_write(clockman, data->fbdiv_int_reg, 20);
clockman_write(clockman, data->fbdiv_frac_reg, 0);
clockman_write(clockman, data->cs_reg, PLL_CS_REFDIV_MASK);
}
/* Come out of reset. */
fbdiv_frac = clockman_read(clockman, data->fbdiv_frac_reg);
clockman_write(clockman, data->pwr_reg, fbdiv_frac ? 0 : PLL_PWR_DSMPD);
spin_unlock(&clockman->regs_lock);
/* Wait for the PLL to lock. */
ret = regmap_read_poll_timeout(clockman->regmap, data->cs_reg, val,
val & PLL_CS_LOCK,
LOCK_POLL_DELAY_US, LOCK_TIMEOUT_US);
if (ret)
dev_err(clockman->dev, "%s: can't lock PLL\n",
clk_hw_get_name(hw));
return ret;
}
static void rp1_pll_core_off(struct clk_hw *hw)
{
struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_core->clockman;
const struct rp1_pll_core_data *data = pll_core->data;
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->pwr_reg, 0);
spin_unlock(&clockman->regs_lock);
}
static inline unsigned long get_pll_core_divider(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate,
u32 *div_int, u32 *div_frac)
{
u32 fbdiv_int, fbdiv_frac;
unsigned long calc_rate;
u64 shifted_fbdiv_int;
u64 div_fp64; /* 32.32 fixed point fraction. */
/* Factor of reference clock to VCO frequency. */
div_fp64 = (u64)(rate) << 32;
div_fp64 = DIV_ROUND_CLOSEST_ULL(div_fp64, parent_rate);
/* Round the fractional component at 24 bits. */
div_fp64 += 1 << (32 - 24 - 1);
fbdiv_int = div_fp64 >> 32;
fbdiv_frac = (div_fp64 >> (32 - 24)) & 0xffffff;
shifted_fbdiv_int = (u64)fbdiv_int << 24;
calc_rate = (u64)parent_rate * (shifted_fbdiv_int + fbdiv_frac);
calc_rate += BIT(23);
calc_rate >>= 24;
*div_int = fbdiv_int;
*div_frac = fbdiv_frac;
return calc_rate;
}
static int rp1_pll_core_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_core->clockman;
const struct rp1_pll_core_data *data = pll_core->data;
unsigned long calc_rate;
u32 fbdiv_int, fbdiv_frac;
/* Disable dividers to start with. */
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->fbdiv_int_reg, 0);
clockman_write(clockman, data->fbdiv_frac_reg, 0);
spin_unlock(&clockman->regs_lock);
calc_rate = get_pll_core_divider(hw, rate, parent_rate,
&fbdiv_int, &fbdiv_frac);
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->pwr_reg, fbdiv_frac ? 0 : PLL_PWR_DSMPD);
clockman_write(clockman, data->fbdiv_int_reg, fbdiv_int);
clockman_write(clockman, data->fbdiv_frac_reg, fbdiv_frac);
spin_unlock(&clockman->regs_lock);
/* Check that reference frequency is no greater than VCO / 16. */
if (WARN_ON_ONCE(parent_rate > (rate / 16)))
return -ERANGE;
pll_core->cached_rate = calc_rate;
spin_lock(&clockman->regs_lock);
/* Don't need to divide ref unless parent_rate > (output freq / 16) */
clockman_write(clockman, data->cs_reg,
clockman_read(clockman, data->cs_reg) |
PLL_CS_REFDIV_MASK);
spin_unlock(&clockman->regs_lock);
return 0;
}
static unsigned long rp1_pll_core_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct rp1_clk_desc *pll_core = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_core->clockman;
const struct rp1_pll_core_data *data = pll_core->data;
u32 fbdiv_int, fbdiv_frac;
unsigned long calc_rate;
u64 shifted_fbdiv_int;
fbdiv_int = clockman_read(clockman, data->fbdiv_int_reg);
fbdiv_frac = clockman_read(clockman, data->fbdiv_frac_reg);
shifted_fbdiv_int = (u64)fbdiv_int << 24;
calc_rate = (u64)parent_rate * (shifted_fbdiv_int + fbdiv_frac);
calc_rate += BIT(23);
calc_rate >>= 24;
return calc_rate;
}
static long rp1_pll_core_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u32 fbdiv_int, fbdiv_frac;
return get_pll_core_divider(hw, rate, *parent_rate,
&fbdiv_int, &fbdiv_frac);
}
static void get_pll_prim_dividers(unsigned long rate, unsigned long parent_rate,
u32 *divider1, u32 *divider2)
{
unsigned int div1, div2;
unsigned int best_div1 = 7, best_div2 = 7;
unsigned long best_rate_diff =
abs_diff(DIV_ROUND_CLOSEST(parent_rate, best_div1 * best_div2), rate);
unsigned long rate_diff, calc_rate;
for (div1 = 1; div1 <= 7; div1++) {
for (div2 = 1; div2 <= div1; div2++) {
calc_rate = DIV_ROUND_CLOSEST(parent_rate, div1 * div2);
rate_diff = abs_diff(calc_rate, rate);
if (calc_rate == rate) {
best_div1 = div1;
