mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

KVM x86 MMU changes for 6.17 - Exempt nested EPT from the the !USER + CR0.WP logic, as EPT doesn't interact with CR0.WP. - Move the TDX hardware setup code to tdx.c to better co-locate TDX code and eliminate a few global symbols. - Dynamically allocation the shadow MMU's hashed page list, and defer allocating the hashed list until it's actually needed (the TDP MMU doesn't use the list).
3643 lines
98 KiB
C
3643 lines
98 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/cleanup.h>
|
|
#include <linux/cpu.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/fpu/xcr.h>
|
|
#include <linux/misc_cgroup.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <asm/tdx.h>
|
|
#include "capabilities.h"
|
|
#include "mmu.h"
|
|
#include "x86_ops.h"
|
|
#include "lapic.h"
|
|
#include "tdx.h"
|
|
#include "vmx.h"
|
|
#include "mmu/spte.h"
|
|
#include "common.h"
|
|
#include "posted_intr.h"
|
|
#include "irq.h"
|
|
#include <trace/events/kvm.h>
|
|
#include "trace.h"
|
|
|
|
#pragma GCC poison to_vmx
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#define pr_tdx_error(__fn, __err) \
|
|
pr_err_ratelimited("SEAMCALL %s failed: 0x%llx\n", #__fn, __err)
|
|
|
|
#define __pr_tdx_error_N(__fn_str, __err, __fmt, ...) \
|
|
pr_err_ratelimited("SEAMCALL " __fn_str " failed: 0x%llx, " __fmt, __err, __VA_ARGS__)
|
|
|
|
#define pr_tdx_error_1(__fn, __err, __rcx) \
|
|
__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx\n", __rcx)
|
|
|
|
#define pr_tdx_error_2(__fn, __err, __rcx, __rdx) \
|
|
__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx\n", __rcx, __rdx)
|
|
|
|
#define pr_tdx_error_3(__fn, __err, __rcx, __rdx, __r8) \
|
|
__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx, r8 0x%llx\n", __rcx, __rdx, __r8)
|
|
|
|
bool enable_tdx __ro_after_init;
|
|
module_param_named(tdx, enable_tdx, bool, 0444);
|
|
|
|
#define TDX_SHARED_BIT_PWL_5 gpa_to_gfn(BIT_ULL(51))
|
|
#define TDX_SHARED_BIT_PWL_4 gpa_to_gfn(BIT_ULL(47))
|
|
|
|
static enum cpuhp_state tdx_cpuhp_state;
|
|
|
|
static const struct tdx_sys_info *tdx_sysinfo;
|
|
|
|
void tdh_vp_rd_failed(struct vcpu_tdx *tdx, char *uclass, u32 field, u64 err)
|
|
{
|
|
KVM_BUG_ON(1, tdx->vcpu.kvm);
|
|
pr_err("TDH_VP_RD[%s.0x%x] failed 0x%llx\n", uclass, field, err);
|
|
}
|
|
|
|
void tdh_vp_wr_failed(struct vcpu_tdx *tdx, char *uclass, char *op, u32 field,
|
|
u64 val, u64 err)
|
|
{
|
|
KVM_BUG_ON(1, tdx->vcpu.kvm);
|
|
pr_err("TDH_VP_WR[%s.0x%x]%s0x%llx failed: 0x%llx\n", uclass, field, op, val, err);
|
|
}
|
|
|
|
#define KVM_SUPPORTED_TD_ATTRS (TDX_TD_ATTR_SEPT_VE_DISABLE)
|
|
|
|
static __always_inline struct kvm_tdx *to_kvm_tdx(struct kvm *kvm)
|
|
{
|
|
return container_of(kvm, struct kvm_tdx, kvm);
|
|
}
|
|
|
|
static __always_inline struct vcpu_tdx *to_tdx(struct kvm_vcpu *vcpu)
|
|
{
|
|
return container_of(vcpu, struct vcpu_tdx, vcpu);
|
|
}
|
|
|
|
static u64 tdx_get_supported_attrs(const struct tdx_sys_info_td_conf *td_conf)
|
|
{
|
|
u64 val = KVM_SUPPORTED_TD_ATTRS;
|
|
|
|
if ((val & td_conf->attributes_fixed1) != td_conf->attributes_fixed1)
|
|
return 0;
|
|
|
|
val &= td_conf->attributes_fixed0;
|
|
|
|
return val;
|
|
}
|
|
|
|
static u64 tdx_get_supported_xfam(const struct tdx_sys_info_td_conf *td_conf)
|
|
{
|
|
u64 val = kvm_caps.supported_xcr0 | kvm_caps.supported_xss;
|
|
|
|
if ((val & td_conf->xfam_fixed1) != td_conf->xfam_fixed1)
|
|
return 0;
|
|
|
|
val &= td_conf->xfam_fixed0;
|
|
|
|
return val;
|
|
}
|
|
|
|
static int tdx_get_guest_phys_addr_bits(const u32 eax)
|
|
{
|
|
return (eax & GENMASK(23, 16)) >> 16;
|
|
}
|
|
|
|
static u32 tdx_set_guest_phys_addr_bits(const u32 eax, int addr_bits)
|
|
{
|
|
return (eax & ~GENMASK(23, 16)) | (addr_bits & 0xff) << 16;
|
|
}
|
|
|
|
#define TDX_FEATURE_TSX (__feature_bit(X86_FEATURE_HLE) | __feature_bit(X86_FEATURE_RTM))
|
|
|
|
static bool has_tsx(const struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
return entry->function == 7 && entry->index == 0 &&
|
|
(entry->ebx & TDX_FEATURE_TSX);
|
|
}
|
|
|
|
static void clear_tsx(struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
entry->ebx &= ~TDX_FEATURE_TSX;
|
|
}
|
|
|
|
static bool has_waitpkg(const struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
return entry->function == 7 && entry->index == 0 &&
|
|
(entry->ecx & __feature_bit(X86_FEATURE_WAITPKG));
|
|
}
|
|
|
|
static void clear_waitpkg(struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
entry->ecx &= ~__feature_bit(X86_FEATURE_WAITPKG);
|
|
}
|
|
|
|
static void tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
if (has_tsx(entry))
|
|
clear_tsx(entry);
|
|
|
|
if (has_waitpkg(entry))
|
|
clear_waitpkg(entry);
|
|
}
|
|
|
|
static bool tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
return has_tsx(entry) || has_waitpkg(entry);
|
|
}
|
|
|
|
#define KVM_TDX_CPUID_NO_SUBLEAF ((__u32)-1)
|
|
|
|
static void td_init_cpuid_entry2(struct kvm_cpuid_entry2 *entry, unsigned char idx)
|
|
{
|
|
const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
|
|
|
|
entry->function = (u32)td_conf->cpuid_config_leaves[idx];
|
|
entry->index = td_conf->cpuid_config_leaves[idx] >> 32;
|
|
entry->eax = (u32)td_conf->cpuid_config_values[idx][0];
|
|
entry->ebx = td_conf->cpuid_config_values[idx][0] >> 32;
|
|
entry->ecx = (u32)td_conf->cpuid_config_values[idx][1];
|
|
entry->edx = td_conf->cpuid_config_values[idx][1] >> 32;
|
|
|
|
if (entry->index == KVM_TDX_CPUID_NO_SUBLEAF)
|
|
entry->index = 0;
|
|
|
|
/*
|
|
* The TDX module doesn't allow configuring the guest phys addr bits
|
|
* (EAX[23:16]). However, KVM uses it as an interface to the userspace
|
|
* to configure the GPAW. Report these bits as configurable.
|
|
*/
|
|
if (entry->function == 0x80000008)
|
|
entry->eax = tdx_set_guest_phys_addr_bits(entry->eax, 0xff);
|
|
|
|
tdx_clear_unsupported_cpuid(entry);
|
|
}
|
|
|
|
#define TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT BIT(1)
|
|
|
|
static int init_kvm_tdx_caps(const struct tdx_sys_info_td_conf *td_conf,
|
|
struct kvm_tdx_capabilities *caps)
|
|
{
|
|
int i;
|
|
|
|
caps->supported_attrs = tdx_get_supported_attrs(td_conf);
|
|
if (!caps->supported_attrs)
|
|
return -EIO;
|
|
|
|
caps->supported_xfam = tdx_get_supported_xfam(td_conf);
|
|
if (!caps->supported_xfam)
|
|
return -EIO;
|
|
|
|
caps->cpuid.nent = td_conf->num_cpuid_config;
|
|
|
|
caps->user_tdvmcallinfo_1_r11 =
|
|
TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT;
|
|
|
|
for (i = 0; i < td_conf->num_cpuid_config; i++)
|
|
td_init_cpuid_entry2(&caps->cpuid.entries[i], i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some SEAMCALLs acquire the TDX module globally, and can fail with
|
|
* TDX_OPERAND_BUSY. Use a global mutex to serialize these SEAMCALLs.
|
|
*/
|
|
static DEFINE_MUTEX(tdx_lock);
|
|
|
|
static atomic_t nr_configured_hkid;
|
|
|
|
static bool tdx_operand_busy(u64 err)
|
|
{
|
|
return (err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_BUSY;
|
|
}
|
|
|
|
|
|
/*
|
|
* A per-CPU list of TD vCPUs associated with a given CPU.
|
|
* Protected by interrupt mask. Only manipulated by the CPU owning this per-CPU
|
|
* list.
|
|
* - When a vCPU is loaded onto a CPU, it is removed from the per-CPU list of
|
|
* the old CPU during the IPI callback running on the old CPU, and then added
|
|
* to the per-CPU list of the new CPU.
|
|
* - When a TD is tearing down, all vCPUs are disassociated from their current
|
|
* running CPUs and removed from the per-CPU list during the IPI callback
|
|
* running on those CPUs.
|
|
* - When a CPU is brought down, traverse the per-CPU list to disassociate all
|
|
* associated TD vCPUs and remove them from the per-CPU list.
|
|
*/
|
|
static DEFINE_PER_CPU(struct list_head, associated_tdvcpus);
|
|
|
|
static __always_inline unsigned long tdvmcall_exit_type(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_tdx(vcpu)->vp_enter_args.r10;
|
|
}
|
|
|
|
static __always_inline unsigned long tdvmcall_leaf(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_tdx(vcpu)->vp_enter_args.r11;
|
|
}
|
|
|
|
static __always_inline void tdvmcall_set_return_code(struct kvm_vcpu *vcpu,
|
|
long val)
|
|
{
|
|
to_tdx(vcpu)->vp_enter_args.r10 = val;
|
|
}
|
|
|
|
static __always_inline void tdvmcall_set_return_val(struct kvm_vcpu *vcpu,
|
|
unsigned long val)
|
|
{
|
|
to_tdx(vcpu)->vp_enter_args.r11 = val;
|
|
}
|
|
|
|
static inline void tdx_hkid_free(struct kvm_tdx *kvm_tdx)
|
|
{
|
|
tdx_guest_keyid_free(kvm_tdx->hkid);
|
|
kvm_tdx->hkid = -1;
|
|
atomic_dec(&nr_configured_hkid);
|
|
misc_cg_uncharge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
|
|
put_misc_cg(kvm_tdx->misc_cg);
|
|
kvm_tdx->misc_cg = NULL;
|
|
}
|
|
|
|
static inline bool is_hkid_assigned(struct kvm_tdx *kvm_tdx)
|
|
{
|
|
return kvm_tdx->hkid > 0;
|
|
}
|
|
|
|
static inline void tdx_disassociate_vp(struct kvm_vcpu *vcpu)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
list_del(&to_tdx(vcpu)->cpu_list);
|
|
|
|
/*
|
|
* Ensure tdx->cpu_list is updated before setting vcpu->cpu to -1,
|
|
* otherwise, a different CPU can see vcpu->cpu = -1 and add the vCPU
|
|
* to its list before it's deleted from this CPU's list.
|
|
*/
|
|
smp_wmb();
|
|
|
|
vcpu->cpu = -1;
|
|
}
|
|
|
|
static void tdx_clear_page(struct page *page)
|
|
{
|
|
const void *zero_page = (const void *) page_to_virt(ZERO_PAGE(0));
|
|
void *dest = page_to_virt(page);
|
|
unsigned long i;
|
|
|
|
/*
|
|
* The page could have been poisoned. MOVDIR64B also clears
|
|
* the poison bit so the kernel can safely use the page again.
|
|
*/
|
|
for (i = 0; i < PAGE_SIZE; i += 64)
|
|
movdir64b(dest + i, zero_page);
|
|
/*
|
|
* MOVDIR64B store uses WC buffer. Prevent following memory reads
|
|
* from seeing potentially poisoned cache.
|
|
*/
|
|
__mb();
|
|
}
|
|
|
|
static void tdx_no_vcpus_enter_start(struct kvm *kvm)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
WRITE_ONCE(kvm_tdx->wait_for_sept_zap, true);
|
|
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
|
|
}
|
|
|
|
static void tdx_no_vcpus_enter_stop(struct kvm *kvm)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
WRITE_ONCE(kvm_tdx->wait_for_sept_zap, false);
|
|
}
|
|
|
|
/* TDH.PHYMEM.PAGE.RECLAIM is allowed only when destroying the TD. */
|
|
static int __tdx_reclaim_page(struct page *page)
|
|
{
|
|
u64 err, rcx, rdx, r8;
|
|
|
|
err = tdh_phymem_page_reclaim(page, &rcx, &rdx, &r8);
|
|
|
|
/*
|
|
* No need to check for TDX_OPERAND_BUSY; all TD pages are freed
|
|
* before the HKID is released and control pages have also been
|
|
* released at this point, so there is no possibility of contention.
|
|
*/
|
|
if (WARN_ON_ONCE(err)) {
|
|
pr_tdx_error_3(TDH_PHYMEM_PAGE_RECLAIM, err, rcx, rdx, r8);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_reclaim_page(struct page *page)
|
|
{
|
|
int r;
|
|
|
|
r = __tdx_reclaim_page(page);
|
|
if (!r)
|
|
tdx_clear_page(page);
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Reclaim the TD control page(s) which are crypto-protected by TDX guest's
|
|
* private KeyID. Assume the cache associated with the TDX private KeyID has
|
|
* been flushed.
|
|
*/
|
|
static void tdx_reclaim_control_page(struct page *ctrl_page)
|
|
{
|
|
/*
|
|
* Leak the page if the kernel failed to reclaim the page.
|
|
* The kernel cannot use it safely anymore.
|
|
*/
|
|
if (tdx_reclaim_page(ctrl_page))
|
|
return;
|
|
|
|
__free_page(ctrl_page);
|
|
}
|
|
|
|
struct tdx_flush_vp_arg {
|
|
struct kvm_vcpu *vcpu;
|
|
u64 err;
|
|
};
|
|
|
|
static void tdx_flush_vp(void *_arg)
|
|
{
|
|
struct tdx_flush_vp_arg *arg = _arg;
|
|
struct kvm_vcpu *vcpu = arg->vcpu;
|
|
u64 err;
|
|
|
|
arg->err = 0;
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/* Task migration can race with CPU offlining. */
|
|
if (unlikely(vcpu->cpu != raw_smp_processor_id()))
|
|
return;
|
|
|
|
/*
|
|
* No need to do TDH_VP_FLUSH if the vCPU hasn't been initialized. The
|
|
* list tracking still needs to be updated so that it's correct if/when
|
|
* the vCPU does get initialized.
|
|
*/
|
|
if (to_tdx(vcpu)->state != VCPU_TD_STATE_UNINITIALIZED) {
|
|
/*
|
|
* No need to retry. TDX Resources needed for TDH.VP.FLUSH are:
|
|
* TDVPR as exclusive, TDR as shared, and TDCS as shared. This
|
|
* vp flush function is called when destructing vCPU/TD or vCPU
|
|
* migration. No other thread uses TDVPR in those cases.
|
|
*/
|
|
err = tdh_vp_flush(&to_tdx(vcpu)->vp);
|
|
if (unlikely(err && err != TDX_VCPU_NOT_ASSOCIATED)) {
|
|
/*
|
|
* This function is called in IPI context. Do not use
|
|
* printk to avoid console semaphore.
|
|
* The caller prints out the error message, instead.
