linux/arch/x86/kvm/vmx/main.c
Paolo Bonzini d7f4aac280 Merge tag 'kvm-x86-mmu-6.17' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.17

 - Exempt nested EPT from the the !USER + CR0.WP logic, as EPT doesn't interact
   with CR0.WP.

 - Move the TDX hardware setup code to tdx.c to better co-locate TDX code
   and eliminate a few global symbols.

 - Dynamically allocation the shadow MMU's hashed page list, and defer
   allocating the hashed list until it's actually needed (the TDP MMU doesn't
   use the list).
2025-07-29 08:36:43 -04:00

1072 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/moduleparam.h>
#include "x86_ops.h"
#include "vmx.h"
#include "mmu.h"
#include "nested.h"
#include "pmu.h"
#include "posted_intr.h"
#include "tdx.h"
#include "tdx_arch.h"
#ifdef CONFIG_KVM_INTEL_TDX
static_assert(offsetof(struct vcpu_vmx, vt) == offsetof(struct vcpu_tdx, vt));
static void vt_disable_virtualization_cpu(void)
{
/* Note, TDX *and* VMX need to be disabled if TDX is enabled. */
if (enable_tdx)
tdx_disable_virtualization_cpu();
vmx_disable_virtualization_cpu();
}
static __init int vt_hardware_setup(void)
{
int ret;
ret = vmx_hardware_setup();
if (ret)
return ret;
if (enable_tdx)
tdx_hardware_setup();
return 0;
}
static int vt_vm_init(struct kvm *kvm)
{
if (is_td(kvm))
return tdx_vm_init(kvm);
return vmx_vm_init(kvm);
}
static void vt_vm_pre_destroy(struct kvm *kvm)
{
if (is_td(kvm))
return tdx_mmu_release_hkid(kvm);
}
static void vt_vm_destroy(struct kvm *kvm)
{
if (is_td(kvm))
return tdx_vm_destroy(kvm);
vmx_vm_destroy(kvm);
}
static int vt_vcpu_precreate(struct kvm *kvm)
{
if (is_td(kvm))
return 0;
return vmx_vcpu_precreate(kvm);
}
static int vt_vcpu_create(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return tdx_vcpu_create(vcpu);
return vmx_vcpu_create(vcpu);
}
static void vt_vcpu_free(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
tdx_vcpu_free(vcpu);
return;
}
vmx_vcpu_free(vcpu);
}
static void vt_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
if (is_td_vcpu(vcpu)) {
tdx_vcpu_reset(vcpu, init_event);
return;
}
vmx_vcpu_reset(vcpu, init_event);
}
static void vt_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
if (is_td_vcpu(vcpu)) {
tdx_vcpu_load(vcpu, cpu);
return;
}
vmx_vcpu_load(vcpu, cpu);
}
static void vt_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
{
/*
* Basic TDX does not support feature PML. KVM does not enable PML in
* TD's VMCS, nor does it allocate or flush PML buffer for TDX.
*/
if (WARN_ON_ONCE(is_td_vcpu(vcpu)))
return;
vmx_update_cpu_dirty_logging(vcpu);
}
static void vt_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
tdx_prepare_switch_to_guest(vcpu);
return;
}
vmx_prepare_switch_to_guest(vcpu);
}
static void vt_vcpu_put(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
tdx_vcpu_put(vcpu);
return;
}
vmx_vcpu_put(vcpu);
}
static int vt_vcpu_pre_run(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return tdx_vcpu_pre_run(vcpu);
return vmx_vcpu_pre_run(vcpu);
}
static fastpath_t vt_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
{
if (is_td_vcpu(vcpu))
return tdx_vcpu_run(vcpu, run_flags);
return vmx_vcpu_run(vcpu, run_flags);
}
static int vt_handle_exit(struct kvm_vcpu *vcpu,
enum exit_fastpath_completion fastpath)
{
if (is_td_vcpu(vcpu))
return tdx_handle_exit(vcpu, fastpath);
return vmx_handle_exit(vcpu, fastpath);
}
static int vt_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
if (unlikely(is_td_vcpu(vcpu)))
return tdx_set_msr(vcpu, msr_info);
return vmx_set_msr(vcpu, msr_info);
}
/*
* The kvm parameter can be NULL (module initialization, or invocation before
* VM creation). Be sure to check the kvm parameter before using it.