best_div2 = div2;
goto done;
} else if (rate_diff < best_rate_diff) {
best_div1 = div1;
best_div2 = div2;
best_rate_diff = rate_diff;
}
}
}
done:
*divider1 = best_div1;
*divider2 = best_div2;
}
static int rp1_pll_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct rp1_clk_desc *pll = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll->clockman;
const struct rp1_pll_data *data = pll->data;
u32 prim, prim_div1, prim_div2;
get_pll_prim_dividers(rate, parent_rate, &prim_div1, &prim_div2);
spin_lock(&clockman->regs_lock);
prim = clockman_read(clockman, data->ctrl_reg);
prim &= ~PLL_PRIM_DIV1_MASK;
prim |= FIELD_PREP(PLL_PRIM_DIV1_MASK, prim_div1);
prim &= ~PLL_PRIM_DIV2_MASK;
prim |= FIELD_PREP(PLL_PRIM_DIV2_MASK, prim_div2);
clockman_write(clockman, data->ctrl_reg, prim);
spin_unlock(&clockman->regs_lock);
return 0;
}
static unsigned long rp1_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct rp1_clk_desc *pll = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll->clockman;
const struct rp1_pll_data *data = pll->data;
u32 prim, prim_div1, prim_div2;
prim = clockman_read(clockman, data->ctrl_reg);
prim_div1 = FIELD_GET(PLL_PRIM_DIV1_MASK, prim);
prim_div2 = FIELD_GET(PLL_PRIM_DIV2_MASK, prim);
if (!prim_div1 || !prim_div2) {
dev_err(clockman->dev, "%s: (%s) zero divider value\n",
__func__, clk_hw_get_name(hw));
return 0;
}
return DIV_ROUND_CLOSEST(parent_rate, prim_div1 * prim_div2);
}
static long rp1_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u32 div1, div2;
get_pll_prim_dividers(rate, *parent_rate, &div1, &div2);
return DIV_ROUND_CLOSEST(*parent_rate, div1 * div2);
}
static int rp1_pll_ph_is_on(struct clk_hw *hw)
{
struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_ph->clockman;
const struct rp1_pll_ph_data *data = pll_ph->data;
return !!(clockman_read(clockman, data->ph_reg) & PLL_PH_EN);
}
static int rp1_pll_ph_on(struct clk_hw *hw)
{
struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_ph->clockman;
const struct rp1_pll_ph_data *data = pll_ph->data;
u32 ph_reg;
spin_lock(&clockman->regs_lock);
ph_reg = clockman_read(clockman, data->ph_reg);
ph_reg |= data->phase << PLL_PH_PHASE_SHIFT;
ph_reg |= PLL_PH_EN;
clockman_write(clockman, data->ph_reg, ph_reg);
spin_unlock(&clockman->regs_lock);
return 0;
}
static void rp1_pll_ph_off(struct clk_hw *hw)
{
struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = pll_ph->clockman;
const struct rp1_pll_ph_data *data = pll_ph->data;
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->ph_reg,
clockman_read(clockman, data->ph_reg) & ~PLL_PH_EN);
spin_unlock(&clockman->regs_lock);
}
static unsigned long rp1_pll_ph_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw);
const struct rp1_pll_ph_data *data = pll_ph->data;
return parent_rate / data->fixed_divider;
}
static long rp1_pll_ph_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct rp1_clk_desc *pll_ph = container_of(hw, struct rp1_clk_desc, hw);
const struct rp1_pll_ph_data *data = pll_ph->data;
return *parent_rate / data->fixed_divider;
}
static int rp1_pll_divider_is_on(struct clk_hw *hw)
{
struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw);
struct rp1_clockman *clockman = divider->clockman;
const struct rp1_pll_data *data = divider->data;
return !(clockman_read(clockman, data->ctrl_reg) & PLL_SEC_RST);
}
static int rp1_pll_divider_on(struct clk_hw *hw)
{
struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw);
struct rp1_clockman *clockman = divider->clockman;
const struct rp1_pll_data *data = divider->data;
spin_lock(&clockman->regs_lock);
/* Check the implementation bit is set! */
WARN_ON(!(clockman_read(clockman, data->ctrl_reg) & PLL_SEC_IMPL));
clockman_write(clockman, data->ctrl_reg,
clockman_read(clockman, data->ctrl_reg) & ~PLL_SEC_RST);
spin_unlock(&clockman->regs_lock);
return 0;
}
static void rp1_pll_divider_off(struct clk_hw *hw)
{
struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw);
struct rp1_clockman *clockman = divider->clockman;
const struct rp1_pll_data *data = divider->data;
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->ctrl_reg,