|
|
*/
|
|
if (err)
|
|
arg->err = err;
|
|
}
|
|
}
|
|
|
|
tdx_disassociate_vp(vcpu);
|
|
}
|
|
|
|
static void tdx_flush_vp_on_cpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct tdx_flush_vp_arg arg = {
|
|
.vcpu = vcpu,
|
|
};
|
|
int cpu = vcpu->cpu;
|
|
|
|
if (unlikely(cpu == -1))
|
|
return;
|
|
|
|
smp_call_function_single(cpu, tdx_flush_vp, &arg, 1);
|
|
if (KVM_BUG_ON(arg.err, vcpu->kvm))
|
|
pr_tdx_error(TDH_VP_FLUSH, arg.err);
|
|
}
|
|
|
|
void tdx_disable_virtualization_cpu(void)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
struct list_head *tdvcpus = &per_cpu(associated_tdvcpus, cpu);
|
|
struct tdx_flush_vp_arg arg;
|
|
struct vcpu_tdx *tdx, *tmp;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
/* Safe variant needed as tdx_disassociate_vp() deletes the entry. */
|
|
list_for_each_entry_safe(tdx, tmp, tdvcpus, cpu_list) {
|
|
arg.vcpu = &tdx->vcpu;
|
|
tdx_flush_vp(&arg);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#define TDX_SEAMCALL_RETRIES 10000
|
|
|
|
static void smp_func_do_phymem_cache_wb(void *unused)
|
|
{
|
|
u64 err = 0;
|
|
bool resume;
|
|
int i;
|
|
|
|
/*
|
|
* TDH.PHYMEM.CACHE.WB flushes caches associated with any TDX private
|
|
* KeyID on the package or core. The TDX module may not finish the
|
|
* cache flush but return TDX_INTERRUPTED_RESUMEABLE instead. The
|
|
* kernel should retry it until it returns success w/o rescheduling.
|
|
*/
|
|
for (i = TDX_SEAMCALL_RETRIES; i > 0; i--) {
|
|
resume = !!err;
|
|
err = tdh_phymem_cache_wb(resume);
|
|
switch (err) {
|
|
case TDX_INTERRUPTED_RESUMABLE:
|
|
continue;
|
|
case TDX_NO_HKID_READY_TO_WBCACHE:
|
|
err = TDX_SUCCESS; /* Already done by other thread */
|
|
fallthrough;
|
|
default:
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (WARN_ON_ONCE(err))
|
|
pr_tdx_error(TDH_PHYMEM_CACHE_WB, err);
|
|
}
|
|
|
|
void tdx_mmu_release_hkid(struct kvm *kvm)
|
|
{
|
|
bool packages_allocated, targets_allocated;
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
cpumask_var_t packages, targets;
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned long j;
|
|
int i;
|
|
u64 err;
|
|
|
|
if (!is_hkid_assigned(kvm_tdx))
|
|
return;
|
|
|
|
packages_allocated = zalloc_cpumask_var(&packages, GFP_KERNEL);
|
|
targets_allocated = zalloc_cpumask_var(&targets, GFP_KERNEL);
|
|
cpus_read_lock();
|
|
|
|
kvm_for_each_vcpu(j, vcpu, kvm)
|
|
tdx_flush_vp_on_cpu(vcpu);
|
|
|
|
/*
|
|
* TDH.PHYMEM.CACHE.WB tries to acquire the TDX module global lock
|
|
* and can fail with TDX_OPERAND_BUSY when it fails to get the lock.
|
|
* Multiple TDX guests can be destroyed simultaneously. Take the
|
|
* mutex to prevent it from getting error.
|
|
*/
|
|
mutex_lock(&tdx_lock);
|
|
|
|
/*
|
|
* Releasing HKID is in vm_destroy().
|
|
* After the above flushing vps, there should be no more vCPU
|
|
* associations, as all vCPU fds have been released at this stage.
|
|
*/
|
|
err = tdh_mng_vpflushdone(&kvm_tdx->td);
|
|
if (err == TDX_FLUSHVP_NOT_DONE)
|
|
goto out;
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error(TDH_MNG_VPFLUSHDONE, err);
|
|
pr_err("tdh_mng_vpflushdone() failed. HKID %d is leaked.\n",
|
|
kvm_tdx->hkid);
|
|
goto out;
|
|
}
|
|
|
|
for_each_online_cpu(i) {
|
|
if (packages_allocated &&
|
|
cpumask_test_and_set_cpu(topology_physical_package_id(i),
|
|
packages))
|
|
continue;
|
|
if (targets_allocated)
|
|
cpumask_set_cpu(i, targets);
|
|
}
|
|
if (targets_allocated)
|
|
on_each_cpu_mask(targets, smp_func_do_phymem_cache_wb, NULL, true);
|
|
else
|
|
on_each_cpu(smp_func_do_phymem_cache_wb, NULL, true);
|
|
/*
|
|
* In the case of error in smp_func_do_phymem_cache_wb(), the following
|
|
* tdh_mng_key_freeid() will fail.
|
|
*/
|
|
err = tdh_mng_key_freeid(&kvm_tdx->td);
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error(TDH_MNG_KEY_FREEID, err);
|
|
pr_err("tdh_mng_key_freeid() failed. HKID %d is leaked.\n",
|
|
kvm_tdx->hkid);
|
|
} else {
|
|
tdx_hkid_free(kvm_tdx);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&tdx_lock);
|
|
cpus_read_unlock();
|
|
free_cpumask_var(targets);
|
|
free_cpumask_var(packages);
|
|
}
|
|
|
|
static void tdx_reclaim_td_control_pages(struct kvm *kvm)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
u64 err;
|
|
int i;
|
|
|
|
/*
|
|
* tdx_mmu_release_hkid() failed to reclaim HKID. Something went wrong
|
|
* heavily with TDX module. Give up freeing TD pages. As the function
|
|
* already warned, don't warn it again.
|
|
*/
|
|
if (is_hkid_assigned(kvm_tdx))
|
|
return;
|
|
|
|
if (kvm_tdx->td.tdcs_pages) {
|
|
for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
|
|
if (!kvm_tdx->td.tdcs_pages[i])
|
|
continue;
|
|
|
|
tdx_reclaim_control_page(kvm_tdx->td.tdcs_pages[i]);
|
|
}
|
|
kfree(kvm_tdx->td.tdcs_pages);
|
|
kvm_tdx->td.tdcs_pages = NULL;
|
|
}
|
|
|
|
if (!kvm_tdx->td.tdr_page)
|
|
return;
|
|
|
|
if (__tdx_reclaim_page(kvm_tdx->td.tdr_page))
|
|
return;
|
|
|
|
/*
|
|
* Use a SEAMCALL to ask the TDX module to flush the cache based on the
|
|
* KeyID. TDX module may access TDR while operating on TD (Especially
|
|
* when it is reclaiming TDCS).
|
|
*/
|
|
err = tdh_phymem_page_wbinvd_tdr(&kvm_tdx->td);
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
|
|
return;
|
|
}
|
|
tdx_clear_page(kvm_tdx->td.tdr_page);
|
|
|
|
__free_page(kvm_tdx->td.tdr_page);
|
|
kvm_tdx->td.tdr_page = NULL;
|
|
}
|
|
|
|
void tdx_vm_destroy(struct kvm *kvm)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
tdx_reclaim_td_control_pages(kvm);
|
|
|
|
kvm_tdx->state = TD_STATE_UNINITIALIZED;
|
|
}
|
|
|
|
static int tdx_do_tdh_mng_key_config(void *param)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = param;
|
|
u64 err;
|
|
|
|
/* TDX_RND_NO_ENTROPY related retries are handled by sc_retry() */
|
|
err = tdh_mng_key_config(&kvm_tdx->td);
|
|
|
|
if (KVM_BUG_ON(err, &kvm_tdx->kvm)) {
|
|
pr_tdx_error(TDH_MNG_KEY_CONFIG, err);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tdx_vm_init(struct kvm *kvm)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
kvm->arch.has_protected_state = true;
|
|
kvm->arch.has_private_mem = true;
|
|
kvm->arch.disabled_quirks |= KVM_X86_QUIRK_IGNORE_GUEST_PAT;
|
|
|
|
/*
|
|
* Because guest TD is protected, VMM can't parse the instruction in TD.
|
|
* Instead, guest uses MMIO hypercall. For unmodified device driver,
|
|
* #VE needs to be injected for MMIO and #VE handler in TD converts MMIO
|
|
* instruction into MMIO hypercall.
|
|
*
|
|
* SPTE value for MMIO needs to be setup so that #VE is injected into
|
|
* TD instead of triggering EPT MISCONFIG.
|
|
* - RWX=0 so that EPT violation is triggered.
|
|
* - suppress #VE bit is cleared to inject #VE.
|
|
*/
|
|
kvm_mmu_set_mmio_spte_value(kvm, 0);
|
|
|
|
/*
|
|
* TDX has its own limit of maximum vCPUs it can support for all
|
|
* TDX guests in addition to KVM_MAX_VCPUS. TDX module reports
|
|
* such limit via the MAX_VCPU_PER_TD global metadata. In
|
|
* practice, it reflects the number of logical CPUs that ALL
|
|
* platforms that the TDX module supports can possibly have.
|
|
*
|
|
* Limit TDX guest's maximum vCPUs to the number of logical CPUs
|
|
* the platform has. Simply forwarding the MAX_VCPU_PER_TD to
|
|
* userspace would result in an unpredictable ABI.
|
|
*/
|
|
kvm->max_vcpus = min_t(int, kvm->max_vcpus, num_present_cpus());
|
|
|
|
kvm_tdx->state = TD_STATE_UNINITIALIZED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tdx_vcpu_create(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
if (kvm_tdx->state != TD_STATE_INITIALIZED)
|
|
return -EIO;
|
|
|
|
/*
|
|
* TDX module mandates APICv, which requires an in-kernel local APIC.
|
|
* Disallow an in-kernel I/O APIC, because level-triggered interrupts
|
|
* and thus the I/O APIC as a whole can't be faithfully emulated in KVM.
|
|
*/
|
|
if (!irqchip_split(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
fpstate_set_confidential(&vcpu->arch.guest_fpu);
|
|
vcpu->arch.apic->guest_apic_protected = true;
|
|
INIT_LIST_HEAD(&tdx->vt.pi_wakeup_list);
|
|
|
|
vcpu->arch.efer = EFER_SCE | EFER_LME | EFER_LMA | EFER_NX;
|
|
|
|
vcpu->arch.switch_db_regs = KVM_DEBUGREG_AUTO_SWITCH;
|
|
vcpu->arch.cr0_guest_owned_bits = -1ul;
|
|
vcpu->arch.cr4_guest_owned_bits = -1ul;
|
|
|
|
/* KVM can't change TSC offset/multiplier as TDX module manages them. */
|
|
vcpu->arch.guest_tsc_protected = true;
|
|
vcpu->arch.tsc_offset = kvm_tdx->tsc_offset;
|
|
vcpu->arch.l1_tsc_offset = vcpu->arch.tsc_offset;
|
|
vcpu->arch.tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
|
|
vcpu->arch.l1_tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
|
|
|
|
vcpu->arch.guest_state_protected =
|
|
!(to_kvm_tdx(vcpu->kvm)->attributes & TDX_TD_ATTR_DEBUG);
|
|
|
|
if ((kvm_tdx->xfam & XFEATURE_MASK_XTILE) == XFEATURE_MASK_XTILE)
|
|
vcpu->arch.xfd_no_write_intercept = true;
|
|
|
|
tdx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
|
|
__pi_set_sn(&tdx->vt.pi_desc);
|
|
|
|
tdx->state = VCPU_TD_STATE_UNINITIALIZED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tdx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
vmx_vcpu_pi_load(vcpu, cpu);
|
|
if (vcpu->cpu == cpu || !is_hkid_assigned(to_kvm_tdx(vcpu->kvm)))
|
|
return;
|
|
|
|
tdx_flush_vp_on_cpu(vcpu);
|
|
|
|
KVM_BUG_ON(cpu != raw_smp_processor_id(), vcpu->kvm);
|
|
local_irq_disable();
|
|
/*
|
|
* Pairs with the smp_wmb() in tdx_disassociate_vp() to ensure
|
|
* vcpu->cpu is read before tdx->cpu_list.
|
|
*/
|
|
smp_rmb();
|
|
|
|
list_add(&tdx->cpu_list, &per_cpu(associated_tdvcpus, cpu));
|
|
local_irq_enable();
|
|
}
|
|
|
|
bool tdx_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* KVM can't get the interrupt status of TDX guest and it assumes
|
|
* interrupt is always allowed unless TDX guest calls TDVMCALL with HLT,
|
|
* which passes the interrupt blocked flag.
|
|
*/
|
|
return vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
|
|
!to_tdx(vcpu)->vp_enter_args.r12;
|
|
}
|
|
|
|
static bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 vcpu_state_details;
|
|
|
|
if (pi_has_pending_interrupt(vcpu))
|
|
return true;
|
|
|
|
/*
|
|
* Only check RVI pending for HALTED case with IRQ enabled.
|
|
* For non-HLT cases, KVM doesn't care about STI/SS shadows. And if the
|
|
* interrupt was pending before TD exit, then it _must_ be blocked,
|
|
* otherwise the interrupt would have been serviced at the instruction
|
|
* boundary.
|
|
*/
|
|
if (vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
|
|
to_tdx(vcpu)->vp_enter_args.r12)
|
|
return false;
|
|
|
|
vcpu_state_details =
|
|
td_state_non_arch_read64(to_tdx(vcpu), TD_VCPU_STATE_DETAILS_NON_ARCH);
|
|
|
|
return tdx_vcpu_state_details_intr_pending(vcpu_state_details);
|
|
}
|
|
|
|
/*
|
|
* Compared to vmx_prepare_switch_to_guest(), there is not much to do
|
|
* as SEAMCALL/SEAMRET calls take care of most of save and restore.
|
|
*/
|
|
void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vt *vt = to_vt(vcpu);
|
|
|
|
if (vt->guest_state_loaded)
|
|
return;
|
|
|
|
if (likely(is_64bit_mm(current->mm)))
|
|
vt->msr_host_kernel_gs_base = current->thread.gsbase;
|
|
else
|
|
vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
|
|
|
|
vt->guest_state_loaded = true;
|
|
}
|
|
|
|
struct tdx_uret_msr {
|
|
u32 msr;
|
|
unsigned int slot;
|
|
u64 defval;
|
|
};
|
|
|
|
static struct tdx_uret_msr tdx_uret_msrs[] = {
|
|
{.msr = MSR_SYSCALL_MASK, .defval = 0x20200 },
|
|
{.msr = MSR_STAR,},
|
|
{.msr = MSR_LSTAR,},
|
|
{.msr = MSR_TSC_AUX,},
|
|
};
|
|
|
|
static void tdx_user_return_msr_update_cache(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++)
|
|
kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot,
|
|
tdx_uret_msrs[i].defval);
|
|
}
|
|
|
|
static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vt *vt = to_vt(vcpu);
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
if (!vt->guest_state_loaded)
|
|
return;
|
|
|
|
++vcpu->stat.host_state_reload;
|
|
wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base);
|
|
|
|
if (tdx->guest_entered) {
|
|
tdx_user_return_msr_update_cache();
|
|
tdx->guest_entered = false;
|
|
}
|
|
|
|
vt->guest_state_loaded = false;
|
|
}
|
|
|
|
void tdx_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
vmx_vcpu_pi_put(vcpu);
|
|
tdx_prepare_switch_to_host(vcpu);
|
|
}
|
|
|
|
void tdx_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
int i;
|
|
|
|
/*
|
|
* It is not possible to reclaim pages while hkid is assigned. It might
|
|
* be assigned if:
|
|
* 1. the TD VM is being destroyed but freeing hkid failed, in which
|
|
* case the pages are leaked
|
|
* 2. TD VCPU creation failed and this on the error path, in which case
|
|
* there is nothing to do anyway
|
|
*/
|
|
if (is_hkid_assigned(kvm_tdx))
|
|
return;
|
|
|
|
if (tdx->vp.tdcx_pages) {
|
|
for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
|
|
if (tdx->vp.tdcx_pages[i])
|
|
tdx_reclaim_control_page(tdx->vp.tdcx_pages[i]);
|
|
}
|
|
kfree(tdx->vp.tdcx_pages);
|
|
tdx->vp.tdcx_pages = NULL;
|
|
}
|
|
if (tdx->vp.tdvpr_page) {
|
|
tdx_reclaim_control_page(tdx->vp.tdvpr_page);
|
|
tdx->vp.tdvpr_page = 0;
|
|
}
|
|
|
|
tdx->state = VCPU_TD_STATE_UNINITIALIZED;
|
|
}
|
|
|
|
int tdx_vcpu_pre_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (unlikely(to_tdx(vcpu)->state != VCPU_TD_STATE_INITIALIZED ||
|
|
to_kvm_tdx(vcpu->kvm)->state != TD_STATE_RUNNABLE))
|
|
return -EINVAL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static __always_inline u32 tdcall_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
|
|
{
|
|
switch (tdvmcall_leaf(vcpu)) {
|
|
case EXIT_REASON_CPUID:
|
|
case EXIT_REASON_HLT:
|
|
case EXIT_REASON_IO_INSTRUCTION:
|
|
case EXIT_REASON_MSR_READ:
|
|
case EXIT_REASON_MSR_WRITE:
|
|
return tdvmcall_leaf(vcpu);
|
|
case EXIT_REASON_EPT_VIOLATION:
|
|
return EXIT_REASON_EPT_MISCONFIG;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return EXIT_REASON_TDCALL;
|
|
}
|
|
|
|
static __always_inline u32 tdx_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
u32 exit_reason;
|
|
|
|
switch (tdx->vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) {
|
|
case TDX_SUCCESS:
|
|
case TDX_NON_RECOVERABLE_VCPU:
|
|
case TDX_NON_RECOVERABLE_TD:
|
|
case TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE:
|
|
case TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE:
|
|
break;
|
|
default:
|
|
return -1u;
|
|
}
|
|
|
|
exit_reason = tdx->vp_enter_ret;
|
|
|
|
switch (exit_reason) {
|
|
case EXIT_REASON_TDCALL:
|
|
if (tdvmcall_exit_type(vcpu))
|
|
return EXIT_REASON_VMCALL;
|
|
|
|
return tdcall_to_vmx_exit_reason(vcpu);
|
|
case EXIT_REASON_EPT_MISCONFIG:
|
|
/*
|
|
* Defer KVM_BUG_ON() until tdx_handle_exit() because this is in
|
|
* non-instrumentable code with interrupts disabled.