*/
static bool vt_has_emulated_msr(struct kvm *kvm, u32 index)
{
if (kvm && is_td(kvm))
return tdx_has_emulated_msr(index);
return vmx_has_emulated_msr(kvm, index);
}
static int vt_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
if (unlikely(is_td_vcpu(vcpu)))
return tdx_get_msr(vcpu, msr_info);
return vmx_get_msr(vcpu, msr_info);
}
static void vt_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
{
/*
* TDX doesn't allow VMM to configure interception of MSR accesses.
* TDX guest requests MSR accesses by calling TDVMCALL. The MSR
* filters will be applied when handling the TDVMCALL for RDMSR/WRMSR
* if the userspace has set any.
*/
if (is_td_vcpu(vcpu))
return;
vmx_recalc_msr_intercepts(vcpu);
}
static int vt_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
{
if (is_td_vcpu(vcpu))
return tdx_complete_emulated_msr(vcpu, err);
return vmx_complete_emulated_msr(vcpu, err);
}
#ifdef CONFIG_KVM_SMM
static int vt_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
if (KVM_BUG_ON(is_td_vcpu(vcpu), vcpu->kvm))
return 0;
return vmx_smi_allowed(vcpu, for_injection);
}
static int vt_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
{
if (KVM_BUG_ON(is_td_vcpu(vcpu), vcpu->kvm))
return 0;
return vmx_enter_smm(vcpu, smram);
}
static int vt_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
{
if (KVM_BUG_ON(is_td_vcpu(vcpu), vcpu->kvm))
return 0;
return vmx_leave_smm(vcpu, smram);
}
static void vt_enable_smi_window(struct kvm_vcpu *vcpu)
{
if (KVM_BUG_ON(is_td_vcpu(vcpu), vcpu->kvm))
return;
/* RSM will cause a vmexit anyway. */
vmx_enable_smi_window(vcpu);
}
#endif
static int vt_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
void *insn, int insn_len)
{
/*
* For TDX, this can only be triggered for MMIO emulation. Let the
* guest retry after installing the SPTE with suppress #VE bit cleared,
* so that the guest will receive #VE when retry. The guest is expected
* to call TDG.VP.VMCALL<MMIO> to request VMM to do MMIO emulation on
* #VE.
*/
if (is_td_vcpu(vcpu))
return X86EMUL_RETRY_INSTR;
return vmx_check_emulate_instruction(vcpu, emul_type, insn, insn_len);
}
static bool vt_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
{
/*
* INIT and SIPI are always blocked for TDX, i.e., INIT handling and
* the OP vcpu_deliver_sipi_vector() won't be called.
*/
if (is_td_vcpu(vcpu))
return true;
return vmx_apic_init_signal_blocked(vcpu);
}
static void vt_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
{
/* Only x2APIC mode is supported for TD. */
if (is_td_vcpu(vcpu))
return;
return vmx_set_virtual_apic_mode(vcpu);
}
static void vt_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
{
if (is_td_vcpu(vcpu))
return;
return vmx_hwapic_isr_update(vcpu, max_isr);
}
static int vt_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return -1;
return vmx_sync_pir_to_irr(vcpu);
}
static void vt_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
int trig_mode, int vector)
{
if (is_td_vcpu(apic->vcpu)) {
tdx_deliver_interrupt(apic, delivery_mode, trig_mode,
vector);
return;
}
vmx_deliver_interrupt(apic, delivery_mode, trig_mode, vector);
}
static void vt_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_vcpu_after_set_cpuid(vcpu);
}
static void vt_update_exception_bitmap(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_update_exception_bitmap(vcpu);
}
static u64 vt_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_segment_base(vcpu, seg);
}
static void vt_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var,
int seg)
{
if (is_td_vcpu(vcpu)) {
memset(var, 0, sizeof(*var));
return;
}
vmx_get_segment(vcpu, var, seg);
}
static void vt_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var,
int seg)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_segment(vcpu, var, seg);
}
static int vt_get_cpl(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_cpl(vcpu);
}
static int vt_get_cpl_no_cache(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_cpl_no_cache(vcpu);
}
static void vt_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
if (is_td_vcpu(vcpu)) {
*db = 0;
*l = 0;
return;
}
vmx_get_cs_db_l_bits(vcpu, db, l);
}
static bool vt_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (is_td_vcpu(vcpu))
return true;
return vmx_is_valid_cr0(vcpu, cr0);
}
static void vt_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_cr0(vcpu, cr0);
}
static bool vt_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
if (is_td_vcpu(vcpu))
return true;
return vmx_is_valid_cr4(vcpu, cr4);
}
static void vt_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_cr4(vcpu, cr4);
}
static int vt_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (is_td_vcpu(vcpu))
return 0;
return vmx_set_efer(vcpu, efer);
}
static void vt_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
if (is_td_vcpu(vcpu)) {
memset(dt, 0, sizeof(*dt));
return;
}
vmx_get_idt(vcpu, dt);
}
static void vt_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_idt(vcpu, dt);
}
static void vt_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
if (is_td_vcpu(vcpu)) {
memset(dt, 0, sizeof(*dt));
return;
}
vmx_get_gdt(vcpu, dt);
}
static void vt_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_gdt(vcpu, dt);
}
static void vt_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_dr7(vcpu, val);
}
static void vt_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
/*
* MOV-DR exiting is always cleared for TD guest, even in debug mode.