clockman_read(clockman, data->ctrl_reg) | PLL_SEC_RST);
spin_unlock(&clockman->regs_lock);
}
static int rp1_pll_divider_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct rp1_clk_desc *divider = container_of(hw, struct rp1_clk_desc, div.hw);
struct rp1_clockman *clockman = divider->clockman;
const struct rp1_pll_data *data = divider->data;
u32 div, sec;
div = DIV_ROUND_UP_ULL(parent_rate, rate);
div = clamp(div, 8u, 19u);
spin_lock(&clockman->regs_lock);
sec = clockman_read(clockman, data->ctrl_reg);
sec &= ~PLL_SEC_DIV_MASK;
sec |= FIELD_PREP(PLL_SEC_DIV_MASK, div);
/* Must keep the divider in reset to change the value. */
sec |= PLL_SEC_RST;
clockman_write(clockman, data->ctrl_reg, sec);
/* must sleep 10 pll vco cycles */
ndelay(div64_ul(10ULL * div * NSEC_PER_SEC, parent_rate));
sec &= ~PLL_SEC_RST;
clockman_write(clockman, data->ctrl_reg, sec);
spin_unlock(&clockman->regs_lock);
return 0;
}
static unsigned long rp1_pll_divider_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return clk_divider_ops.recalc_rate(hw, parent_rate);
}
static long rp1_pll_divider_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
return clk_divider_ops.round_rate(hw, rate, parent_rate);
}
static int rp1_clock_is_on(struct clk_hw *hw)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
return !!(clockman_read(clockman, data->ctrl_reg) & CLK_CTRL_ENABLE);
}
static unsigned long rp1_clock_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
u64 calc_rate;
u64 div;
u32 frac;
div = clockman_read(clockman, data->div_int_reg);
frac = (data->div_frac_reg != 0) ?
clockman_read(clockman, data->div_frac_reg) : 0;
/* If the integer portion of the divider is 0, treat it as 2^16 */
if (!div)
div = 1 << 16;
div = (div << CLK_DIV_FRAC_BITS) | (frac >> (32 - CLK_DIV_FRAC_BITS));
calc_rate = (u64)parent_rate << CLK_DIV_FRAC_BITS;
calc_rate = div64_u64(calc_rate, div);
return calc_rate;
}
static int rp1_clock_on(struct clk_hw *hw)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->ctrl_reg,
clockman_read(clockman, data->ctrl_reg) | CLK_CTRL_ENABLE);
/* If this is a GPCLK, turn on the output-enable */
if (data->oe_mask)
clockman_write(clockman, GPCLK_OE_CTRL,
clockman_read(clockman, GPCLK_OE_CTRL) | data->oe_mask);
spin_unlock(&clockman->regs_lock);
return 0;
}
static void rp1_clock_off(struct clk_hw *hw)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->ctrl_reg,
clockman_read(clockman, data->ctrl_reg) & ~CLK_CTRL_ENABLE);
/* If this is a GPCLK, turn off the output-enable */
if (data->oe_mask)
clockman_write(clockman, GPCLK_OE_CTRL,
clockman_read(clockman, GPCLK_OE_CTRL) & ~data->oe_mask);
spin_unlock(&clockman->regs_lock);
}
static u32 rp1_clock_choose_div(unsigned long rate, unsigned long parent_rate,
const struct rp1_clock_data *data)
{
u64 div;
/*
* Due to earlier rounding, calculated parent_rate may differ from
* expected value. Don't fail on a small discrepancy near unity divide.
*/
if (!rate || rate > parent_rate + (parent_rate >> CLK_DIV_FRAC_BITS))
return 0;
/*
* Always express div in fixed-point format for fractional division;
* If no fractional divider is present, the fraction part will be zero.
*/
if (data->div_frac_reg) {
div = (u64)parent_rate << CLK_DIV_FRAC_BITS;
div = DIV_ROUND_CLOSEST_ULL(div, rate);
} else {
div = DIV_ROUND_CLOSEST_ULL(parent_rate, rate);
div <<= CLK_DIV_FRAC_BITS;
}
div = clamp(div,
1ull << CLK_DIV_FRAC_BITS,
(u64)data->div_int_max << CLK_DIV_FRAC_BITS);
return div;
}
static u8 rp1_clock_get_parent(struct clk_hw *hw)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
u32 sel, ctrl;
u8 parent;
/* Sel is one-hot, so find the first bit set */
sel = clockman_read(clockman, data->sel_reg);
parent = ffs(sel) - 1;
/* sel == 0 implies the parent clock is not enabled yet. */
if (!sel) {
/* Read the clock src from the CTRL register instead */
ctrl = clockman_read(clockman, data->ctrl_reg);
parent = (ctrl & data->clk_src_mask) >> CLK_CTRL_SRC_SHIFT;
}
if (parent >= data->num_std_parents)
parent = AUX_SEL;
if (parent == AUX_SEL) {
/*
* Clock parent is an auxiliary source, so get the parent from
* the AUXSRC register field.