|
|
*/
|
|
return -1u;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return exit_reason;
|
|
}
|
|
|
|
static noinstr void tdx_vcpu_enter_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
struct vcpu_vt *vt = to_vt(vcpu);
|
|
|
|
guest_state_enter_irqoff();
|
|
|
|
tdx->vp_enter_ret = tdh_vp_enter(&tdx->vp, &tdx->vp_enter_args);
|
|
|
|
vt->exit_reason.full = tdx_to_vmx_exit_reason(vcpu);
|
|
|
|
vt->exit_qualification = tdx->vp_enter_args.rcx;
|
|
tdx->ext_exit_qualification = tdx->vp_enter_args.rdx;
|
|
tdx->exit_gpa = tdx->vp_enter_args.r8;
|
|
vt->exit_intr_info = tdx->vp_enter_args.r9;
|
|
|
|
vmx_handle_nmi(vcpu);
|
|
|
|
guest_state_exit_irqoff();
|
|
}
|
|
|
|
static bool tdx_failed_vmentry(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vmx_get_exit_reason(vcpu).failed_vmentry &&
|
|
vmx_get_exit_reason(vcpu).full != -1u;
|
|
}
|
|
|
|
static fastpath_t tdx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 vp_enter_ret = to_tdx(vcpu)->vp_enter_ret;
|
|
|
|
/*
|
|
* TDX_OPERAND_BUSY could be returned for SEPT due to 0-step mitigation
|
|
* or for TD EPOCH due to contention with TDH.MEM.TRACK on TDH.VP.ENTER.
|
|
*
|
|
* When KVM requests KVM_REQ_OUTSIDE_GUEST_MODE, which has both
|
|
* KVM_REQUEST_WAIT and KVM_REQUEST_NO_ACTION set, it requires target
|
|
* vCPUs leaving fastpath so that interrupt can be enabled to ensure the
|
|
* IPIs can be delivered. Return EXIT_FASTPATH_EXIT_HANDLED instead of
|
|
* EXIT_FASTPATH_REENTER_GUEST to exit fastpath, otherwise, the
|
|
* requester may be blocked endlessly.
|
|
*/
|
|
if (unlikely(tdx_operand_busy(vp_enter_ret)))
|
|
return EXIT_FASTPATH_EXIT_HANDLED;
|
|
|
|
return EXIT_FASTPATH_NONE;
|
|
}
|
|
|
|
#define TDX_REGS_AVAIL_SET (BIT_ULL(VCPU_EXREG_EXIT_INFO_1) | \
|
|
BIT_ULL(VCPU_EXREG_EXIT_INFO_2) | \
|
|
BIT_ULL(VCPU_REGS_RAX) | \
|
|
BIT_ULL(VCPU_REGS_RBX) | \
|
|
BIT_ULL(VCPU_REGS_RCX) | \
|
|
BIT_ULL(VCPU_REGS_RDX) | \
|
|
BIT_ULL(VCPU_REGS_RBP) | \
|
|
BIT_ULL(VCPU_REGS_RSI) | \
|
|
BIT_ULL(VCPU_REGS_RDI) | \
|
|
BIT_ULL(VCPU_REGS_R8) | \
|
|
BIT_ULL(VCPU_REGS_R9) | \
|
|
BIT_ULL(VCPU_REGS_R10) | \
|
|
BIT_ULL(VCPU_REGS_R11) | \
|
|
BIT_ULL(VCPU_REGS_R12) | \
|
|
BIT_ULL(VCPU_REGS_R13) | \
|
|
BIT_ULL(VCPU_REGS_R14) | \
|
|
BIT_ULL(VCPU_REGS_R15))
|
|
|
|
static void tdx_load_host_xsave_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
|
|
|
|
/*
|
|
* All TDX hosts support PKRU; but even if they didn't,
|
|
* vcpu->arch.host_pkru would be 0 and the wrpkru would be
|
|
* skipped.
|
|
*/
|
|
if (vcpu->arch.host_pkru != 0)
|
|
wrpkru(vcpu->arch.host_pkru);
|
|
|
|
if (kvm_host.xcr0 != (kvm_tdx->xfam & kvm_caps.supported_xcr0))
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
|
|
|
|
/*
|
|
* Likewise, even if a TDX hosts didn't support XSS both arms of
|
|
* the comparison would be 0 and the wrmsrl would be skipped.
|
|
*/
|
|
if (kvm_host.xss != (kvm_tdx->xfam & kvm_caps.supported_xss))
|
|
wrmsrl(MSR_IA32_XSS, kvm_host.xss);
|
|
}
|
|
|
|
#define TDX_DEBUGCTL_PRESERVED (DEBUGCTLMSR_BTF | \
|
|
DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI | \
|
|
DEBUGCTLMSR_FREEZE_IN_SMM)
|
|
|
|
fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
struct vcpu_vt *vt = to_vt(vcpu);
|
|
|
|
/*
|
|
* WARN if KVM wants to force an immediate exit, as the TDX module does
|
|
* not guarantee entry into the guest, i.e. it's possible for KVM to
|
|
* _think_ it completed entry to the guest and forced an immediate exit
|
|
* without actually having done so. Luckily, KVM never needs to force
|
|
* an immediate exit for TDX (KVM can't do direct event injection, so
|
|
* just WARN and continue on.
|
|
*/
|
|
WARN_ON_ONCE(run_flags);
|
|
|
|
/*
|
|
* Wait until retry of SEPT-zap-related SEAMCALL completes before
|
|
* allowing vCPU entry to avoid contention with tdh_vp_enter() and
|
|
* TDCALLs.
|
|
*/
|
|
if (unlikely(READ_ONCE(to_kvm_tdx(vcpu->kvm)->wait_for_sept_zap)))
|
|
return EXIT_FASTPATH_EXIT_HANDLED;
|
|
|
|
trace_kvm_entry(vcpu, run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT);
|
|
|
|
if (pi_test_on(&vt->pi_desc)) {
|
|
apic->send_IPI_self(POSTED_INTR_VECTOR);
|
|
|
|
if (pi_test_pir(kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVTT) &
|
|
APIC_VECTOR_MASK, &vt->pi_desc))
|
|
kvm_wait_lapic_expire(vcpu);
|
|
}
|
|
|
|
tdx_vcpu_enter_exit(vcpu);
|
|
|
|
if (vcpu->arch.host_debugctl & ~TDX_DEBUGCTL_PRESERVED)
|
|
update_debugctlmsr(vcpu->arch.host_debugctl);
|
|
|
|
tdx_load_host_xsave_state(vcpu);
|
|
tdx->guest_entered = true;
|
|
|
|
vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET;
|
|
|
|
if (unlikely(tdx->vp_enter_ret == EXIT_REASON_EPT_MISCONFIG))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
|
|
kvm_machine_check();
|
|
|
|
trace_kvm_exit(vcpu, KVM_ISA_VMX);
|
|
|
|
if (unlikely(tdx_failed_vmentry(vcpu)))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
return tdx_exit_handlers_fastpath(vcpu);
|
|
}
|
|
|
|
void tdx_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.nmi_injections;
|
|
td_management_write8(to_tdx(vcpu), TD_VCPU_PEND_NMI, 1);
|
|
/*
|
|
* From KVM's perspective, NMI injection is completed right after
|
|
* writing to PEND_NMI. KVM doesn't care whether an NMI is injected by
|
|
* the TDX module or not.
|
|
*/
|
|
vcpu->arch.nmi_injected = false;
|
|
/*
|
|
* TDX doesn't support KVM to request NMI window exit. If there is
|
|
* still a pending vNMI, KVM is not able to inject it along with the
|
|
* one pending in TDX module in a back-to-back way. Since the previous
|
|
* vNMI is still pending in TDX module, i.e. it has not been delivered
|
|
* to TDX guest yet, it's OK to collapse the pending vNMI into the
|
|
* previous one. The guest is expected to handle all the NMI sources
|
|
* when handling the first vNMI.
|
|
*/
|
|
vcpu->arch.nmi_pending = 0;
|
|
}
|
|
|
|
static int tdx_handle_exception_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 intr_info = vmx_get_intr_info(vcpu);
|
|
|
|
/*
|
|
* Machine checks are handled by handle_exception_irqoff(), or by
|
|
* tdx_handle_exit() with TDX_NON_RECOVERABLE set if a #MC occurs on
|
|
* VM-Entry. NMIs are handled by tdx_vcpu_enter_exit().
|
|
*/
|
|
if (is_nmi(intr_info) || is_machine_check(intr_info))
|
|
return 1;
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_EXCEPTION;
|
|
vcpu->run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
|
|
vcpu->run->ex.error_code = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
tdvmcall_set_return_code(vcpu, vcpu->run->hypercall.ret);
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_emulate_vmcall(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_rax_write(vcpu, to_tdx(vcpu)->vp_enter_args.r10);
|
|
kvm_rbx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r11);
|
|
kvm_rcx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r12);
|
|
kvm_rdx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r13);
|
|
kvm_rsi_write(vcpu, to_tdx(vcpu)->vp_enter_args.r14);
|
|
|
|
return __kvm_emulate_hypercall(vcpu, 0, complete_hypercall_exit);
|
|
}
|
|
|
|
/*
|
|
* Split into chunks and check interrupt pending between chunks. This allows
|
|
* for timely injection of interrupts to prevent issues with guest lockup
|
|
* detection.
|
|
*/
|
|
#define TDX_MAP_GPA_MAX_LEN (2 * 1024 * 1024)
|
|
static void __tdx_map_gpa(struct vcpu_tdx *tdx);
|
|
|
|
static int tdx_complete_vmcall_map_gpa(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
if (vcpu->run->hypercall.ret) {
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
tdx->vp_enter_args.r11 = tdx->map_gpa_next;
|
|
return 1;
|
|
}
|
|
|
|
tdx->map_gpa_next += TDX_MAP_GPA_MAX_LEN;
|
|
if (tdx->map_gpa_next >= tdx->map_gpa_end)
|
|
return 1;
|
|
|
|
/*
|
|
* Stop processing the remaining part if there is a pending interrupt,
|
|
* which could be qualified to deliver. Skip checking pending RVI for
|
|
* TDVMCALL_MAP_GPA, see comments in tdx_protected_apic_has_interrupt().
|
|
*/
|
|
if (kvm_vcpu_has_events(vcpu)) {
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_RETRY);
|
|
tdx->vp_enter_args.r11 = tdx->map_gpa_next;
|
|
return 1;
|
|
}
|
|
|
|
__tdx_map_gpa(tdx);
|
|
return 0;
|
|
}
|
|
|
|
static void __tdx_map_gpa(struct vcpu_tdx *tdx)
|
|
{
|
|
u64 gpa = tdx->map_gpa_next;
|
|
u64 size = tdx->map_gpa_end - tdx->map_gpa_next;
|
|
|
|
if (size > TDX_MAP_GPA_MAX_LEN)
|
|
size = TDX_MAP_GPA_MAX_LEN;
|
|
|
|
tdx->vcpu.run->exit_reason = KVM_EXIT_HYPERCALL;
|
|
tdx->vcpu.run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
|
|
/*
|
|
* In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
|
|
* assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
|
|
* it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
|
|
* vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
|
|
*/
|
|
tdx->vcpu.run->hypercall.ret = 0;
|
|
tdx->vcpu.run->hypercall.args[0] = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
|
|
tdx->vcpu.run->hypercall.args[1] = size / PAGE_SIZE;
|
|
tdx->vcpu.run->hypercall.args[2] = vt_is_tdx_private_gpa(tdx->vcpu.kvm, gpa) ?
|
|
KVM_MAP_GPA_RANGE_ENCRYPTED :
|
|
KVM_MAP_GPA_RANGE_DECRYPTED;
|
|
tdx->vcpu.run->hypercall.flags = KVM_EXIT_HYPERCALL_LONG_MODE;
|
|
|
|
tdx->vcpu.arch.complete_userspace_io = tdx_complete_vmcall_map_gpa;
|
|
}
|
|
|
|
static int tdx_map_gpa(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
u64 gpa = tdx->vp_enter_args.r12;
|
|
u64 size = tdx->vp_enter_args.r13;
|
|
u64 ret;
|
|
|
|
/*
|
|
* Converting TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE requires
|
|
* userspace to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE
|
|
* bit set. This is a base call so it should always be supported, but
|
|
* KVM has no way to ensure that userspace implements the GHCI correctly.
|
|
* So if KVM_HC_MAP_GPA_RANGE does not cause a VMEXIT, return an error
|
|
* to the guest.