* Thus KVM_DEBUGREG_WONT_EXIT can never be set and it should never
* reach here for TD vcpu.
*/
if (is_td_vcpu(vcpu))
return;
vmx_sync_dirty_debug_regs(vcpu);
}
static void vt_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
if (WARN_ON_ONCE(is_td_vcpu(vcpu)))
return;
vmx_cache_reg(vcpu, reg);
}
static unsigned long vt_get_rflags(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_rflags(vcpu);
}
static void vt_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_rflags(vcpu, rflags);
}
static bool vt_get_if_flag(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return false;
return vmx_get_if_flag(vcpu);
}
static void vt_flush_tlb_all(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
tdx_flush_tlb_all(vcpu);
return;
}
vmx_flush_tlb_all(vcpu);
}
static void vt_flush_tlb_current(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
tdx_flush_tlb_current(vcpu);
return;
}
vmx_flush_tlb_current(vcpu);
}
static void vt_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
{
if (is_td_vcpu(vcpu))
return;
vmx_flush_tlb_gva(vcpu, addr);
}
static void vt_flush_tlb_guest(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_flush_tlb_guest(vcpu);
}
static void vt_inject_nmi(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
tdx_inject_nmi(vcpu);
return;
}
vmx_inject_nmi(vcpu);
}
static int vt_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
/*
* The TDX module manages NMI windows and NMI reinjection, and hides NMI
* blocking, all KVM can do is throw an NMI over the wall.
*/
if (is_td_vcpu(vcpu))
return true;
return vmx_nmi_allowed(vcpu, for_injection);
}
static bool vt_get_nmi_mask(struct kvm_vcpu *vcpu)
{
/*
* KVM can't get NMI blocking status for TDX guest, assume NMIs are
* always unmasked.
*/
if (is_td_vcpu(vcpu))
return false;
return vmx_get_nmi_mask(vcpu);
}
static void vt_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_nmi_mask(vcpu, masked);
}
static void vt_enable_nmi_window(struct kvm_vcpu *vcpu)
{
/* Refer to the comments in tdx_inject_nmi(). */
if (is_td_vcpu(vcpu))
return;
vmx_enable_nmi_window(vcpu);
}
static void vt_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
int pgd_level)
{
if (is_td_vcpu(vcpu)) {
tdx_load_mmu_pgd(vcpu, root_hpa, pgd_level);
return;
}
vmx_load_mmu_pgd(vcpu, root_hpa, pgd_level);
}
static void vt_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_interrupt_shadow(vcpu, mask);
}
static u32 vt_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_interrupt_shadow(vcpu);
}
static void vt_patch_hypercall(struct kvm_vcpu *vcpu,
unsigned char *hypercall)
{
/*
* Because guest memory is protected, guest can't be patched. TD kernel
* is modified to use TDG.VP.VMCALL for hypercall.