*/
ctrl = clockman_read(clockman, data->ctrl_reg);
parent = FIELD_GET(CLK_CTRL_AUXSRC_MASK, ctrl);
parent += data->num_std_parents;
}
return parent;
}
static int rp1_clock_set_parent(struct clk_hw *hw, u8 index)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
u32 ctrl, sel;
spin_lock(&clockman->regs_lock);
ctrl = clockman_read(clockman, data->ctrl_reg);
if (index >= data->num_std_parents) {
/* This is an aux source request */
if (index >= data->num_std_parents + data->num_aux_parents) {
spin_unlock(&clockman->regs_lock);
return -EINVAL;
}
/* Select parent from aux list */
ctrl &= ~CLK_CTRL_AUXSRC_MASK;
ctrl |= FIELD_PREP(CLK_CTRL_AUXSRC_MASK, index - data->num_std_parents);
/* Set src to aux list */
ctrl &= ~data->clk_src_mask;
ctrl |= (AUX_SEL << CLK_CTRL_SRC_SHIFT) & data->clk_src_mask;
} else {
ctrl &= ~data->clk_src_mask;
ctrl |= (index << CLK_CTRL_SRC_SHIFT) & data->clk_src_mask;
}
clockman_write(clockman, data->ctrl_reg, ctrl);
spin_unlock(&clockman->regs_lock);
sel = rp1_clock_get_parent(hw);
if (sel != index)
return -EINVAL;
return 0;
}
static int rp1_clock_set_rate_and_parent(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate,
u8 parent)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
struct rp1_clockman *clockman = clock->clockman;
const struct rp1_clock_data *data = clock->data;
u32 div = rp1_clock_choose_div(rate, parent_rate, data);
spin_lock(&clockman->regs_lock);
clockman_write(clockman, data->div_int_reg, div >> CLK_DIV_FRAC_BITS);
if (data->div_frac_reg)
clockman_write(clockman, data->div_frac_reg, div << (32 - CLK_DIV_FRAC_BITS));
spin_unlock(&clockman->regs_lock);
if (parent != 0xff)
return rp1_clock_set_parent(hw, parent);
return 0;
}
static int rp1_clock_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return rp1_clock_set_rate_and_parent(hw, rate, parent_rate, 0xff);
}
static void rp1_clock_choose_div_and_prate(struct clk_hw *hw,
int parent_idx,
unsigned long rate,
unsigned long *prate,
unsigned long *calc_rate)
{
struct rp1_clk_desc *clock = container_of(hw, struct rp1_clk_desc, hw);
const struct rp1_clock_data *data = clock->data;
struct clk_hw *parent;
u32 div;
u64 tmp;
parent = clk_hw_get_parent_by_index(hw, parent_idx);
*prate = clk_hw_get_rate(parent);
div = rp1_clock_choose_div(rate, *prate, data);
if (!div) {
*calc_rate = 0;
return;
}
/* Recalculate to account for rounding errors */
tmp = (u64)*prate << CLK_DIV_FRAC_BITS;
tmp = div_u64(tmp, div);
/*
* Prevent overclocks - if all parent choices result in
* a downstream clock in excess of the maximum, then the
* call to set the clock will fail.
*/
if (tmp > data->max_freq)
*calc_rate = 0;
else
*calc_rate = tmp;
}
static int rp1_clock_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_hw *parent, *best_parent = NULL;
unsigned long best_rate = 0;
unsigned long best_prate = 0;
unsigned long best_rate_diff = ULONG_MAX;
unsigned long prate, calc_rate;
size_t i;
/*
* If the NO_REPARENT flag is set, try to use existing parent.