|
|
*/
|
|
if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
|
|
ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
|
|
goto error;
|
|
}
|
|
|
|
if (gpa + size <= gpa || !kvm_vcpu_is_legal_gpa(vcpu, gpa) ||
|
|
!kvm_vcpu_is_legal_gpa(vcpu, gpa + size - 1) ||
|
|
(vt_is_tdx_private_gpa(vcpu->kvm, gpa) !=
|
|
vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))) {
|
|
ret = TDVMCALL_STATUS_INVALID_OPERAND;
|
|
goto error;
|
|
}
|
|
|
|
if (!PAGE_ALIGNED(gpa) || !PAGE_ALIGNED(size)) {
|
|
ret = TDVMCALL_STATUS_ALIGN_ERROR;
|
|
goto error;
|
|
}
|
|
|
|
tdx->map_gpa_end = gpa + size;
|
|
tdx->map_gpa_next = gpa;
|
|
|
|
__tdx_map_gpa(tdx);
|
|
return 0;
|
|
|
|
error:
|
|
tdvmcall_set_return_code(vcpu, ret);
|
|
tdx->vp_enter_args.r11 = gpa;
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_report_fatal_error(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
u64 *regs = vcpu->run->system_event.data;
|
|
u64 *module_regs = &tdx->vp_enter_args.r8;
|
|
int index = VCPU_REGS_RAX;
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
|
|
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_TDX_FATAL;
|
|
vcpu->run->system_event.ndata = 16;
|
|
|
|
/* Dump 16 general-purpose registers to userspace in ascending order. */
|
|
regs[index++] = tdx->vp_enter_ret;
|
|
regs[index++] = tdx->vp_enter_args.rcx;
|
|
regs[index++] = tdx->vp_enter_args.rdx;
|
|
regs[index++] = tdx->vp_enter_args.rbx;
|
|
regs[index++] = 0;
|
|
regs[index++] = 0;
|
|
regs[index++] = tdx->vp_enter_args.rsi;
|
|
regs[index] = tdx->vp_enter_args.rdi;
|
|
for (index = 0; index < 8; index++)
|
|
regs[VCPU_REGS_R8 + index] = module_regs[index];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
/* EAX and ECX for cpuid is stored in R12 and R13. */
|
|
eax = tdx->vp_enter_args.r12;
|
|
ecx = tdx->vp_enter_args.r13;
|
|
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
|
|
|
|
tdx->vp_enter_args.r12 = eax;
|
|
tdx->vp_enter_args.r13 = ebx;
|
|
tdx->vp_enter_args.r14 = ecx;
|
|
tdx->vp_enter_args.r15 = edx;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_complete_pio_out(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_complete_pio_in(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
|
|
unsigned long val = 0;
|
|
int ret;
|
|
|
|
ret = ctxt->ops->pio_in_emulated(ctxt, vcpu->arch.pio.size,
|
|
vcpu->arch.pio.port, &val, 1);
|
|
|
|
WARN_ON_ONCE(!ret);
|
|
|
|
tdvmcall_set_return_val(vcpu, val);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_emulate_io(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
|
|
unsigned long val = 0;
|
|
unsigned int port;
|
|
u64 size, write;
|
|
int ret;
|
|
|
|
++vcpu->stat.io_exits;
|
|
|
|
size = tdx->vp_enter_args.r12;
|
|
write = tdx->vp_enter_args.r13;
|
|
port = tdx->vp_enter_args.r14;
|
|
|
|
if ((write != 0 && write != 1) || (size != 1 && size != 2 && size != 4)) {
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
return 1;
|
|
}
|
|
|
|
if (write) {
|
|
val = tdx->vp_enter_args.r15;
|
|
ret = ctxt->ops->pio_out_emulated(ctxt, size, port, &val, 1);
|
|
} else {
|
|
ret = ctxt->ops->pio_in_emulated(ctxt, size, port, &val, 1);
|
|
}
|
|
|
|
if (!ret)
|
|
vcpu->arch.complete_userspace_io = write ? tdx_complete_pio_out :
|
|
tdx_complete_pio_in;
|
|
else if (!write)
|
|
tdvmcall_set_return_val(vcpu, val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tdx_complete_mmio_read(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long val = 0;
|
|
gpa_t gpa;
|
|
int size;
|
|
|
|
gpa = vcpu->mmio_fragments[0].gpa;
|
|
size = vcpu->mmio_fragments[0].len;
|
|
|
|
memcpy(&val, vcpu->run->mmio.data, size);
|
|
tdvmcall_set_return_val(vcpu, val);
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
|
|
return 1;
|
|
}
|
|
|
|
static inline int tdx_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, int size,
|
|
unsigned long val)
|
|
{
|
|
if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
|
|
trace_kvm_fast_mmio(gpa);
|
|
return 0;
|
|
}
|
|
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, size, gpa, &val);
|
|
if (kvm_io_bus_write(vcpu, KVM_MMIO_BUS, gpa, size, &val))
|
|
return -EOPNOTSUPP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int tdx_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, int size)
|
|
{
|
|
unsigned long val;
|
|
|
|
if (kvm_io_bus_read(vcpu, KVM_MMIO_BUS, gpa, size, &val))
|
|
return -EOPNOTSUPP;
|
|
|
|
tdvmcall_set_return_val(vcpu, val);
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_emulate_mmio(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
int size, write, r;
|
|
unsigned long val;
|
|
gpa_t gpa;
|
|
|
|
size = tdx->vp_enter_args.r12;
|
|
write = tdx->vp_enter_args.r13;
|
|
gpa = tdx->vp_enter_args.r14;
|
|
val = write ? tdx->vp_enter_args.r15 : 0;
|
|
|
|
if (size != 1 && size != 2 && size != 4 && size != 8)
|
|
goto error;
|
|
if (write != 0 && write != 1)
|
|
goto error;
|
|
|
|
/*
|
|
* TDG.VP.VMCALL<MMIO> allows only shared GPA, it makes no sense to
|
|
* do MMIO emulation for private GPA.
|
|
*/
|
|
if (vt_is_tdx_private_gpa(vcpu->kvm, gpa) ||
|
|
vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))
|
|
goto error;
|
|
|
|
gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
|
|
|
|
if (write)
|
|
r = tdx_mmio_write(vcpu, gpa, size, val);
|
|
else
|
|
r = tdx_mmio_read(vcpu, gpa, size);
|
|
if (!r)
|
|
/* Kernel completed device emulation. */
|
|
return 1;
|
|
|
|
/* Request the device emulation to userspace device model. */
|
|
vcpu->mmio_is_write = write;
|
|
if (!write)
|
|
vcpu->arch.complete_userspace_io = tdx_complete_mmio_read;
|
|
|
|
vcpu->run->mmio.phys_addr = gpa;
|
|
vcpu->run->mmio.len = size;
|
|
vcpu->run->mmio.is_write = write;
|
|
vcpu->run->exit_reason = KVM_EXIT_MMIO;
|
|
|
|
if (write) {
|
|
memcpy(vcpu->run->mmio.data, &val, size);
|
|
} else {
|
|
vcpu->mmio_fragments[0].gpa = gpa;
|
|
vcpu->mmio_fragments[0].len = size;
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, size, gpa, NULL);
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_complete_get_td_vm_call_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
tdvmcall_set_return_code(vcpu, vcpu->run->tdx.get_tdvmcall_info.ret);
|
|
|
|
/*
|
|
* For now, there is no TDVMCALL beyond GHCI base API supported by KVM
|
|
* directly without the support from userspace, just set the value
|
|
* returned from userspace.
|
|
*/
|
|
tdx->vp_enter_args.r11 = vcpu->run->tdx.get_tdvmcall_info.r11;
|
|
tdx->vp_enter_args.r12 = vcpu->run->tdx.get_tdvmcall_info.r12;
|
|
tdx->vp_enter_args.r13 = vcpu->run->tdx.get_tdvmcall_info.r13;
|
|
tdx->vp_enter_args.r14 = vcpu->run->tdx.get_tdvmcall_info.r14;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_get_td_vm_call_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
switch (tdx->vp_enter_args.r12) {
|
|
case 0:
|
|
tdx->vp_enter_args.r11 = 0;
|
|
tdx->vp_enter_args.r12 = 0;
|
|
tdx->vp_enter_args.r13 = 0;
|
|
tdx->vp_enter_args.r14 = 0;
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUCCESS);
|
|
return 1;
|
|
case 1:
|
|
vcpu->run->tdx.get_tdvmcall_info.leaf = tdx->vp_enter_args.r12;
|
|
vcpu->run->exit_reason = KVM_EXIT_TDX;
|
|
vcpu->run->tdx.flags = 0;
|
|
vcpu->run->tdx.nr = TDVMCALL_GET_TD_VM_CALL_INFO;
|
|
vcpu->run->tdx.get_tdvmcall_info.ret = TDVMCALL_STATUS_SUCCESS;
|
|
vcpu->run->tdx.get_tdvmcall_info.r11 = 0;
|
|
vcpu->run->tdx.get_tdvmcall_info.r12 = 0;
|
|
vcpu->run->tdx.get_tdvmcall_info.r13 = 0;
|
|
vcpu->run->tdx.get_tdvmcall_info.r14 = 0;
|
|
vcpu->arch.complete_userspace_io = tdx_complete_get_td_vm_call_info;
|
|
return 0;
|
|
default:
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int tdx_complete_simple(struct kvm_vcpu *vcpu)
|
|
{
|
|
tdvmcall_set_return_code(vcpu, vcpu->run->tdx.unknown.ret);
|
|
return 1;
|
|
}
|
|
|
|
static int tdx_get_quote(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
u64 gpa = tdx->vp_enter_args.r12;
|
|
u64 size = tdx->vp_enter_args.r13;
|
|
|
|
/* The gpa of buffer must have shared bit set. */
|
|
if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
return 1;
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_TDX;
|
|
vcpu->run->tdx.flags = 0;
|
|
vcpu->run->tdx.nr = TDVMCALL_GET_QUOTE;
|
|
vcpu->run->tdx.get_quote.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
|
|
vcpu->run->tdx.get_quote.gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
|
|
vcpu->run->tdx.get_quote.size = size;
|
|
|
|
vcpu->arch.complete_userspace_io = tdx_complete_simple;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_setup_event_notify_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
u64 vector = tdx->vp_enter_args.r12;
|
|
|
|
if (vector < 32 || vector > 255) {
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
return 1;
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_TDX;
|
|
vcpu->run->tdx.flags = 0;
|
|
vcpu->run->tdx.nr = TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT;
|
|
vcpu->run->tdx.setup_event_notify.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
|
|
vcpu->run->tdx.setup_event_notify.vector = vector;
|
|
|
|
vcpu->arch.complete_userspace_io = tdx_complete_simple;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_tdvmcall(struct kvm_vcpu *vcpu)
|
|
{
|
|
switch (tdvmcall_leaf(vcpu)) {
|
|
case TDVMCALL_MAP_GPA:
|
|
return tdx_map_gpa(vcpu);
|
|
case TDVMCALL_REPORT_FATAL_ERROR:
|
|
return tdx_report_fatal_error(vcpu);
|
|
case TDVMCALL_GET_TD_VM_CALL_INFO:
|
|
return tdx_get_td_vm_call_info(vcpu);
|
|
case TDVMCALL_GET_QUOTE:
|
|
return tdx_get_quote(vcpu);
|
|
case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
|
|
return tdx_setup_event_notify_interrupt(vcpu);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED);
|
|
return 1;
|
|
}
|
|
|
|
void tdx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int pgd_level)
|
|
{
|
|
u64 shared_bit = (pgd_level == 5) ? TDX_SHARED_BIT_PWL_5 :
|
|
TDX_SHARED_BIT_PWL_4;
|
|
|
|
if (KVM_BUG_ON(shared_bit != kvm_gfn_direct_bits(vcpu->kvm), vcpu->kvm))
|
|
return;
|
|
|
|
td_vmcs_write64(to_tdx(vcpu), SHARED_EPT_POINTER, root_hpa);
|
|
}
|
|
|
|
static void tdx_unpin(struct kvm *kvm, struct page *page)
|
|
{
|
|
put_page(page);
|
|
}
|
|
|
|
static int tdx_mem_page_aug(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, struct page *page)
|
|
{
|
|
int tdx_level = pg_level_to_tdx_sept_level(level);
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
gpa_t gpa = gfn_to_gpa(gfn);
|
|
u64 entry, level_state;
|
|
u64 err;
|
|
|
|
err = tdh_mem_page_aug(&kvm_tdx->td, gpa, tdx_level, page, &entry, &level_state);
|
|
if (unlikely(tdx_operand_busy(err))) {
|
|
tdx_unpin(kvm, page);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error_2(TDH_MEM_PAGE_AUG, err, entry, level_state);
|
|
tdx_unpin(kvm, page);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* KVM_TDX_INIT_MEM_REGION calls kvm_gmem_populate() to map guest pages; the
|
|
* callback tdx_gmem_post_populate() then maps pages into private memory.
|
|
* through the a seamcall TDH.MEM.PAGE.ADD(). The SEAMCALL also requires the
|
|
* private EPT structures for the page to have been built before, which is
|
|
* done via kvm_tdp_map_page(). nr_premapped counts the number of pages that
|
|
* were added to the EPT structures but not added with TDH.MEM.PAGE.ADD().
|
|
* The counter has to be zero on KVM_TDX_FINALIZE_VM, to ensure that there
|
|
* are no half-initialized shared EPT pages.
|
|
*/
|
|
static int tdx_mem_page_record_premap_cnt(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, kvm_pfn_t pfn)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
if (KVM_BUG_ON(kvm->arch.pre_fault_allowed, kvm))
|
|
return -EINVAL;
|
|
|
|
/* nr_premapped will be decreased when tdh_mem_page_add() is called. */
|
|
atomic64_inc(&kvm_tdx->nr_premapped);
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_sept_set_private_spte(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, kvm_pfn_t pfn)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
/* TODO: handle large pages. */
|
|
if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Because guest_memfd doesn't support page migration with
|
|
* a_ops->migrate_folio (yet), no callback is triggered for KVM on page
|
|
* migration. Until guest_memfd supports page migration, prevent page
|
|
* migration.
|
|
* TODO: Once guest_memfd introduces callback on page migration,
|
|
* implement it and remove get_page/put_page().
|
|
*/
|
|
get_page(page);
|
|
|
|
/*
|
|
* Read 'pre_fault_allowed' before 'kvm_tdx->state'; see matching
|
|
* barrier in tdx_td_finalize().
|
|
*/
|
|
smp_rmb();
|
|
if (likely(kvm_tdx->state == TD_STATE_RUNNABLE))
|
|
return tdx_mem_page_aug(kvm, gfn, level, page);
|
|
|
|
return tdx_mem_page_record_premap_cnt(kvm, gfn, level, pfn);
|
|
}
|
|
|
|
static int tdx_sept_drop_private_spte(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, struct page *page)
|
|
{
|
|
int tdx_level = pg_level_to_tdx_sept_level(level);
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
gpa_t gpa = gfn_to_gpa(gfn);
|
|
u64 err, entry, level_state;
|
|
|
|
/* TODO: handle large pages. */
|
|
if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
|
|
return -EINVAL;
|
|
|
|
if (KVM_BUG_ON(!is_hkid_assigned(kvm_tdx), kvm))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* When zapping private page, write lock is held. So no race condition
|
|
* with other vcpu sept operation.
|
|
* Race with TDH.VP.ENTER due to (0-step mitigation) and Guest TDCALLs.
|
|
*/
|
|
err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
|
|
&level_state);
|
|
|
|
if (unlikely(tdx_operand_busy(err))) {
|
|
/*
|
|
* The second retry is expected to succeed after kicking off all
|
|
* other vCPUs and prevent them from invoking TDH.VP.ENTER.
|
|
*/
|
|
tdx_no_vcpus_enter_start(kvm);
|
|
err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
|
|
&level_state);
|
|
tdx_no_vcpus_enter_stop(kvm);
|
|
}
|
|
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error_2(TDH_MEM_PAGE_REMOVE, err, entry, level_state);
|
|
return -EIO;
|
|
}
|
|
|
|
err = tdh_phymem_page_wbinvd_hkid((u16)kvm_tdx->hkid, page);
|
|
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
|
|
return -EIO;
|
|
}
|
|
tdx_clear_page(page);
|
|
tdx_unpin(kvm, page);
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_sept_link_private_spt(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, void *private_spt)
|
|
{
|
|
int tdx_level = pg_level_to_tdx_sept_level(level);
|
|
gpa_t gpa = gfn_to_gpa(gfn);
|
|
struct page *page = virt_to_page(private_spt);
|
|
u64 err, entry, level_state;
|
|
|
|
err = tdh_mem_sept_add(&to_kvm_tdx(kvm)->td, gpa, tdx_level, page, &entry,
|
|
&level_state);
|
|
if (unlikely(tdx_operand_busy(err)))
|
|
return -EBUSY;
|
|
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error_2(TDH_MEM_SEPT_ADD, err, entry, level_state);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if the error returned from a SEPT zap SEAMCALL is due to that a page is
|
|
* mapped by KVM_TDX_INIT_MEM_REGION without tdh_mem_page_add() being called
|
|
* successfully.
|
|
*
|
|
* Since tdh_mem_sept_add() must have been invoked successfully before a
|
|
* non-leaf entry present in the mirrored page table, the SEPT ZAP related
|
|
* SEAMCALLs should not encounter err TDX_EPT_WALK_FAILED. They should instead
|
|
* find TDX_EPT_ENTRY_STATE_INCORRECT due to an empty leaf entry found in the
|
|
* SEPT.
|
|
*
|
|
* Further check if the returned entry from SEPT walking is with RWX permissions
|
|
* to filter out anything unexpected.
|
|
*
|
|
* Note: @level is pg_level, not the tdx_level. The tdx_level extracted from
|
|
* level_state returned from a SEAMCALL error is the same as that passed into
|
|
* the SEAMCALL.
|
|
*/
|
|
static int tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx *kvm_tdx, u64 err,
|
|
u64 entry, int level)
|
|
{
|
|
if (!err || kvm_tdx->state == TD_STATE_RUNNABLE)
|
|
return false;
|
|
|
|
if (err != (TDX_EPT_ENTRY_STATE_INCORRECT | TDX_OPERAND_ID_RCX))
|
|
return false;
|
|
|
|
if ((is_last_spte(entry, level) && (entry & VMX_EPT_RWX_MASK)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int tdx_sept_zap_private_spte(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, struct page *page)
|
|
{
|
|
int tdx_level = pg_level_to_tdx_sept_level(level);
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
gpa_t gpa = gfn_to_gpa(gfn) & KVM_HPAGE_MASK(level);
|
|
u64 err, entry, level_state;
|
|
|
|
/* For now large page isn't supported yet. */
|
|
WARN_ON_ONCE(level != PG_LEVEL_4K);
|
|
|
|
err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
|
|
|
|
if (unlikely(tdx_operand_busy(err))) {
|
|
/* After no vCPUs enter, the second retry is expected to succeed */
|
|
tdx_no_vcpus_enter_start(kvm);
|
|
err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
|
|
tdx_no_vcpus_enter_stop(kvm);
|
|
}
|
|
if (tdx_is_sept_zap_err_due_to_premap(kvm_tdx, err, entry, level) &&
|
|
!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) {
|
|
atomic64_dec(&kvm_tdx->nr_premapped);
|
|
tdx_unpin(kvm, page);
|
|
return 0;
|
|
}
|
|
|
|
if (KVM_BUG_ON(err, kvm)) {
|
|
pr_tdx_error_2(TDH_MEM_RANGE_BLOCK, err, entry, level_state);
|
|
return -EIO;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Ensure shared and private EPTs to be flushed on all vCPUs.