*/
if (is_td_vcpu(vcpu))
return;
vmx_patch_hypercall(vcpu, hypercall);
}
static void vt_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
{
if (is_td_vcpu(vcpu))
return;
vmx_inject_irq(vcpu, reinjected);
}
static void vt_inject_exception(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_inject_exception(vcpu);
}
static void vt_cancel_injection(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_cancel_injection(vcpu);
}
static int vt_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
{
if (is_td_vcpu(vcpu))
return tdx_interrupt_allowed(vcpu);
return vmx_interrupt_allowed(vcpu, for_injection);
}
static void vt_enable_irq_window(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_enable_irq_window(vcpu);
}
static void vt_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
{
*intr_info = 0;
*error_code = 0;
if (is_td_vcpu(vcpu))
return;
vmx_get_entry_info(vcpu, intr_info, error_code);
}
static void vt_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
{
if (is_td_vcpu(vcpu)) {
tdx_get_exit_info(vcpu, reason, info1, info2, intr_info,
error_code);
return;
}
vmx_get_exit_info(vcpu, reason, info1, info2, intr_info, error_code);
}
static void vt_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
if (is_td_vcpu(vcpu))
return;
vmx_update_cr8_intercept(vcpu, tpr, irr);
}
static void vt_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_set_apic_access_page_addr(vcpu);
}
static void vt_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu)) {
KVM_BUG_ON(!kvm_vcpu_apicv_active(vcpu), vcpu->kvm);
return;
}
vmx_refresh_apicv_exec_ctrl(vcpu);
}
static void vt_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (is_td_vcpu(vcpu))
return;
vmx_load_eoi_exitmap(vcpu, eoi_exit_bitmap);
}
static int vt_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
if (is_td(kvm))
return 0;
return vmx_set_tss_addr(kvm, addr);
}
static int vt_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
{
if (is_td(kvm))
return 0;
return vmx_set_identity_map_addr(kvm, ident_addr);
}
static u64 vt_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
{
/* TDX doesn't support L2 guest at the moment. */
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_l2_tsc_offset(vcpu);
}
static u64 vt_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
{
/* TDX doesn't support L2 guest at the moment. */
if (is_td_vcpu(vcpu))
return 0;
return vmx_get_l2_tsc_multiplier(vcpu);
}
static void vt_write_tsc_offset(struct kvm_vcpu *vcpu)
{
/* In TDX, tsc offset can't be changed. */
if (is_td_vcpu(vcpu))
return;
vmx_write_tsc_offset(vcpu);
}
static void vt_write_tsc_multiplier(struct kvm_vcpu *vcpu)
{
/* In TDX, tsc multiplier can't be changed. */
if (is_td_vcpu(vcpu))
return;
vmx_write_tsc_multiplier(vcpu);
}
#ifdef CONFIG_X86_64
static int vt_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
bool *expired)
{
/* VMX-preemption timer isn't available for TDX. */
if (is_td_vcpu(vcpu))
return -EINVAL;
return vmx_set_hv_timer(vcpu, guest_deadline_tsc, expired);
}
static void vt_cancel_hv_timer(struct kvm_vcpu *vcpu)
{
/* VMX-preemption timer can't be set. See vt_set_hv_timer(). */
if (is_td_vcpu(vcpu))
return;
vmx_cancel_hv_timer(vcpu);
}
#endif
static void vt_setup_mce(struct kvm_vcpu *vcpu)
{
if (is_td_vcpu(vcpu))
return;
vmx_setup_mce(vcpu);
}
static int vt_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
{
if (!is_td(kvm))
return -ENOTTY;
return tdx_vm_ioctl(kvm, argp);
}