*/
if ((clk_hw_get_flags(hw) & CLK_SET_RATE_NO_REPARENT)) {
i = rp1_clock_get_parent(hw);
parent = clk_hw_get_parent_by_index(hw, i);
if (parent) {
rp1_clock_choose_div_and_prate(hw, i, req->rate, &prate,
&calc_rate);
if (calc_rate > 0) {
req->best_parent_hw = parent;
req->best_parent_rate = prate;
req->rate = calc_rate;
return 0;
}
}
}
/*
* Select parent clock that results in the closest rate (lower or
* higher)
*/
for (i = 0; i < clk_hw_get_num_parents(hw); i++) {
parent = clk_hw_get_parent_by_index(hw, i);
if (!parent)
continue;
rp1_clock_choose_div_and_prate(hw, i, req->rate, &prate,
&calc_rate);
if (abs_diff(calc_rate, req->rate) < best_rate_diff) {
best_parent = parent;
best_prate = prate;
best_rate = calc_rate;
best_rate_diff = abs_diff(calc_rate, req->rate);
if (best_rate_diff == 0)
break;
}
}
if (best_rate == 0)
return -EINVAL;
req->best_parent_hw = best_parent;
req->best_parent_rate = best_prate;
req->rate = best_rate;
return 0;
}
static const struct clk_ops rp1_pll_core_ops = {
.is_prepared = rp1_pll_core_is_on,
.prepare = rp1_pll_core_on,
.unprepare = rp1_pll_core_off,
.set_rate = rp1_pll_core_set_rate,
.recalc_rate = rp1_pll_core_recalc_rate,
.round_rate = rp1_pll_core_round_rate,
};
static const struct clk_ops rp1_pll_ops = {
.set_rate = rp1_pll_set_rate,
.recalc_rate = rp1_pll_recalc_rate,
.round_rate = rp1_pll_round_rate,
};
static const struct clk_ops rp1_pll_ph_ops = {
.is_prepared = rp1_pll_ph_is_on,
.prepare = rp1_pll_ph_on,
.unprepare = rp1_pll_ph_off,
.recalc_rate = rp1_pll_ph_recalc_rate,
.round_rate = rp1_pll_ph_round_rate,
};
static const struct clk_ops rp1_pll_divider_ops = {
.is_prepared = rp1_pll_divider_is_on,
.prepare = rp1_pll_divider_on,
.unprepare = rp1_pll_divider_off,
.set_rate = rp1_pll_divider_set_rate,
.recalc_rate = rp1_pll_divider_recalc_rate,
.round_rate = rp1_pll_divider_round_rate,
};
static const struct clk_ops rp1_clk_ops = {
.is_prepared = rp1_clock_is_on,
.prepare = rp1_clock_on,
.unprepare = rp1_clock_off,
.recalc_rate = rp1_clock_recalc_rate,
.get_parent = rp1_clock_get_parent,
.set_parent = rp1_clock_set_parent,
.set_rate_and_parent = rp1_clock_set_rate_and_parent,
.set_rate = rp1_clock_set_rate,
.determine_rate = rp1_clock_determine_rate,
};
static struct clk_hw *rp1_register_pll(struct rp1_clockman *clockman,
struct rp1_clk_desc *desc)
{
int ret;
desc->clockman = clockman;
ret = devm_clk_hw_register(clockman->dev, &desc->hw);
if (ret)
return ERR_PTR(ret);
return &desc->hw;
}
static struct clk_hw *rp1_register_pll_divider(struct rp1_clockman *clockman,
struct rp1_clk_desc *desc)
{
const struct rp1_pll_data *divider_data = desc->data;
int ret;
desc->div.reg = clockman->regs + divider_data->ctrl_reg;
desc->div.shift = __ffs(PLL_SEC_DIV_MASK);
desc->div.width = __ffs(~(PLL_SEC_DIV_MASK >> desc->div.shift));
desc->div.flags = CLK_DIVIDER_ROUND_CLOSEST;
desc->div.lock = &clockman->regs_lock;
desc->div.hw.init = desc->hw.init;
desc->div.table = pll_sec_div_table;
desc->clockman = clockman;
ret = devm_clk_hw_register(clockman->dev, &desc->div.hw);
if (ret)
return ERR_PTR(ret);
return &desc->div.hw;
}
static struct clk_hw *rp1_register_clock(struct rp1_clockman *clockman,
struct rp1_clk_desc *desc)
{
const struct rp1_clock_data *clock_data = desc->data;
int ret;
if (WARN_ON_ONCE(MAX_CLK_PARENTS <