|
|
* tdh_mem_track() is the only caller that increases TD epoch. An increase in
|
|
* the TD epoch (e.g., to value "N + 1") is successful only if no vCPUs are
|
|
* running in guest mode with the value "N - 1".
|
|
*
|
|
* A successful execution of tdh_mem_track() ensures that vCPUs can only run in
|
|
* guest mode with TD epoch value "N" if no TD exit occurs after the TD epoch
|
|
* being increased to "N + 1".
|
|
*
|
|
* Kicking off all vCPUs after that further results in no vCPUs can run in guest
|
|
* mode with TD epoch value "N", which unblocks the next tdh_mem_track() (e.g.
|
|
* to increase TD epoch to "N + 2").
|
|
*
|
|
* TDX module will flush EPT on the next TD enter and make vCPUs to run in
|
|
* guest mode with TD epoch value "N + 1".
|
|
*
|
|
* kvm_make_all_cpus_request() guarantees all vCPUs are out of guest mode by
|
|
* waiting empty IPI handler ack_kick().
|
|
*
|
|
* No action is required to the vCPUs being kicked off since the kicking off
|
|
* occurs certainly after TD epoch increment and before the next
|
|
* tdh_mem_track().
|
|
*/
|
|
static void tdx_track(struct kvm *kvm)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
u64 err;
|
|
|
|
/* If TD isn't finalized, it's before any vcpu running. */
|
|
if (unlikely(kvm_tdx->state != TD_STATE_RUNNABLE))
|
|
return;
|
|
|
|
lockdep_assert_held_write(&kvm->mmu_lock);
|
|
|
|
err = tdh_mem_track(&kvm_tdx->td);
|
|
if (unlikely(tdx_operand_busy(err))) {
|
|
/* After no vCPUs enter, the second retry is expected to succeed */
|
|
tdx_no_vcpus_enter_start(kvm);
|
|
err = tdh_mem_track(&kvm_tdx->td);
|
|
tdx_no_vcpus_enter_stop(kvm);
|
|
}
|
|
|
|
if (KVM_BUG_ON(err, kvm))
|
|
pr_tdx_error(TDH_MEM_TRACK, err);
|
|
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
|
|
}
|
|
|
|
static int tdx_sept_free_private_spt(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, void *private_spt)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
/*
|
|
* free_external_spt() is only called after hkid is freed when TD is
|
|
* tearing down.
|
|
* KVM doesn't (yet) zap page table pages in mirror page table while
|
|
* TD is active, though guest pages mapped in mirror page table could be
|
|
* zapped during TD is active, e.g. for shared <-> private conversion
|
|
* and slot move/deletion.
|
|
*/
|
|
if (KVM_BUG_ON(is_hkid_assigned(kvm_tdx), kvm))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The HKID assigned to this TD was already freed and cache was
|
|
* already flushed. We don't have to flush again.
|
|
*/
|
|
return tdx_reclaim_page(virt_to_page(private_spt));
|
|
}
|
|
|
|
static int tdx_sept_remove_private_spte(struct kvm *kvm, gfn_t gfn,
|
|
enum pg_level level, kvm_pfn_t pfn)
|
|
{
|
|
struct page *page = pfn_to_page(pfn);
|
|
int ret;
|
|
|
|
/*
|
|
* HKID is released after all private pages have been removed, and set
|
|
* before any might be populated. Warn if zapping is attempted when
|
|
* there can't be anything populated in the private EPT.
|
|
*/
|
|
if (KVM_BUG_ON(!is_hkid_assigned(to_kvm_tdx(kvm)), kvm))
|
|
return -EINVAL;
|
|
|
|
ret = tdx_sept_zap_private_spte(kvm, gfn, level, page);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
/*
|
|
* TDX requires TLB tracking before dropping private page. Do
|
|
* it here, although it is also done later.
|
|
*/
|
|
tdx_track(kvm);
|
|
|
|
return tdx_sept_drop_private_spte(kvm, gfn, level, page);
|
|
}
|
|
|
|
void tdx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
|
|
int trig_mode, int vector)
|
|
{
|
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
/* TDX supports only posted interrupt. No lapic emulation. */
|
|
__vmx_deliver_posted_interrupt(vcpu, &tdx->vt.pi_desc, vector);
|
|
|
|
trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
|
|
}
|
|
|
|
static inline bool tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 eeq_type = to_tdx(vcpu)->ext_exit_qualification & TDX_EXT_EXIT_QUAL_TYPE_MASK;
|
|
u64 eq = vmx_get_exit_qual(vcpu);
|
|
|
|
if (eeq_type != TDX_EXT_EXIT_QUAL_TYPE_PENDING_EPT_VIOLATION)
|
|
return false;
|
|
|
|
return !(eq & EPT_VIOLATION_PROT_MASK) && !(eq & EPT_VIOLATION_EXEC_FOR_RING3_LIN);
|
|
}
|
|
|
|
static int tdx_handle_ept_violation(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long exit_qual;
|
|
gpa_t gpa = to_tdx(vcpu)->exit_gpa;
|
|
bool local_retry = false;
|
|
int ret;
|
|
|
|
if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
|
|
if (tdx_is_sept_violation_unexpected_pending(vcpu)) {
|
|
pr_warn("Guest access before accepting 0x%llx on vCPU %d\n",
|
|
gpa, vcpu->vcpu_id);
|
|
kvm_vm_dead(vcpu->kvm);
|
|
return -EIO;
|
|
}
|
|
/*
|
|
* Always treat SEPT violations as write faults. Ignore the
|
|
* EXIT_QUALIFICATION reported by TDX-SEAM for SEPT violations.
|
|
* TD private pages are always RWX in the SEPT tables,
|
|
* i.e. they're always mapped writable. Just as importantly,
|
|
* treating SEPT violations as write faults is necessary to
|
|
* avoid COW allocations, which will cause TDAUGPAGE failures
|
|
* due to aliasing a single HPA to multiple GPAs.
|
|
*/
|
|
exit_qual = EPT_VIOLATION_ACC_WRITE;
|
|
|
|
/* Only private GPA triggers zero-step mitigation */
|
|
local_retry = true;
|
|
} else {
|
|
exit_qual = vmx_get_exit_qual(vcpu);
|
|
/*
|
|
* EPT violation due to instruction fetch should never be
|
|
* triggered from shared memory in TDX guest. If such EPT
|
|
* violation occurs, treat it as broken hardware.
|
|
*/
|
|
if (KVM_BUG_ON(exit_qual & EPT_VIOLATION_ACC_INSTR, vcpu->kvm))
|
|
return -EIO;
|
|
}
|
|
|
|
trace_kvm_page_fault(vcpu, gpa, exit_qual);
|
|
|
|
/*
|
|
* To minimize TDH.VP.ENTER invocations, retry locally for private GPA
|
|
* mapping in TDX.
|
|
*
|
|
* KVM may return RET_PF_RETRY for private GPA due to
|
|
* - contentions when atomically updating SPTEs of the mirror page table
|
|
* - in-progress GFN invalidation or memslot removal.
|
|
* - TDX_OPERAND_BUSY error from TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD,
|
|
* caused by contentions with TDH.VP.ENTER (with zero-step mitigation)
|
|
* or certain TDCALLs.
|
|
*
|
|
* If TDH.VP.ENTER is invoked more times than the threshold set by the
|
|
* TDX module before KVM resolves the private GPA mapping, the TDX
|
|
* module will activate zero-step mitigation during TDH.VP.ENTER. This
|
|
* process acquires an SEPT tree lock in the TDX module, leading to
|
|
* further contentions with TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD
|
|
* operations on other vCPUs.
|
|
*
|
|
* Breaking out of local retries for kvm_vcpu_has_events() is for
|
|
* interrupt injection. kvm_vcpu_has_events() should not see pending
|
|
* events for TDX. Since KVM can't determine if IRQs (or NMIs) are
|
|
* blocked by TDs, false positives are inevitable i.e., KVM may re-enter
|
|
* the guest even if the IRQ/NMI can't be delivered.
|
|
*
|
|
* Note: even without breaking out of local retries, zero-step
|
|
* mitigation may still occur due to
|
|
* - invoking of TDH.VP.ENTER after KVM_EXIT_MEMORY_FAULT,
|
|
* - a single RIP causing EPT violations for more GFNs than the
|
|
* threshold count.
|
|
* This is safe, as triggering zero-step mitigation only introduces
|
|
* contentions to page installation SEAMCALLs on other vCPUs, which will
|
|
* handle retries locally in their EPT violation handlers.
|
|
*/
|
|
while (1) {
|
|
ret = __vmx_handle_ept_violation(vcpu, gpa, exit_qual);
|
|
|
|
if (ret != RET_PF_RETRY || !local_retry)
|
|
break;
|
|
|
|
if (kvm_vcpu_has_events(vcpu) || signal_pending(current))
|
|
break;
|
|
|
|
if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int tdx_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
|
|
{
|
|
if (err) {
|
|
tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
|
|
return 1;
|
|
}
|
|
|
|
if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MSR_READ)
|
|
tdvmcall_set_return_val(vcpu, kvm_read_edx_eax(vcpu));
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
u64 vp_enter_ret = tdx->vp_enter_ret;
|
|
union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
|
|
|
|
if (fastpath != EXIT_FASTPATH_NONE)
|
|
return 1;
|
|
|
|
if (unlikely(vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) {
|
|
KVM_BUG_ON(1, vcpu->kvm);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Handle TDX SW errors, including TDX_SEAMCALL_UD, TDX_SEAMCALL_GP and
|
|
* TDX_SEAMCALL_VMFAILINVALID.
|
|
*/
|
|
if (unlikely((vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) {
|
|
KVM_BUG_ON(!kvm_rebooting, vcpu->kvm);
|
|
goto unhandled_exit;
|
|
}
|
|
|
|
if (unlikely(tdx_failed_vmentry(vcpu))) {
|
|
/*
|
|
* If the guest state is protected, that means off-TD debug is
|
|
* not enabled, TDX_NON_RECOVERABLE must be set.
|
|
*/
|
|
WARN_ON_ONCE(vcpu->arch.guest_state_protected &&
|
|
!(vp_enter_ret & TDX_NON_RECOVERABLE));
|
|
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full;
|
|
vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(vp_enter_ret & (TDX_ERROR | TDX_NON_RECOVERABLE)) &&
|
|
exit_reason.basic != EXIT_REASON_TRIPLE_FAULT) {
|
|
kvm_pr_unimpl("TD vp_enter_ret 0x%llx\n", vp_enter_ret);
|
|
goto unhandled_exit;
|
|
}
|
|
|
|
WARN_ON_ONCE(exit_reason.basic != EXIT_REASON_TRIPLE_FAULT &&
|
|
(vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) != TDX_SUCCESS);
|
|
|
|
switch (exit_reason.basic) {
|
|
case EXIT_REASON_TRIPLE_FAULT:
|
|
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
vcpu->mmio_needed = 0;
|
|
return 0;
|
|
case EXIT_REASON_EXCEPTION_NMI:
|
|
return tdx_handle_exception_nmi(vcpu);
|
|
case EXIT_REASON_EXTERNAL_INTERRUPT:
|
|
++vcpu->stat.irq_exits;
|
|
return 1;
|
|
case EXIT_REASON_CPUID:
|
|
return tdx_emulate_cpuid(vcpu);
|
|
case EXIT_REASON_HLT:
|
|
return kvm_emulate_halt_noskip(vcpu);
|
|
case EXIT_REASON_TDCALL:
|
|
return handle_tdvmcall(vcpu);
|
|
case EXIT_REASON_VMCALL:
|
|
return tdx_emulate_vmcall(vcpu);
|
|
case EXIT_REASON_IO_INSTRUCTION:
|
|
return tdx_emulate_io(vcpu);
|
|
case EXIT_REASON_MSR_READ:
|
|
kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
|
|
return kvm_emulate_rdmsr(vcpu);
|
|
case EXIT_REASON_MSR_WRITE:
|
|
kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
|
|
kvm_rax_write(vcpu, tdx->vp_enter_args.r13 & -1u);
|
|
kvm_rdx_write(vcpu, tdx->vp_enter_args.r13 >> 32);
|
|
return kvm_emulate_wrmsr(vcpu);
|
|
case EXIT_REASON_EPT_MISCONFIG:
|
|
return tdx_emulate_mmio(vcpu);
|
|
case EXIT_REASON_EPT_VIOLATION:
|
|
return tdx_handle_ept_violation(vcpu);
|
|
case EXIT_REASON_OTHER_SMI:
|
|
/*
|
|
* Unlike VMX, SMI in SEAM non-root mode (i.e. when
|
|
* TD guest vCPU is running) will cause VM exit to TDX module,
|
|
* then SEAMRET to KVM. Once it exits to KVM, SMI is delivered
|
|
* and handled by kernel handler right away.
|
|
*
|
|
* The Other SMI exit can also be caused by the SEAM non-root
|
|
* machine check delivered via Machine Check System Management
|
|
* Interrupt (MSMI), but it has already been handled by the
|
|
* kernel machine check handler, i.e., the memory page has been
|
|
* marked as poisoned and it won't be freed to the free list
|
|
* when the TDX guest is terminated (the TDX module marks the
|
|
* guest as dead and prevent it from further running when
|
|
* machine check happens in SEAM non-root).
|
|
*
|
|
* - A MSMI will not reach here, it's handled as non_recoverable
|
|
* case above.
|
|
* - If it's not an MSMI, no need to do anything here.
|
|
*/
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
unhandled_exit:
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
|
|
vcpu->run->internal.ndata = 2;
|
|
vcpu->run->internal.data[0] = vp_enter_ret;
|
|
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
void tdx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
|
|
u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
|
|
*reason = tdx->vt.exit_reason.full;
|
|
if (*reason != -1u) {
|
|
*info1 = vmx_get_exit_qual(vcpu);
|
|
*info2 = tdx->ext_exit_qualification;
|
|
*intr_info = vmx_get_intr_info(vcpu);
|
|
} else {
|
|
*info1 = 0;
|
|
*info2 = 0;
|
|
*intr_info = 0;
|
|
}
|
|
|
|
*error_code = 0;
|
|
}
|
|
|
|
bool tdx_has_emulated_msr(u32 index)
|
|
{
|
|
switch (index) {
|
|
case MSR_IA32_UCODE_REV:
|
|
case MSR_IA32_ARCH_CAPABILITIES:
|
|
case MSR_IA32_POWER_CTL:
|
|
case MSR_IA32_CR_PAT:
|
|
case MSR_MTRRcap:
|
|
case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
|
|
case MSR_MTRRdefType:
|
|
case MSR_IA32_TSC_DEADLINE:
|
|
case MSR_IA32_MISC_ENABLE:
|
|
case MSR_PLATFORM_INFO:
|
|
case MSR_MISC_FEATURES_ENABLES:
|
|
case MSR_IA32_APICBASE:
|
|
case MSR_EFER:
|
|
case MSR_IA32_FEAT_CTL:
|
|
case MSR_IA32_MCG_CAP:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
|
|
case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
|
|
/* MSR_IA32_MCx_{CTL, STATUS, ADDR, MISC, CTL2} */
|
|
case MSR_KVM_POLL_CONTROL:
|
|
return true;
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
|
|
/*
|
|
* x2APIC registers that are virtualized by the CPU can't be
|
|
* emulated, KVM doesn't have access to the virtual APIC page.
|
|
*/
|
|
switch (index) {
|
|
case X2APIC_MSR(APIC_TASKPRI):
|
|
case X2APIC_MSR(APIC_PROCPRI):
|
|
case X2APIC_MSR(APIC_EOI):
|
|
case X2APIC_MSR(APIC_ISR) ... X2APIC_MSR(APIC_ISR + APIC_ISR_NR):
|
|
case X2APIC_MSR(APIC_TMR) ... X2APIC_MSR(APIC_TMR + APIC_ISR_NR):
|
|
case X2APIC_MSR(APIC_IRR) ... X2APIC_MSR(APIC_IRR + APIC_ISR_NR):
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool tdx_is_read_only_msr(u32 index)
|
|
{
|
|
return index == MSR_IA32_APICBASE || index == MSR_EFER ||
|
|
index == MSR_IA32_FEAT_CTL;
|
|
}
|
|
|
|
int tdx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
switch (msr->index) {
|
|
case MSR_IA32_FEAT_CTL:
|
|
/*
|
|
* MCE and MCA are advertised via cpuid. Guest kernel could
|
|
* check if LMCE is enabled or not.