static int vt_vcpu_mem_enc_ioctl(struct kvm_vcpu *vcpu, void __user *argp)
{
if (!is_td_vcpu(vcpu))
return -EINVAL;
return tdx_vcpu_ioctl(vcpu, argp);
}
static int vt_gmem_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
{
if (is_td(kvm))
return tdx_gmem_private_max_mapping_level(kvm, pfn);
return 0;
}
#define vt_op(name) vt_##name
#define vt_op_tdx_only(name) vt_##name
#else /* CONFIG_KVM_INTEL_TDX */
#define vt_op(name) vmx_##name
#define vt_op_tdx_only(name) NULL
#endif /* CONFIG_KVM_INTEL_TDX */
#define VMX_REQUIRED_APICV_INHIBITS \
(BIT(APICV_INHIBIT_REASON_DISABLED) | \
BIT(APICV_INHIBIT_REASON_ABSENT) | \
BIT(APICV_INHIBIT_REASON_HYPERV) | \
BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED))
struct kvm_x86_ops vt_x86_ops __initdata = {
.name = KBUILD_MODNAME,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_unsetup = vmx_hardware_unsetup,
.enable_virtualization_cpu = vmx_enable_virtualization_cpu,
.disable_virtualization_cpu = vt_op(disable_virtualization_cpu),
.emergency_disable_virtualization_cpu = vmx_emergency_disable_virtualization_cpu,
.has_emulated_msr = vt_op(has_emulated_msr),
.vm_size = sizeof(struct kvm_vmx),
.vm_init = vt_op(vm_init),
.vm_destroy = vt_op(vm_destroy),
.vm_pre_destroy = vt_op_tdx_only(vm_pre_destroy),
.vcpu_precreate = vt_op(vcpu_precreate),
.vcpu_create = vt_op(vcpu_create),
.vcpu_free = vt_op(vcpu_free),
.vcpu_reset = vt_op(vcpu_reset),
.prepare_switch_to_guest = vt_op(prepare_switch_to_guest),
.vcpu_load = vt_op(vcpu_load),
.vcpu_put = vt_op(vcpu_put),
.HOST_OWNED_DEBUGCTL = VMX_HOST_OWNED_DEBUGCTL_BITS,
.update_exception_bitmap = vt_op(update_exception_bitmap),
.get_feature_msr = vmx_get_feature_msr,
.get_msr = vt_op(get_msr),
.set_msr = vt_op(set_msr),
.get_segment_base = vt_op(get_segment_base),
.get_segment = vt_op(get_segment),
.set_segment = vt_op(set_segment),
.get_cpl = vt_op(get_cpl),
.get_cpl_no_cache = vt_op(get_cpl_no_cache),
.get_cs_db_l_bits = vt_op(get_cs_db_l_bits),
.is_valid_cr0 = vt_op(is_valid_cr0),
.set_cr0 = vt_op(set_cr0),
.is_valid_cr4 = vt_op(is_valid_cr4),
.set_cr4 = vt_op(set_cr4),
.set_efer = vt_op(set_efer),
.get_idt = vt_op(get_idt),
.set_idt = vt_op(set_idt),
.get_gdt = vt_op(get_gdt),
.set_gdt = vt_op(set_gdt),
.set_dr7 = vt_op(set_dr7),
.sync_dirty_debug_regs = vt_op(sync_dirty_debug_regs),
.cache_reg = vt_op(cache_reg),
.get_rflags = vt_op(get_rflags),
.set_rflags = vt_op(set_rflags),
.get_if_flag = vt_op(get_if_flag),
.flush_tlb_all = vt_op(flush_tlb_all),
.flush_tlb_current = vt_op(flush_tlb_current),
.flush_tlb_gva = vt_op(flush_tlb_gva),
.flush_tlb_guest = vt_op(flush_tlb_guest),
.vcpu_pre_run = vt_op(vcpu_pre_run),
.vcpu_run = vt_op(vcpu_run),
.handle_exit = vt_op(handle_exit),
.skip_emulated_instruction = vmx_skip_emulated_instruction,
.update_emulated_instruction = vmx_update_emulated_instruction,
.set_interrupt_shadow = vt_op(set_interrupt_shadow),
.get_interrupt_shadow = vt_op(get_interrupt_shadow),
.patch_hypercall = vt_op(patch_hypercall),
.inject_irq = vt_op(inject_irq),
.inject_nmi = vt_op(inject_nmi),
.inject_exception = vt_op(inject_exception),
.cancel_injection = vt_op(cancel_injection),
.interrupt_allowed = vt_op(interrupt_allowed),
.nmi_allowed = vt_op(nmi_allowed),
.get_nmi_mask = vt_op(get_nmi_mask),
.set_nmi_mask = vt_op(set_nmi_mask),
.enable_nmi_window = vt_op(enable_nmi_window),
.enable_irq_window = vt_op(enable_irq_window),
.update_cr8_intercept = vt_op(update_cr8_intercept),