clock_data->num_std_parents + clock_data->num_aux_parents))
return ERR_PTR(-EINVAL);
/* There must be a gap for the AUX selector */
if (WARN_ON_ONCE(clock_data->num_std_parents > AUX_SEL &&
desc->hw.init->parent_data[AUX_SEL].index != -1))
return ERR_PTR(-EINVAL);
desc->clockman = clockman;
ret = devm_clk_hw_register(clockman->dev, &desc->hw);
if (ret)
return ERR_PTR(ret);
return &desc->hw;
}
/* Assignment helper macros for different clock types. */
#define _REGISTER(f, ...) { .clk_register = f, __VA_ARGS__ }
#define CLK_DATA(type, ...) .data = &(struct type) { __VA_ARGS__ }
#define REGISTER_PLL(...) _REGISTER(&rp1_register_pll, \
__VA_ARGS__)
#define REGISTER_PLL_DIV(...) _REGISTER(&rp1_register_pll_divider, \
__VA_ARGS__)
#define REGISTER_CLK(...) _REGISTER(&rp1_register_clock, \
__VA_ARGS__)
static struct rp1_clk_desc pll_sys_core_desc = REGISTER_PLL(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"pll_sys_core",
(const struct clk_parent_data[]) { { .index = 0 } },
&rp1_pll_core_ops,
CLK_IS_CRITICAL
),
CLK_DATA(rp1_pll_core_data,
.cs_reg = PLL_SYS_CS,
.pwr_reg = PLL_SYS_PWR,
.fbdiv_int_reg = PLL_SYS_FBDIV_INT,
.fbdiv_frac_reg = PLL_SYS_FBDIV_FRAC,
)
);
static struct rp1_clk_desc pll_audio_core_desc = REGISTER_PLL(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"pll_audio_core",
(const struct clk_parent_data[]) { { .index = 0 } },
&rp1_pll_core_ops,
CLK_IS_CRITICAL
),
CLK_DATA(rp1_pll_core_data,
.cs_reg = PLL_AUDIO_CS,
.pwr_reg = PLL_AUDIO_PWR,
.fbdiv_int_reg = PLL_AUDIO_FBDIV_INT,
.fbdiv_frac_reg = PLL_AUDIO_FBDIV_FRAC,
)
);
static struct rp1_clk_desc pll_video_core_desc = REGISTER_PLL(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"pll_video_core",
(const struct clk_parent_data[]) { { .index = 0 } },
&rp1_pll_core_ops,
CLK_IS_CRITICAL
),
CLK_DATA(rp1_pll_core_data,
.cs_reg = PLL_VIDEO_CS,
.pwr_reg = PLL_VIDEO_PWR,
.fbdiv_int_reg = PLL_VIDEO_FBDIV_INT,
.fbdiv_frac_reg = PLL_VIDEO_FBDIV_FRAC,
)
);
static struct rp1_clk_desc pll_sys_desc = REGISTER_PLL(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"pll_sys",
(const struct clk_parent_data[]) {
{ .hw = &pll_sys_core_desc.hw }
},
&rp1_pll_ops,
0
),
CLK_DATA(rp1_pll_data,
.ctrl_reg = PLL_SYS_PRIM,
.fc0_src = FC_NUM(0, 2),
)
);
static struct rp1_clk_desc pll_sys_sec_desc = REGISTER_PLL_DIV(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"pll_sys_sec",
(const struct clk_parent_data[]) {
{ .hw = &pll_sys_core_desc.hw }
},
&rp1_pll_divider_ops,
0
),
CLK_DATA(rp1_pll_data,
.ctrl_reg = PLL_SYS_SEC,
.fc0_src = FC_NUM(2, 2),
)
);
static struct rp1_clk_desc clk_eth_tsu_desc = REGISTER_CLK(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"clk_eth_tsu",
(const struct clk_parent_data[]) { { .index = 0 } },
&rp1_clk_ops,
0
),
CLK_DATA(rp1_clock_data,
.num_std_parents = 0,
.num_aux_parents = 1,
.ctrl_reg = CLK_ETH_TSU_CTRL,
.div_int_reg = CLK_ETH_TSU_DIV_INT,
.sel_reg = CLK_ETH_TSU_SEL,
.div_int_max = DIV_INT_8BIT_MAX,
.max_freq = 50 * HZ_PER_MHZ,
.fc0_src = FC_NUM(5, 7),
)
);
static const struct clk_parent_data clk_eth_parents[] = {
{ .hw = &pll_sys_sec_desc.div.hw },
{ .hw = &pll_sys_desc.hw },
};
static struct rp1_clk_desc clk_eth_desc = REGISTER_CLK(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"clk_eth",
clk_eth_parents,
&rp1_clk_ops,
0
),