|
|
*/
|
|
msr->data = FEAT_CTL_LOCKED;
|
|
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
|
|
msr->data |= FEAT_CTL_LMCE_ENABLED;
|
|
return 0;
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
if (!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P))
|
|
return 1;
|
|
msr->data = vcpu->arch.mcg_ext_ctl;
|
|
return 0;
|
|
default:
|
|
if (!tdx_has_emulated_msr(msr->index))
|
|
return 1;
|
|
|
|
return kvm_get_msr_common(vcpu, msr);
|
|
}
|
|
}
|
|
|
|
int tdx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
switch (msr->index) {
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
if ((!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) ||
|
|
(msr->data & ~MCG_EXT_CTL_LMCE_EN))
|
|
return 1;
|
|
vcpu->arch.mcg_ext_ctl = msr->data;
|
|
return 0;
|
|
default:
|
|
if (tdx_is_read_only_msr(msr->index))
|
|
return 1;
|
|
|
|
if (!tdx_has_emulated_msr(msr->index))
|
|
return 1;
|
|
|
|
return kvm_set_msr_common(vcpu, msr);
|
|
}
|
|
}
|
|
|
|
static int tdx_get_capabilities(struct kvm_tdx_cmd *cmd)
|
|
{
|
|
const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
|
|
struct kvm_tdx_capabilities __user *user_caps;
|
|
struct kvm_tdx_capabilities *caps = NULL;
|
|
u32 nr_user_entries;
|
|
int ret = 0;
|
|
|
|
/* flags is reserved for future use */
|
|
if (cmd->flags)
|
|
return -EINVAL;
|
|
|
|
caps = kzalloc(sizeof(*caps) +
|
|
sizeof(struct kvm_cpuid_entry2) * td_conf->num_cpuid_config,
|
|
GFP_KERNEL);
|
|
if (!caps)
|
|
return -ENOMEM;
|
|
|
|
user_caps = u64_to_user_ptr(cmd->data);
|
|
if (get_user(nr_user_entries, &user_caps->cpuid.nent)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (nr_user_entries < td_conf->num_cpuid_config) {
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
ret = init_kvm_tdx_caps(td_conf, caps);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (copy_to_user(user_caps, caps, sizeof(*caps))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(user_caps->cpuid.entries, caps->cpuid.entries,
|
|
caps->cpuid.nent *
|
|
sizeof(caps->cpuid.entries[0])))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
/* kfree() accepts NULL. */
|
|
kfree(caps);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* KVM reports guest physical address in CPUID.0x800000008.EAX[23:16], which is
|
|
* similar to TDX's GPAW. Use this field as the interface for userspace to
|
|
* configure the GPAW and EPT level for TDs.
|
|
*
|
|
* Only values 48 and 52 are supported. Value 52 means GPAW-52 and EPT level
|
|
* 5, Value 48 means GPAW-48 and EPT level 4. For value 48, GPAW-48 is always
|
|
* supported. Value 52 is only supported when the platform supports 5 level
|
|
* EPT.
|
|
*/
|
|
static int setup_tdparams_eptp_controls(struct kvm_cpuid2 *cpuid,
|
|
struct td_params *td_params)
|
|
{
|
|
const struct kvm_cpuid_entry2 *entry;
|
|
int guest_pa;
|
|
|
|
entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 0x80000008, 0);
|
|
if (!entry)
|
|
return -EINVAL;
|
|
|
|
guest_pa = tdx_get_guest_phys_addr_bits(entry->eax);
|
|
|
|
if (guest_pa != 48 && guest_pa != 52)
|
|
return -EINVAL;
|
|
|
|
if (guest_pa == 52 && !cpu_has_vmx_ept_5levels())
|
|
return -EINVAL;
|
|
|
|
td_params->eptp_controls = VMX_EPTP_MT_WB;
|
|
if (guest_pa == 52) {
|
|
td_params->eptp_controls |= VMX_EPTP_PWL_5;
|
|
td_params->config_flags |= TDX_CONFIG_FLAGS_MAX_GPAW;
|
|
} else {
|
|
td_params->eptp_controls |= VMX_EPTP_PWL_4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup_tdparams_cpuids(struct kvm_cpuid2 *cpuid,
|
|
struct td_params *td_params)
|
|
{
|
|
const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
|
|
const struct kvm_cpuid_entry2 *entry;
|
|
struct tdx_cpuid_value *value;
|
|
int i, copy_cnt = 0;
|
|
|
|
/*
|
|
* td_params.cpuid_values: The number and the order of cpuid_value must
|
|
* be same to the one of struct tdsysinfo.{num_cpuid_config, cpuid_configs}
|
|
* It's assumed that td_params was zeroed.
|
|
*/
|
|
for (i = 0; i < td_conf->num_cpuid_config; i++) {
|
|
struct kvm_cpuid_entry2 tmp;
|
|
|
|
td_init_cpuid_entry2(&tmp, i);
|
|
|
|
entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent,
|
|
tmp.function, tmp.index);
|
|
if (!entry)
|
|
continue;
|
|
|
|
if (tdx_unsupported_cpuid(entry))
|
|
return -EINVAL;
|
|
|
|
copy_cnt++;
|
|
|
|
value = &td_params->cpuid_values[i];
|
|
value->eax = entry->eax;
|
|
value->ebx = entry->ebx;
|
|
value->ecx = entry->ecx;
|
|
value->edx = entry->edx;
|
|
|
|
/*
|
|
* TDX module does not accept nonzero bits 16..23 for the
|
|
* CPUID[0x80000008].EAX, see setup_tdparams_eptp_controls().
|
|
*/
|
|
if (tmp.function == 0x80000008)
|
|
value->eax = tdx_set_guest_phys_addr_bits(value->eax, 0);
|
|
}
|
|
|
|
/*
|
|
* Rely on the TDX module to reject invalid configuration, but it can't
|
|
* check of leafs that don't have a proper slot in td_params->cpuid_values
|
|
* to stick then. So fail if there were entries that didn't get copied to
|
|
* td_params.
|
|
*/
|
|
if (copy_cnt != cpuid->nent)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup_tdparams(struct kvm *kvm, struct td_params *td_params,
|
|
struct kvm_tdx_init_vm *init_vm)
|
|
{
|
|
const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
|
|
struct kvm_cpuid2 *cpuid = &init_vm->cpuid;
|
|
int ret;
|
|
|
|
if (kvm->created_vcpus)
|
|
return -EBUSY;
|
|
|
|
if (init_vm->attributes & ~tdx_get_supported_attrs(td_conf))
|
|
return -EINVAL;
|
|
|
|
if (init_vm->xfam & ~tdx_get_supported_xfam(td_conf))
|
|
return -EINVAL;
|
|
|
|
td_params->max_vcpus = kvm->max_vcpus;
|
|
td_params->attributes = init_vm->attributes | td_conf->attributes_fixed1;
|
|
td_params->xfam = init_vm->xfam | td_conf->xfam_fixed1;
|
|
|
|
td_params->config_flags = TDX_CONFIG_FLAGS_NO_RBP_MOD;
|
|
td_params->tsc_frequency = TDX_TSC_KHZ_TO_25MHZ(kvm->arch.default_tsc_khz);
|
|
|
|
ret = setup_tdparams_eptp_controls(cpuid, td_params);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = setup_tdparams_cpuids(cpuid, td_params);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#define MEMCPY_SAME_SIZE(dst, src) \
|
|
do { \
|
|
BUILD_BUG_ON(sizeof(dst) != sizeof(src)); \
|
|
memcpy((dst), (src), sizeof(dst)); \
|
|
} while (0)
|
|
|
|
MEMCPY_SAME_SIZE(td_params->mrconfigid, init_vm->mrconfigid);
|
|
MEMCPY_SAME_SIZE(td_params->mrowner, init_vm->mrowner);
|
|
MEMCPY_SAME_SIZE(td_params->mrownerconfig, init_vm->mrownerconfig);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __tdx_td_init(struct kvm *kvm, struct td_params *td_params,
|
|
u64 *seamcall_err)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
cpumask_var_t packages;
|
|
struct page **tdcs_pages = NULL;
|
|
struct page *tdr_page;
|
|
int ret, i;
|
|
u64 err, rcx;
|
|
|
|
*seamcall_err = 0;
|
|
ret = tdx_guest_keyid_alloc();
|
|
if (ret < 0)
|
|
return ret;
|
|
kvm_tdx->hkid = ret;
|
|
kvm_tdx->misc_cg = get_current_misc_cg();
|
|
ret = misc_cg_try_charge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
|
|
if (ret)
|
|
goto free_hkid;
|
|
|
|
ret = -ENOMEM;
|
|
|
|
atomic_inc(&nr_configured_hkid);
|
|
|
|
tdr_page = alloc_page(GFP_KERNEL);
|
|
if (!tdr_page)
|
|
goto free_hkid;
|
|
|
|
kvm_tdx->td.tdcs_nr_pages = tdx_sysinfo->td_ctrl.tdcs_base_size / PAGE_SIZE;
|
|
/* TDVPS = TDVPR(4K page) + TDCX(multiple 4K pages), -1 for TDVPR. */
|
|
kvm_tdx->td.tdcx_nr_pages = tdx_sysinfo->td_ctrl.tdvps_base_size / PAGE_SIZE - 1;
|
|
tdcs_pages = kcalloc(kvm_tdx->td.tdcs_nr_pages, sizeof(*kvm_tdx->td.tdcs_pages),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!tdcs_pages)
|
|
goto free_tdr;
|
|
|
|
for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
|
|
tdcs_pages[i] = alloc_page(GFP_KERNEL);
|
|
if (!tdcs_pages[i])
|
|
goto free_tdcs;
|
|
}
|
|
|
|
if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
|
|
goto free_tdcs;
|
|
|
|
cpus_read_lock();
|
|
|
|
/*
|
|
* Need at least one CPU of the package to be online in order to
|
|
* program all packages for host key id. Check it.
|
|
*/
|
|
for_each_present_cpu(i)
|
|
cpumask_set_cpu(topology_physical_package_id(i), packages);
|
|
for_each_online_cpu(i)
|
|
cpumask_clear_cpu(topology_physical_package_id(i), packages);
|
|
if (!cpumask_empty(packages)) {
|
|
ret = -EIO;
|
|
/*
|
|
* Because it's hard for human operator to figure out the
|
|
* reason, warn it.
|
|
*/
|
|
#define MSG_ALLPKG "All packages need to have online CPU to create TD. Online CPU and retry.\n"
|
|
pr_warn_ratelimited(MSG_ALLPKG);
|
|
goto free_packages;
|
|
}
|
|
|
|
/*
|
|
* TDH.MNG.CREATE tries to grab the global TDX module and fails
|
|
* with TDX_OPERAND_BUSY when it fails to grab. Take the global
|
|
* lock to prevent it from failure.
|
|
*/
|
|
mutex_lock(&tdx_lock);
|
|
kvm_tdx->td.tdr_page = tdr_page;
|
|
err = tdh_mng_create(&kvm_tdx->td, kvm_tdx->hkid);
|
|
mutex_unlock(&tdx_lock);
|
|
|
|
if (err == TDX_RND_NO_ENTROPY) {
|
|
ret = -EAGAIN;
|
|
goto free_packages;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(err)) {
|
|
pr_tdx_error(TDH_MNG_CREATE, err);
|
|
ret = -EIO;
|
|
goto free_packages;
|
|
}
|
|
|
|
for_each_online_cpu(i) {
|
|
int pkg = topology_physical_package_id(i);
|
|
|
|
if (cpumask_test_and_set_cpu(pkg, packages))
|
|
continue;
|
|
|
|
/*
|
|
* Program the memory controller in the package with an
|
|
* encryption key associated to a TDX private host key id
|
|
* assigned to this TDR. Concurrent operations on same memory
|
|
* controller results in TDX_OPERAND_BUSY. No locking needed
|
|
* beyond the cpus_read_lock() above as it serializes against
|
|
* hotplug and the first online CPU of the package is always
|
|
* used. We never have two CPUs in the same socket trying to
|
|
* program the key.
|
|
*/
|
|
ret = smp_call_on_cpu(i, tdx_do_tdh_mng_key_config,
|
|
kvm_tdx, true);
|
|
if (ret)
|
|
break;
|
|
}
|
|
cpus_read_unlock();
|
|
free_cpumask_var(packages);
|
|
if (ret) {
|
|
i = 0;
|
|
goto teardown;
|
|
}
|
|
|
|
kvm_tdx->td.tdcs_pages = tdcs_pages;
|
|
for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
|
|
err = tdh_mng_addcx(&kvm_tdx->td, tdcs_pages[i]);
|
|
if (err == TDX_RND_NO_ENTROPY) {
|
|
/* Here it's hard to allow userspace to retry. */
|
|
ret = -EAGAIN;
|
|
goto teardown;
|
|
}
|
|
if (WARN_ON_ONCE(err)) {
|
|
pr_tdx_error(TDH_MNG_ADDCX, err);
|
|
ret = -EIO;
|
|
goto teardown;
|
|
}
|
|
}
|
|
|
|
err = tdh_mng_init(&kvm_tdx->td, __pa(td_params), &rcx);
|
|
if ((err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_INVALID) {
|
|
/*
|
|
* Because a user gives operands, don't warn.
|
|
* Return a hint to the user because it's sometimes hard for the
|
|
* user to figure out which operand is invalid. SEAMCALL status
|
|
* code includes which operand caused invalid operand error.
|
|
*/
|
|
*seamcall_err = err;
|
|
ret = -EINVAL;
|
|
goto teardown;
|
|
} else if (WARN_ON_ONCE(err)) {
|
|
pr_tdx_error_1(TDH_MNG_INIT, err, rcx);
|
|
ret = -EIO;
|
|
goto teardown;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* The sequence for freeing resources from a partially initialized TD
|
|
* varies based on where in the initialization flow failure occurred.
|
|
* Simply use the full teardown and destroy, which naturally play nice
|
|
* with partial initialization.
|
|
*/
|
|
teardown:
|
|
/* Only free pages not yet added, so start at 'i' */
|
|
for (; i < kvm_tdx->td.tdcs_nr_pages; i++) {
|
|
if (tdcs_pages[i]) {
|
|
__free_page(tdcs_pages[i]);
|
|
tdcs_pages[i] = NULL;
|
|
}
|
|
}
|
|
if (!kvm_tdx->td.tdcs_pages)
|
|
kfree(tdcs_pages);
|
|
|
|
tdx_mmu_release_hkid(kvm);
|
|
tdx_reclaim_td_control_pages(kvm);
|
|
|
|
return ret;
|
|
|
|
free_packages:
|
|
cpus_read_unlock();
|
|
free_cpumask_var(packages);
|
|
|
|
free_tdcs:
|
|
for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
|
|
if (tdcs_pages[i])
|
|
__free_page(tdcs_pages[i]);
|
|
}
|
|
kfree(tdcs_pages);
|
|
kvm_tdx->td.tdcs_pages = NULL;
|
|
|
|
free_tdr:
|
|
if (tdr_page)
|
|
__free_page(tdr_page);
|
|
kvm_tdx->td.tdr_page = 0;
|
|
|
|
free_hkid:
|
|
tdx_hkid_free(kvm_tdx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 tdx_td_metadata_field_read(struct kvm_tdx *tdx, u64 field_id,
|
|
u64 *data)
|
|
{
|
|
u64 err;
|
|
|
|
err = tdh_mng_rd(&tdx->td, field_id, data);
|
|
|
|
return err;
|
|
}
|
|
|
|
#define TDX_MD_UNREADABLE_LEAF_MASK GENMASK(30, 7)
|
|
#define TDX_MD_UNREADABLE_SUBLEAF_MASK GENMASK(31, 7)
|
|
|
|
static int tdx_read_cpuid(struct kvm_vcpu *vcpu, u32 leaf, u32 sub_leaf,
|
|
bool sub_leaf_set, int *entry_index,
|
|
struct kvm_cpuid_entry2 *out)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
|
|
u64 field_id = TD_MD_FIELD_ID_CPUID_VALUES;
|
|
u64 ebx_eax, edx_ecx;
|
|
u64 err = 0;
|
|
|
|
if (sub_leaf > 0b1111111)
|
|
return -EINVAL;
|
|
|
|
if (*entry_index >= KVM_MAX_CPUID_ENTRIES)
|
|
return -EINVAL;
|
|
|
|
if (leaf & TDX_MD_UNREADABLE_LEAF_MASK ||
|
|
sub_leaf & TDX_MD_UNREADABLE_SUBLEAF_MASK)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* bit 23:17, REVSERVED: reserved, must be 0;
|
|
* bit 16, LEAF_31: leaf number bit 31;
|
|
* bit 15:9, LEAF_6_0: leaf number bits 6:0, leaf bits 30:7 are
|
|
* implicitly 0;
|
|
* bit 8, SUBLEAF_NA: sub-leaf not applicable flag;
|
|
* bit 7:1, SUBLEAF_6_0: sub-leaf number bits 6:0. If SUBLEAF_NA is 1,
|
|
* the SUBLEAF_6_0 is all-1.