.x2apic_icr_is_split = false,
.set_virtual_apic_mode = vt_op(set_virtual_apic_mode),
.set_apic_access_page_addr = vt_op(set_apic_access_page_addr),
.refresh_apicv_exec_ctrl = vt_op(refresh_apicv_exec_ctrl),
.load_eoi_exitmap = vt_op(load_eoi_exitmap),
.apicv_pre_state_restore = pi_apicv_pre_state_restore,
.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
.hwapic_isr_update = vt_op(hwapic_isr_update),
.sync_pir_to_irr = vt_op(sync_pir_to_irr),
.deliver_interrupt = vt_op(deliver_interrupt),
.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
.set_tss_addr = vt_op(set_tss_addr),
.set_identity_map_addr = vt_op(set_identity_map_addr),
.get_mt_mask = vmx_get_mt_mask,
.get_exit_info = vt_op(get_exit_info),
.get_entry_info = vt_op(get_entry_info),
.vcpu_after_set_cpuid = vt_op(vcpu_after_set_cpuid),
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.get_l2_tsc_offset = vt_op(get_l2_tsc_offset),
.get_l2_tsc_multiplier = vt_op(get_l2_tsc_multiplier),
.write_tsc_offset = vt_op(write_tsc_offset),
.write_tsc_multiplier = vt_op(write_tsc_multiplier),
.load_mmu_pgd = vt_op(load_mmu_pgd),
.check_intercept = vmx_check_intercept,
.handle_exit_irqoff = vmx_handle_exit_irqoff,
.update_cpu_dirty_logging = vt_op(update_cpu_dirty_logging),
.nested_ops = &vmx_nested_ops,
.pi_update_irte = vmx_pi_update_irte,
.pi_start_bypass = vmx_pi_start_bypass,
#ifdef CONFIG_X86_64
.set_hv_timer = vt_op(set_hv_timer),
.cancel_hv_timer = vt_op(cancel_hv_timer),
#endif
.setup_mce = vt_op(setup_mce),
#ifdef CONFIG_KVM_SMM
.smi_allowed = vt_op(smi_allowed),
.enter_smm = vt_op(enter_smm),
.leave_smm = vt_op(leave_smm),
.enable_smi_window = vt_op(enable_smi_window),
#endif
.check_emulate_instruction = vt_op(check_emulate_instruction),
.apic_init_signal_blocked = vt_op(apic_init_signal_blocked),
.migrate_timers = vmx_migrate_timers,
.recalc_msr_intercepts = vt_op(recalc_msr_intercepts),
.complete_emulated_msr = vt_op(complete_emulated_msr),
.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
.get_untagged_addr = vmx_get_untagged_addr,
.mem_enc_ioctl = vt_op_tdx_only(mem_enc_ioctl),
.vcpu_mem_enc_ioctl = vt_op_tdx_only(vcpu_mem_enc_ioctl),
.private_max_mapping_level = vt_op_tdx_only(gmem_private_max_mapping_level)
};
struct kvm_x86_init_ops vt_init_ops __initdata = {
.hardware_setup = vt_op(hardware_setup),
.handle_intel_pt_intr = NULL,
.runtime_ops = &vt_x86_ops,
.pmu_ops = &intel_pmu_ops,
};
static void __exit vt_exit(void)
{
kvm_exit();
tdx_cleanup();
vmx_exit();
}
module_exit(vt_exit);
static int __init vt_init(void)
{
unsigned vcpu_size, vcpu_align;
int r;
r = vmx_init();
if (r)
return r;
/* tdx_init() has been taken */
r = tdx_bringup();
if (r)
goto err_tdx_bringup;
/*
* TDX and VMX have different vCPU structures. Calculate the
* maximum size/align so that kvm_init() can use the larger
* values to create the kmem_vcpu_cache.
*/
vcpu_size = sizeof(struct vcpu_vmx);
vcpu_align = __alignof__(struct vcpu_vmx);
if (enable_tdx) {
vcpu_size = max_t(unsigned, vcpu_size,
sizeof(struct vcpu_tdx));
vcpu_align = max_t(unsigned, vcpu_align,
__alignof__(struct vcpu_tdx));
kvm_caps.supported_vm_types |= BIT(KVM_X86_TDX_VM);
}
/*
* Common KVM initialization _must_ come last, after this, /dev/kvm is
* exposed to userspace!
*/
r = kvm_init(vcpu_size, vcpu_align, THIS_MODULE);
if (r)
goto err_kvm_init;
return 0;
err_kvm_init:
tdx_cleanup();
err_tdx_bringup:
vmx_exit();
return r;
}
module_init(vt_init);