CLK_DATA(rp1_clock_data,
.num_std_parents = 0,
.num_aux_parents = 2,
.ctrl_reg = CLK_ETH_CTRL,
.div_int_reg = CLK_ETH_DIV_INT,
.sel_reg = CLK_ETH_SEL,
.div_int_max = DIV_INT_8BIT_MAX,
.max_freq = 125 * HZ_PER_MHZ,
.fc0_src = FC_NUM(4, 6),
)
);
static const struct clk_parent_data clk_sys_parents[] = {
{ .index = 0 },
{ .index = -1 },
{ .hw = &pll_sys_desc.hw },
};
static struct rp1_clk_desc clk_sys_desc = REGISTER_CLK(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"clk_sys",
clk_sys_parents,
&rp1_clk_ops,
CLK_IS_CRITICAL
),
CLK_DATA(rp1_clock_data,
.num_std_parents = 3,
.num_aux_parents = 0,
.ctrl_reg = CLK_SYS_CTRL,
.div_int_reg = CLK_SYS_DIV_INT,
.sel_reg = CLK_SYS_SEL,
.div_int_max = DIV_INT_24BIT_MAX,
.max_freq = 200 * HZ_PER_MHZ,
.fc0_src = FC_NUM(0, 4),
.clk_src_mask = 0x3,
)
);
static struct rp1_clk_desc pll_sys_pri_ph_desc = REGISTER_PLL(
.hw.init = CLK_HW_INIT_PARENTS_DATA(
"pll_sys_pri_ph",
(const struct clk_parent_data[]) {
{ .hw = &pll_sys_desc.hw }
},
&rp1_pll_ph_ops,
0
),
CLK_DATA(rp1_pll_ph_data,
.ph_reg = PLL_SYS_PRIM,
.fixed_divider = 2,
.phase = RP1_PLL_PHASE_0,
.fc0_src = FC_NUM(1, 2),
)
);
static struct rp1_clk_desc *const clk_desc_array[] = {
[RP1_PLL_SYS_CORE] = &pll_sys_core_desc,
[RP1_PLL_AUDIO_CORE] = &pll_audio_core_desc,
[RP1_PLL_VIDEO_CORE] = &pll_video_core_desc,
[RP1_PLL_SYS] = &pll_sys_desc,
[RP1_CLK_ETH_TSU] = &clk_eth_tsu_desc,
[RP1_CLK_ETH] = &clk_eth_desc,
[RP1_CLK_SYS] = &clk_sys_desc,
[RP1_PLL_SYS_PRI_PH] = &pll_sys_pri_ph_desc,
[RP1_PLL_SYS_SEC] = &pll_sys_sec_desc,
};
static const struct regmap_range rp1_reg_ranges[] = {
regmap_reg_range(PLL_SYS_CS, PLL_SYS_SEC),
regmap_reg_range(PLL_AUDIO_CS, PLL_AUDIO_TERN),
regmap_reg_range(PLL_VIDEO_CS, PLL_VIDEO_SEC),
regmap_reg_range(GPCLK_OE_CTRL, GPCLK_OE_CTRL),
regmap_reg_range(CLK_SYS_CTRL, CLK_SYS_DIV_INT),
regmap_reg_range(CLK_SYS_SEL, CLK_SYS_SEL),
regmap_reg_range(CLK_SLOW_SYS_CTRL, CLK_SLOW_SYS_DIV_INT),
regmap_reg_range(CLK_SLOW_SYS_SEL, CLK_SLOW_SYS_SEL),
regmap_reg_range(CLK_DMA_CTRL, CLK_DMA_DIV_INT),
regmap_reg_range(CLK_DMA_SEL, CLK_DMA_SEL),
regmap_reg_range(CLK_UART_CTRL, CLK_UART_DIV_INT),
regmap_reg_range(CLK_UART_SEL, CLK_UART_SEL),
regmap_reg_range(CLK_ETH_CTRL, CLK_ETH_DIV_INT),
regmap_reg_range(CLK_ETH_SEL, CLK_ETH_SEL),
regmap_reg_range(CLK_PWM0_CTRL, CLK_PWM0_SEL),
regmap_reg_range(CLK_PWM1_CTRL, CLK_PWM1_SEL),
regmap_reg_range(CLK_AUDIO_IN_CTRL, CLK_AUDIO_IN_DIV_INT),
regmap_reg_range(CLK_AUDIO_IN_SEL, CLK_AUDIO_IN_SEL),
regmap_reg_range(CLK_AUDIO_OUT_CTRL, CLK_AUDIO_OUT_DIV_INT),
regmap_reg_range(CLK_AUDIO_OUT_SEL, CLK_AUDIO_OUT_SEL),
regmap_reg_range(CLK_I2S_CTRL, CLK_I2S_DIV_INT),
regmap_reg_range(CLK_I2S_SEL, CLK_I2S_SEL),
regmap_reg_range(CLK_MIPI0_CFG_CTRL, CLK_MIPI0_CFG_DIV_INT),
regmap_reg_range(CLK_MIPI0_CFG_SEL, CLK_MIPI0_CFG_SEL),
regmap_reg_range(CLK_MIPI1_CFG_CTRL, CLK_MIPI1_CFG_DIV_INT),
regmap_reg_range(CLK_MIPI1_CFG_SEL, CLK_MIPI1_CFG_SEL),
regmap_reg_range(CLK_PCIE_AUX_CTRL, CLK_PCIE_AUX_DIV_INT),
regmap_reg_range(CLK_PCIE_AUX_SEL, CLK_PCIE_AUX_SEL),
regmap_reg_range(CLK_USBH0_MICROFRAME_CTRL, CLK_USBH0_MICROFRAME_DIV_INT),
regmap_reg_range(CLK_USBH0_MICROFRAME_SEL, CLK_USBH0_MICROFRAME_SEL),
regmap_reg_range(CLK_USBH1_MICROFRAME_CTRL, CLK_USBH1_MICROFRAME_DIV_INT),
regmap_reg_range(CLK_USBH1_MICROFRAME_SEL, CLK_USBH1_MICROFRAME_SEL),