|
|
* sub-leaf bits 31:7 are implicitly 0;
|
|
* bit 0, ELEMENT_I: Element index within field;
|
|
*/
|
|
field_id |= ((leaf & 0x80000000) ? 1 : 0) << 16;
|
|
field_id |= (leaf & 0x7f) << 9;
|
|
if (sub_leaf_set)
|
|
field_id |= (sub_leaf & 0x7f) << 1;
|
|
else
|
|
field_id |= 0x1fe;
|
|
|
|
err = tdx_td_metadata_field_read(kvm_tdx, field_id, &ebx_eax);
|
|
if (err) //TODO check for specific errors
|
|
goto err_out;
|
|
|
|
out->eax = (u32) ebx_eax;
|
|
out->ebx = (u32) (ebx_eax >> 32);
|
|
|
|
field_id++;
|
|
err = tdx_td_metadata_field_read(kvm_tdx, field_id, &edx_ecx);
|
|
/*
|
|
* It's weird that reading edx_ecx fails while reading ebx_eax
|
|
* succeeded.
|
|
*/
|
|
if (WARN_ON_ONCE(err))
|
|
goto err_out;
|
|
|
|
out->ecx = (u32) edx_ecx;
|
|
out->edx = (u32) (edx_ecx >> 32);
|
|
|
|
out->function = leaf;
|
|
out->index = sub_leaf;
|
|
out->flags |= sub_leaf_set ? KVM_CPUID_FLAG_SIGNIFCANT_INDEX : 0;
|
|
|
|
/*
|
|
* Work around missing support on old TDX modules, fetch
|
|
* guest maxpa from gfn_direct_bits.
|
|
*/
|
|
if (leaf == 0x80000008) {
|
|
gpa_t gpa_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
|
|
unsigned int g_maxpa = __ffs(gpa_bits) + 1;
|
|
|
|
out->eax = tdx_set_guest_phys_addr_bits(out->eax, g_maxpa);
|
|
}
|
|
|
|
(*entry_index)++;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
out->eax = 0;
|
|
out->ebx = 0;
|
|
out->ecx = 0;
|
|
out->edx = 0;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int tdx_td_init(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
struct kvm_tdx_init_vm *init_vm;
|
|
struct td_params *td_params = NULL;
|
|
int ret;
|
|
|
|
BUILD_BUG_ON(sizeof(*init_vm) != 256 + sizeof_field(struct kvm_tdx_init_vm, cpuid));
|
|
BUILD_BUG_ON(sizeof(struct td_params) != 1024);
|
|
|
|
if (kvm_tdx->state != TD_STATE_UNINITIALIZED)
|
|
return -EINVAL;
|
|
|
|
if (cmd->flags)
|
|
return -EINVAL;
|
|
|
|
init_vm = kmalloc(sizeof(*init_vm) +
|
|
sizeof(init_vm->cpuid.entries[0]) * KVM_MAX_CPUID_ENTRIES,
|
|
GFP_KERNEL);
|
|
if (!init_vm)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(init_vm, u64_to_user_ptr(cmd->data), sizeof(*init_vm))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (init_vm->cpuid.nent > KVM_MAX_CPUID_ENTRIES) {
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_from_user(init_vm->cpuid.entries,
|
|
u64_to_user_ptr(cmd->data) + sizeof(*init_vm),
|
|
flex_array_size(init_vm, cpuid.entries, init_vm->cpuid.nent))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (memchr_inv(init_vm->reserved, 0, sizeof(init_vm->reserved))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (init_vm->cpuid.padding) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
td_params = kzalloc(sizeof(struct td_params), GFP_KERNEL);
|
|
if (!td_params) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = setup_tdparams(kvm, td_params, init_vm);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = __tdx_td_init(kvm, td_params, &cmd->hw_error);
|
|
if (ret)
|
|
goto out;
|
|
|
|
kvm_tdx->tsc_offset = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_OFFSET);
|
|
kvm_tdx->tsc_multiplier = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_MULTIPLIER);
|
|
kvm_tdx->attributes = td_params->attributes;
|
|
kvm_tdx->xfam = td_params->xfam;
|
|
|
|
if (td_params->config_flags & TDX_CONFIG_FLAGS_MAX_GPAW)
|
|
kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_5;
|
|
else
|
|
kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_4;
|
|
|
|
kvm_tdx->state = TD_STATE_INITIALIZED;
|
|
out:
|
|
/* kfree() accepts NULL. */
|
|
kfree(init_vm);
|
|
kfree(td_params);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void tdx_flush_tlb_current(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* flush_tlb_current() is invoked when the first time for the vcpu to
|
|
* run or when root of shared EPT is invalidated.
|
|
* KVM only needs to flush shared EPT because the TDX module handles TLB
|
|
* invalidation for private EPT in tdh_vp_enter();
|
|
*
|
|
* A single context invalidation for shared EPT can be performed here.
|
|
* However, this single context invalidation requires the private EPTP
|
|
* rather than the shared EPTP to flush shared EPT, as shared EPT uses
|
|
* private EPTP as its ASID for TLB invalidation.
|
|
*
|
|
* To avoid reading back private EPTP, perform a global invalidation for
|
|
* shared EPT instead to keep this function simple.
|
|
*/
|
|
ept_sync_global();
|
|
}
|
|
|
|
void tdx_flush_tlb_all(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* TDX has called tdx_track() in tdx_sept_remove_private_spte() to
|
|
* ensure that private EPT will be flushed on the next TD enter. No need
|
|
* to call tdx_track() here again even when this callback is a result of
|
|
* zapping private EPT.
|
|
*
|
|
* Due to the lack of the context to determine which EPT has been
|
|
* affected by zapping, invoke invept() directly here for both shared
|
|
* EPT and private EPT for simplicity, though it's not necessary for
|
|
* private EPT.
|
|
*/
|
|
ept_sync_global();
|
|
}
|
|
|
|
static int tdx_td_finalize(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
|
|
guard(mutex)(&kvm->slots_lock);
|
|
|
|
if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
|
|
return -EINVAL;
|
|
/*
|
|
* Pages are pending for KVM_TDX_INIT_MEM_REGION to issue
|
|
* TDH.MEM.PAGE.ADD().
|
|
*/
|
|
if (atomic64_read(&kvm_tdx->nr_premapped))
|
|
return -EINVAL;
|
|
|
|
cmd->hw_error = tdh_mr_finalize(&kvm_tdx->td);
|
|
if (tdx_operand_busy(cmd->hw_error))
|
|
return -EBUSY;
|
|
if (KVM_BUG_ON(cmd->hw_error, kvm)) {
|
|
pr_tdx_error(TDH_MR_FINALIZE, cmd->hw_error);
|
|
return -EIO;
|
|
}
|
|
|
|
kvm_tdx->state = TD_STATE_RUNNABLE;
|
|
/* TD_STATE_RUNNABLE must be set before 'pre_fault_allowed' */
|
|
smp_wmb();
|
|
kvm->arch.pre_fault_allowed = true;
|
|
return 0;
|
|
}
|
|
|
|
int tdx_vm_ioctl(struct kvm *kvm, void __user *argp)
|
|
{
|
|
struct kvm_tdx_cmd tdx_cmd;
|
|
int r;
|
|
|
|
if (copy_from_user(&tdx_cmd, argp, sizeof(struct kvm_tdx_cmd)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Userspace should never set hw_error. It is used to fill
|
|
* hardware-defined error by the kernel.
|
|
*/
|
|
if (tdx_cmd.hw_error)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
switch (tdx_cmd.id) {
|
|
case KVM_TDX_CAPABILITIES:
|
|
r = tdx_get_capabilities(&tdx_cmd);
|
|
break;
|
|
case KVM_TDX_INIT_VM:
|
|
r = tdx_td_init(kvm, &tdx_cmd);
|
|
break;
|
|
case KVM_TDX_FINALIZE_VM:
|
|
r = tdx_td_finalize(kvm, &tdx_cmd);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(argp, &tdx_cmd, sizeof(struct kvm_tdx_cmd)))
|
|
r = -EFAULT;
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
/* VMM can pass one 64bit auxiliary data to vcpu via RCX for guest BIOS. */
|
|
static int tdx_td_vcpu_init(struct kvm_vcpu *vcpu, u64 vcpu_rcx)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
struct page *page;
|
|
int ret, i;
|
|
u64 err;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
tdx->vp.tdvpr_page = page;
|
|
|
|
tdx->vp.tdcx_pages = kcalloc(kvm_tdx->td.tdcx_nr_pages, sizeof(*tdx->vp.tdcx_pages),
|
|
GFP_KERNEL);
|
|
if (!tdx->vp.tdcx_pages) {
|
|
ret = -ENOMEM;
|
|
goto free_tdvpr;
|
|
}
|
|
|
|
for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto free_tdcx;
|
|
}
|
|
tdx->vp.tdcx_pages[i] = page;
|
|
}
|
|
|
|
err = tdh_vp_create(&kvm_tdx->td, &tdx->vp);
|
|
if (KVM_BUG_ON(err, vcpu->kvm)) {
|
|
ret = -EIO;
|
|
pr_tdx_error(TDH_VP_CREATE, err);
|
|
goto free_tdcx;
|
|
}
|
|
|
|
for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
|
|
err = tdh_vp_addcx(&tdx->vp, tdx->vp.tdcx_pages[i]);
|
|
if (KVM_BUG_ON(err, vcpu->kvm)) {
|
|
pr_tdx_error(TDH_VP_ADDCX, err);
|
|
/*
|
|
* Pages already added are reclaimed by the vcpu_free
|
|
* method, but the rest are freed here.
|
|
*/
|
|
for (; i < kvm_tdx->td.tdcx_nr_pages; i++) {
|
|
__free_page(tdx->vp.tdcx_pages[i]);
|
|
tdx->vp.tdcx_pages[i] = NULL;
|
|
}
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
err = tdh_vp_init(&tdx->vp, vcpu_rcx, vcpu->vcpu_id);
|
|
if (KVM_BUG_ON(err, vcpu->kvm)) {
|
|
pr_tdx_error(TDH_VP_INIT, err);
|
|
return -EIO;
|
|
}
|
|
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
return 0;
|
|
|
|
free_tdcx:
|
|
for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
|
|
if (tdx->vp.tdcx_pages[i])
|
|
__free_page(tdx->vp.tdcx_pages[i]);
|
|
tdx->vp.tdcx_pages[i] = NULL;
|
|
}
|
|
kfree(tdx->vp.tdcx_pages);
|
|
tdx->vp.tdcx_pages = NULL;
|
|
|
|
free_tdvpr:
|
|
if (tdx->vp.tdvpr_page)
|
|
__free_page(tdx->vp.tdvpr_page);
|
|
tdx->vp.tdvpr_page = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Sometimes reads multipple subleafs. Return how many enties were written. */
|
|
static int tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu *vcpu, u32 leaf, int *entry_index,
|
|
struct kvm_cpuid_entry2 *output_e)
|
|
{
|
|
int sub_leaf = 0;
|
|
int ret;
|
|
|
|
/* First try without a subleaf */
|
|
ret = tdx_read_cpuid(vcpu, leaf, 0, false, entry_index, output_e);
|
|
|
|
/* If success, or invalid leaf, just give up */
|
|
if (ret != -EIO)
|
|
return ret;
|
|
|
|
/*
|
|
* If the try without a subleaf failed, try reading subleafs until
|
|
* failure. The TDX module only supports 6 bits of subleaf index.
|
|
*/
|
|
while (1) {
|
|
/* Keep reading subleafs until there is a failure. */
|
|
if (tdx_read_cpuid(vcpu, leaf, sub_leaf, true, entry_index, output_e))
|
|
return !sub_leaf;
|
|
|
|
sub_leaf++;
|
|
output_e++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_vcpu_get_cpuid(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
|
|
{
|
|
struct kvm_cpuid2 __user *output, *td_cpuid;
|
|
int r = 0, i = 0, leaf;
|
|
u32 level;
|
|
|
|
output = u64_to_user_ptr(cmd->data);
|
|
td_cpuid = kzalloc(sizeof(*td_cpuid) +
|
|
sizeof(output->entries[0]) * KVM_MAX_CPUID_ENTRIES,
|
|
GFP_KERNEL);
|
|
if (!td_cpuid)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(td_cpuid, output, sizeof(*output))) {
|
|
r = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* Read max CPUID for normal range */
|
|
if (tdx_vcpu_get_cpuid_leaf(vcpu, 0, &i, &td_cpuid->entries[i])) {
|
|
r = -EIO;
|
|
goto out;
|
|
}
|
|
level = td_cpuid->entries[0].eax;
|
|
|
|
for (leaf = 1; leaf <= level; leaf++)
|
|
tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
|
|
|
|
/* Read max CPUID for extended range */
|
|
if (tdx_vcpu_get_cpuid_leaf(vcpu, 0x80000000, &i, &td_cpuid->entries[i])) {
|
|
r = -EIO;
|
|
goto out;
|
|
}
|
|
level = td_cpuid->entries[i - 1].eax;
|
|
|
|
for (leaf = 0x80000001; leaf <= level; leaf++)
|
|
tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
|
|
|
|
if (td_cpuid->nent < i)
|
|
r = -E2BIG;
|
|
td_cpuid->nent = i;
|
|
|
|
if (copy_to_user(output, td_cpuid, sizeof(*output))) {
|
|
r = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (r == -E2BIG)
|
|
goto out;
|
|
|
|
if (copy_to_user(output->entries, td_cpuid->entries,
|
|
td_cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
|
|
r = -EFAULT;
|
|
|
|
out:
|
|
kfree(td_cpuid);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int tdx_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
|
|
{
|
|
u64 apic_base;
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
int ret;
|
|
|
|
if (cmd->flags)
|
|
return -EINVAL;
|
|
|
|
if (tdx->state != VCPU_TD_STATE_UNINITIALIZED)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* TDX requires X2APIC, userspace is responsible for configuring guest
|
|
* CPUID accordingly.
|
|
*/
|
|
apic_base = APIC_DEFAULT_PHYS_BASE | LAPIC_MODE_X2APIC |
|
|
(kvm_vcpu_is_reset_bsp(vcpu) ? MSR_IA32_APICBASE_BSP : 0);
|
|
if (kvm_apic_set_base(vcpu, apic_base, true))
|
|
return -EINVAL;
|
|
|
|
ret = tdx_td_vcpu_init(vcpu, (u64)cmd->data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
td_vmcs_write16(tdx, POSTED_INTR_NV, POSTED_INTR_VECTOR);
|
|
td_vmcs_write64(tdx, POSTED_INTR_DESC_ADDR, __pa(&tdx->vt.pi_desc));
|
|
td_vmcs_setbit32(tdx, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_POSTED_INTR);
|
|
|
|
tdx->state = VCPU_TD_STATE_INITIALIZED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tdx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
|
|
{
|
|
/*
|
|
* Yell on INIT, as TDX doesn't support INIT, i.e. KVM should drop all
|
|
* INIT events.
|
|
*
|
|
* Defer initializing vCPU for RESET state until KVM_TDX_INIT_VCPU, as
|
|
* userspace needs to define the vCPU model before KVM can initialize
|
|
* vCPU state, e.g. to enable x2APIC.
|
|
*/
|
|
WARN_ON_ONCE(init_event);
|
|
}
|
|
|
|
struct tdx_gmem_post_populate_arg {
|
|
struct kvm_vcpu *vcpu;
|
|
__u32 flags;
|
|
};
|
|
|
|
static int tdx_gmem_post_populate(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
|
|
void __user *src, int order, void *_arg)
|
|
{
|
|
u64 error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS;
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
struct tdx_gmem_post_populate_arg *arg = _arg;
|
|
struct kvm_vcpu *vcpu = arg->vcpu;
|
|
gpa_t gpa = gfn_to_gpa(gfn);
|
|
u8 level = PG_LEVEL_4K;
|
|
struct page *src_page;
|
|
int ret, i;
|
|
u64 err, entry, level_state;
|
|
|
|
/*
|
|
* Get the source page if it has been faulted in. Return failure if the
|
|
* source page has been swapped out or unmapped in primary memory.
|
|
*/
|
|
ret = get_user_pages_fast((unsigned long)src, 1, 0, &src_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret != 1)
|
|
return -ENOMEM;
|
|
|
|
ret = kvm_tdp_map_page(vcpu, gpa, error_code, &level);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* The private mem cannot be zapped after kvm_tdp_map_page()
|
|
* because all paths are covered by slots_lock and the
|
|
* filemap invalidate lock. Check that they are indeed enough.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
|
|
scoped_guard(read_lock, &kvm->mmu_lock) {
|
|
if (KVM_BUG_ON(!kvm_tdp_mmu_gpa_is_mapped(vcpu, gpa), kvm)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
err = tdh_mem_page_add(&kvm_tdx->td, gpa, pfn_to_page(pfn),
|
|
src_page, &entry, &level_state);
|
|
if (err) {
|
|
ret = unlikely(tdx_operand_busy(err)) ? -EBUSY : -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm))
|
|
atomic64_dec(&kvm_tdx->nr_premapped);
|
|
|
|
if (arg->flags & KVM_TDX_MEASURE_MEMORY_REGION) {
|
|
for (i = 0; i < PAGE_SIZE; i += TDX_EXTENDMR_CHUNKSIZE) {
|
|
err = tdh_mr_extend(&kvm_tdx->td, gpa + i, &entry,
|
|
&level_state);
|
|
if (err) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
put_page(src_page);
|
|
return ret;
|
|
}
|
|
|
|
static int tdx_vcpu_init_mem_region(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
|
|
{
|
|
struct vcpu_tdx *tdx = to_tdx(vcpu);
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
|
|
struct kvm_tdx_init_mem_region region;
|
|
struct tdx_gmem_post_populate_arg arg;
|
|
long gmem_ret;
|
|
int ret;
|
|
|
|
if (tdx->state != VCPU_TD_STATE_INITIALIZED)
|
|
return -EINVAL;
|
|
|
|
guard(mutex)(&kvm->slots_lock);
|
|
|
|
/* Once TD is finalized, the initial guest memory is fixed. */
|
|
if (kvm_tdx->state == TD_STATE_RUNNABLE)
|
|
return -EINVAL;
|
|
|
|
if (cmd->flags & ~KVM_TDX_MEASURE_MEMORY_REGION)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(®ion, u64_to_user_ptr(cmd->data), sizeof(region)))
|
|
return -EFAULT;
|
|
|
|
if (!PAGE_ALIGNED(region.source_addr) || !PAGE_ALIGNED(region.gpa) ||
|
|
!region.nr_pages ||
|
|
region.gpa + (region.nr_pages << PAGE_SHIFT) <= region.gpa ||
|
|
!vt_is_tdx_private_gpa(kvm, region.gpa) ||
|
|
!vt_is_tdx_private_gpa(kvm, region.gpa + (region.nr_pages << PAGE_SHIFT) - 1))
|
|
return -EINVAL;
|
|
|
|
kvm_mmu_reload(vcpu);
|
|
ret = 0;
|
|
while (region.nr_pages) {
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
arg = (struct tdx_gmem_post_populate_arg) {
|
|
.vcpu = vcpu,
|
|
.flags = cmd->flags,
|
|
};
|
|
gmem_ret = kvm_gmem_populate(kvm, gpa_to_gfn(region.gpa),
|
|
u64_to_user_ptr(region.source_addr),
|
|
1, tdx_gmem_post_populate, &arg);
|
|
if (gmem_ret < 0) {
|
|
ret = gmem_ret;
|
|
break;
|
|
}
|
|
|
|
if (gmem_ret != 1) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
region.source_addr += PAGE_SIZE;
|
|
region.gpa += PAGE_SIZE;
|
|
region.nr_pages--;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (copy_to_user(u64_to_user_ptr(cmd->data), ®ion, sizeof(region)))
|
|
ret = -EFAULT;
|
|
return ret;
|
|
}
|
|
|
|
int tdx_vcpu_ioctl(struct kvm_vcpu *vcpu, void __user *argp)
|
|
{
|
|
struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
|
|
struct kvm_tdx_cmd cmd;
|
|
int ret;
|
|
|
|
if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&cmd, argp, sizeof(cmd)))
|
|
return -EFAULT;
|
|
|
|
if (cmd.hw_error)
|
|
return -EINVAL;
|
|
|
|
switch (cmd.id) {
|
|
case KVM_TDX_INIT_VCPU:
|
|
ret = tdx_vcpu_init(vcpu, &cmd);
|
|
break;
|
|
case KVM_TDX_INIT_MEM_REGION:
|
|
ret = tdx_vcpu_init_mem_region(vcpu, &cmd);
|
|
break;
|
|
case KVM_TDX_GET_CPUID:
|
|
ret = tdx_vcpu_get_cpuid(vcpu, &cmd);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int tdx_gmem_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
|
|
{
|
|
return PG_LEVEL_4K;
|
|
}
|
|
|
|
static int tdx_online_cpu(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
int r;
|
|
|
|
/* Sanity check CPU is already in post-VMXON */
|
|
WARN_ON_ONCE(!(cr4_read_shadow() & X86_CR4_VMXE));
|
|
|
|
local_irq_save(flags);
|
|
r = tdx_cpu_enable();
|
|
local_irq_restore(flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int tdx_offline_cpu(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
/* No TD is running. Allow any cpu to be offline. */
|
|
if (!atomic_read(&nr_configured_hkid))
|
|
return 0;
|
|
|
|
/*
|
|
* In order to reclaim TDX HKID, (i.e. when deleting guest TD), need to
|
|
* call TDH.PHYMEM.PAGE.WBINVD on all packages to program all memory
|
|
* controller with pconfig. If we have active TDX HKID, refuse to
|
|
* offline the last online cpu.
|
|
*/
|
|
for_each_online_cpu(i) {
|
|
/*
|
|
* Found another online cpu on the same package.
|
|
* Allow to offline.
|
|
*/
|
|
if (i != cpu && topology_physical_package_id(i) ==
|
|
topology_physical_package_id(cpu))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is the last cpu of this package. Don't offline it.
|
|
*
|
|
* Because it's hard for human operator to understand the
|
|
* reason, warn it.
|
|
*/
|
|
#define MSG_ALLPKG_ONLINE \
|
|
"TDX requires all packages to have an online CPU. Delete all TDs in order to offline all CPUs of a package.\n"
|
|
pr_warn_ratelimited(MSG_ALLPKG_ONLINE);
|
|
return -EBUSY;
|
|
}
|
|
|
|
static void __do_tdx_cleanup(void)
|
|
{
|
|
/*
|
|
* Once TDX module is initialized, it cannot be disabled and
|
|
* re-initialized again w/o runtime update (which isn't
|
|
* supported by kernel). Only need to remove the cpuhp here.
|
|
* The TDX host core code tracks TDX status and can handle
|
|
* 'multiple enabling' scenario.
|
|
*/
|
|
WARN_ON_ONCE(!tdx_cpuhp_state);
|
|
cpuhp_remove_state_nocalls_cpuslocked(tdx_cpuhp_state);
|
|
tdx_cpuhp_state = 0;
|
|
}
|
|
|
|
static void __tdx_cleanup(void)
|
|
{
|
|
cpus_read_lock();
|
|
__do_tdx_cleanup();
|
|
cpus_read_unlock();
|
|
}
|
|
|
|
static int __init __do_tdx_bringup(void)
|
|
{
|
|
int r;
|
|
|
|
/*
|
|
* TDX-specific cpuhp callback to call tdx_cpu_enable() on all
|
|
* online CPUs before calling tdx_enable(), and on any new
|
|
* going-online CPU to make sure it is ready for TDX guest.
|
|
*/
|
|
r = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
|
|
"kvm/cpu/tdx:online",
|
|
tdx_online_cpu, tdx_offline_cpu);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
tdx_cpuhp_state = r;
|
|
|
|
r = tdx_enable();
|
|
if (r)
|
|
__do_tdx_cleanup();
|
|
|
|
return r;
|
|
}
|
|
|
|
static int __init __tdx_bringup(void)
|
|
{
|
|
const struct tdx_sys_info_td_conf *td_conf;
|
|
int r, i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) {
|
|
/*
|
|
* Check if MSRs (tdx_uret_msrs) can be saved/restored
|
|
* before returning to user space.
|
|
*
|
|
* this_cpu_ptr(user_return_msrs)->registered isn't checked
|
|
* because the registration is done at vcpu runtime by
|
|
* tdx_user_return_msr_update_cache().
|
|
*/
|
|
tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr);
|
|
if (tdx_uret_msrs[i].slot == -1) {
|
|
/* If any MSR isn't supported, it is a KVM bug */
|
|
pr_err("MSR %x isn't included by kvm_find_user_return_msr\n",
|
|
tdx_uret_msrs[i].msr);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enabling TDX requires enabling hardware virtualization first,
|
|
* as making SEAMCALLs requires CPU being in post-VMXON state.
|
|
*/
|
|
r = kvm_enable_virtualization();
|
|
if (r)
|
|
return r;
|
|
|
|
cpus_read_lock();
|
|
r = __do_tdx_bringup();
|
|
cpus_read_unlock();
|
|
|
|
if (r)
|
|
goto tdx_bringup_err;
|
|
|
|
/* Get TDX global information for later use */
|
|
tdx_sysinfo = tdx_get_sysinfo();
|
|
if (WARN_ON_ONCE(!tdx_sysinfo)) {
|
|
r = -EINVAL;
|
|
goto get_sysinfo_err;
|
|
}
|
|
|
|
/* Check TDX module and KVM capabilities */
|
|
if (!tdx_get_supported_attrs(&tdx_sysinfo->td_conf) ||
|
|
!tdx_get_supported_xfam(&tdx_sysinfo->td_conf))
|
|
goto get_sysinfo_err;
|
|
|
|
if (!(tdx_sysinfo->features.tdx_features0 & MD_FIELD_ID_FEATURES0_TOPOLOGY_ENUM))
|
|
goto get_sysinfo_err;
|
|
|
|
/*
|
|
* TDX has its own limit of maximum vCPUs it can support for all
|
|
* TDX guests in addition to KVM_MAX_VCPUS. Userspace needs to
|
|
* query TDX guest's maximum vCPUs by checking KVM_CAP_MAX_VCPU
|
|
* extension on per-VM basis.
|
|
*
|
|
* TDX module reports such limit via the MAX_VCPU_PER_TD global
|
|
* metadata. Different modules may report different values.
|
|
* Some old module may also not support this metadata (in which
|
|
* case this limit is U16_MAX).
|
|
*
|
|
* In practice, the reported value reflects the maximum logical
|
|
* CPUs that ALL the platforms that the module supports can
|
|
* possibly have.
|
|
*
|
|
* Simply forwarding the MAX_VCPU_PER_TD to userspace could
|
|
* result in an unpredictable ABI. KVM instead always advertise
|
|
* the number of logical CPUs the platform has as the maximum
|
|
* vCPUs for TDX guests.
|
|
*
|
|
* Make sure MAX_VCPU_PER_TD reported by TDX module is not
|
|
* smaller than the number of logical CPUs, otherwise KVM will
|
|
* report an unsupported value to userspace.
|
|
*
|
|
* Note, a platform with TDX enabled in the BIOS cannot support
|
|
* physical CPU hotplug, and TDX requires the BIOS has marked
|
|
* all logical CPUs in MADT table as enabled. Just use
|
|
* num_present_cpus() for the number of logical CPUs.
|
|
*/
|
|
td_conf = &tdx_sysinfo->td_conf;
|
|
if (td_conf->max_vcpus_per_td < num_present_cpus()) {
|
|
pr_err("Disable TDX: MAX_VCPU_PER_TD (%u) smaller than number of logical CPUs (%u).\n",
|
|
td_conf->max_vcpus_per_td, num_present_cpus());
|
|
r = -EINVAL;
|
|
goto get_sysinfo_err;
|
|
}
|
|
|
|
if (misc_cg_set_capacity(MISC_CG_RES_TDX, tdx_get_nr_guest_keyids())) {
|
|
r = -EINVAL;
|
|
goto get_sysinfo_err;
|
|
}
|
|
|
|
/*
|
|
* Leave hardware virtualization enabled after TDX is enabled
|
|
* successfully. TDX CPU hotplug depends on this.
|
|
*/
|
|
return 0;
|
|
|
|
get_sysinfo_err:
|
|
__tdx_cleanup();
|
|
tdx_bringup_err:
|
|
kvm_disable_virtualization();
|
|
return r;
|
|
}
|
|
|
|
void tdx_cleanup(void)
|
|
{
|
|
if (enable_tdx) {
|
|
misc_cg_set_capacity(MISC_CG_RES_TDX, 0);
|
|
__tdx_cleanup();
|
|
kvm_disable_virtualization();
|
|
}
|
|
}
|
|
|
|
int __init tdx_bringup(void)
|
|
{
|
|
int r, i;
|
|
|
|
/* tdx_disable_virtualization_cpu() uses associated_tdvcpus. */
|
|
for_each_possible_cpu(i)
|
|
INIT_LIST_HEAD(&per_cpu(associated_tdvcpus, i));
|
|
|
|
if (!enable_tdx)
|
|
return 0;
|
|
|
|
if (!enable_ept) {
|
|
pr_err("EPT is required for TDX\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!tdp_mmu_enabled || !enable_mmio_caching || !enable_ept_ad_bits) {
|
|
pr_err("TDP MMU and MMIO caching and EPT A/D bit is required for TDX\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!enable_apicv) {
|
|
pr_err("APICv is required for TDX\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_OSXSAVE)) {
|
|
pr_err("tdx: OSXSAVE is required for TDX\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_MOVDIR64B)) {
|
|
pr_err("tdx: MOVDIR64B is required for TDX\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_SELFSNOOP)) {
|
|
pr_err("Self-snoop is required for TDX\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_TDX_HOST_PLATFORM)) {
|
|
pr_err("tdx: no TDX private KeyIDs available\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
if (!enable_virt_at_load) {
|
|
pr_err("tdx: tdx requires kvm.enable_virt_at_load=1\n");
|
|
goto success_disable_tdx;
|
|
}
|
|
|
|
/*
|
|
* Ideally KVM should probe whether TDX module has been loaded
|
|
* first and then try to bring it up. But TDX needs to use SEAMCALL
|
|
* to probe whether the module is loaded (there is no CPUID or MSR
|
|
* for that), and making SEAMCALL requires enabling virtualization
|
|
* first, just like the rest steps of bringing up TDX module.
|
|
*
|
|
* So, for simplicity do everything in __tdx_bringup(); the first
|
|
* SEAMCALL will return -ENODEV when the module is not loaded. The
|
|
* only complication is having to make sure that initialization
|
|
* SEAMCALLs don't return TDX_SEAMCALL_VMFAILINVALID in other
|
|
* cases.
|
|
*/
|
|
r = __tdx_bringup();
|
|
if (r) {
|
|
/*
|
|
* Disable TDX only but don't fail to load module if the TDX
|
|
* module could not be loaded. No need to print message saying
|
|
* "module is not loaded" because it was printed when the first
|
|
* SEAMCALL failed. Don't bother unwinding the S-EPT hooks or
|
|
* vm_size, as kvm_x86_ops have already been finalized (and are
|
|
* intentionally not exported). The S-EPT code is unreachable,
|
|
* and allocating a few more bytes per VM in a should-be-rare
|
|
* failure scenario is a non-issue.
|
|
*/
|
|
if (r == -ENODEV)
|
|
goto success_disable_tdx;
|
|
|
|
enable_tdx = 0;
|
|
}
|
|
|
|
return r;
|
|
|
|
success_disable_tdx:
|
|
enable_tdx = 0;
|
|
return 0;
|
|
}
|
|
|
|
void __init tdx_hardware_setup(void)
|
|
{
|
|
KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_tdx);
|
|
|
|
/*
|
|
* Note, if the TDX module can't be loaded, KVM TDX support will be
|
|
* disabled but KVM will continue loading (see tdx_bringup()).
|
|
*/
|
|
vt_x86_ops.vm_size = max_t(unsigned int, vt_x86_ops.vm_size, sizeof(struct kvm_tdx));
|
|
|
|
vt_x86_ops.link_external_spt = tdx_sept_link_private_spt;
|
|
vt_x86_ops.set_external_spte = tdx_sept_set_private_spte;
|
|
vt_x86_ops.free_external_spt = tdx_sept_free_private_spt;
|
|
vt_x86_ops.remove_external_spte = tdx_sept_remove_private_spte;
|
|
vt_x86_ops.protected_apic_has_interrupt = tdx_protected_apic_has_interrupt;
|
|
}
|