regmap_reg_range(CLK_USBH0_SUSPEND_CTRL, CLK_USBH0_SUSPEND_DIV_INT),
regmap_reg_range(CLK_USBH0_SUSPEND_SEL, CLK_USBH0_SUSPEND_SEL),
regmap_reg_range(CLK_USBH1_SUSPEND_CTRL, CLK_USBH1_SUSPEND_DIV_INT),
regmap_reg_range(CLK_USBH1_SUSPEND_SEL, CLK_USBH1_SUSPEND_SEL),
regmap_reg_range(CLK_ETH_TSU_CTRL, CLK_ETH_TSU_DIV_INT),
regmap_reg_range(CLK_ETH_TSU_SEL, CLK_ETH_TSU_SEL),
regmap_reg_range(CLK_ADC_CTRL, CLK_ADC_DIV_INT),
regmap_reg_range(CLK_ADC_SEL, CLK_ADC_SEL),
regmap_reg_range(CLK_SDIO_TIMER_CTRL, CLK_SDIO_TIMER_DIV_INT),
regmap_reg_range(CLK_SDIO_TIMER_SEL, CLK_SDIO_TIMER_SEL),
regmap_reg_range(CLK_SDIO_ALT_SRC_CTRL, CLK_SDIO_ALT_SRC_DIV_INT),
regmap_reg_range(CLK_SDIO_ALT_SRC_SEL, CLK_SDIO_ALT_SRC_SEL),
regmap_reg_range(CLK_GP0_CTRL, CLK_GP0_SEL),
regmap_reg_range(CLK_GP1_CTRL, CLK_GP1_SEL),
regmap_reg_range(CLK_GP2_CTRL, CLK_GP2_SEL),
regmap_reg_range(CLK_GP3_CTRL, CLK_GP3_SEL),
regmap_reg_range(CLK_GP4_CTRL, CLK_GP4_SEL),
regmap_reg_range(CLK_GP5_CTRL, CLK_GP5_SEL),
regmap_reg_range(CLK_SYS_RESUS_CTRL, CLK_SYS_RESUS_CTRL),
regmap_reg_range(CLK_SLOW_SYS_RESUS_CTRL, CLK_SLOW_SYS_RESUS_CTRL),
regmap_reg_range(FC0_REF_KHZ, FC0_RESULT),
regmap_reg_range(VIDEO_CLK_VEC_CTRL, VIDEO_CLK_VEC_DIV_INT),
regmap_reg_range(VIDEO_CLK_VEC_SEL, VIDEO_CLK_DPI_DIV_INT),
regmap_reg_range(VIDEO_CLK_DPI_SEL, VIDEO_CLK_MIPI1_DPI_SEL),
};
static const struct regmap_access_table rp1_reg_table = {
.yes_ranges = rp1_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(rp1_reg_ranges),
};
static const struct regmap_config rp1_clk_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = PLL_VIDEO_SEC,
.name = "rp1-clk",
.rd_table = &rp1_reg_table,
.disable_locking = true,
};
static int rp1_clk_probe(struct platform_device *pdev)
{
const size_t asize = ARRAY_SIZE(clk_desc_array);
struct rp1_clk_desc *desc;
struct device *dev = &pdev->dev;
struct rp1_clockman *clockman;
struct clk_hw **hws;
unsigned int i;
clockman = devm_kzalloc(dev, struct_size(clockman, onecell.hws, asize),
GFP_KERNEL);
if (!clockman)
return -ENOMEM;
spin_lock_init(&clockman->regs_lock);
clockman->dev = dev;
clockman->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(clockman->regs))
return PTR_ERR(clockman->regs);
clockman->regmap = devm_regmap_init_mmio(dev, clockman->regs,
&rp1_clk_regmap_cfg);
if (IS_ERR(clockman->regmap)) {
dev_err_probe(dev, PTR_ERR(clockman->regmap),
"could not init clock regmap\n");
return PTR_ERR(clockman->regmap);
}
clockman->onecell.num = asize;
hws = clockman->onecell.hws;
for (i = 0; i < asize; i++) {
desc = clk_desc_array[i];
if (desc && desc->clk_register && desc->data)
hws[i] = desc->clk_register(clockman, desc);
}
platform_set_drvdata(pdev, clockman);
return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
&clockman->onecell);
}
static const struct of_device_id rp1_clk_of_match[] = {
{ .compatible = "raspberrypi,rp1-clocks" },
{}
};
MODULE_DEVICE_TABLE(of, rp1_clk_of_match);
static struct platform_driver rp1_clk_driver = {
.driver = {
.name = "rp1-clk",
.of_match_table = rp1_clk_of_match,
},
.probe = rp1_clk_probe,
};
module_platform_driver(rp1_clk_driver);
MODULE_AUTHOR("Naushir Patuck <naush@raspberrypi.com>");
MODULE_AUTHOR("Andrea della Porta <andrea.porta@suse.com>");
MODULE_DESCRIPTION("RP1 clock driver");
MODULE_LICENSE("GPL");