linux/arch/x86/kernel/cpu/cacheinfo.c
Ahmed S. Darwish 4b21e71ad6 x86/cacheinfo: Rename CPUID(0x2) descriptors iterator parameter
The CPUID(0x2) descriptors iterator has been renamed from:

    for_each_leaf_0x2_entry()

to:

    for_each_cpuid_0x2_desc()

since it iterates over CPUID(0x2) cache and TLB "descriptors", not
"entries".

In the macro's x86/cacheinfo call-site, rename the parameter denoting the
parsed descriptor at each iteration from 'entry' to 'desc'.

Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-7-darwi@linutronix.de
2025-05-16 10:49:55 +02:00

826 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* x86 CPU caches detection and configuration
*
* Previous changes
* - Venkatesh Pallipadi: Cache identification through CPUID(0x4)
* - Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure
* - Andi Kleen / Andreas Herrmann: CPUID(0x4) emulation on AMD
*/
#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/cpuhotplug.h>
#include <linux/stop_machine.h>
#include <asm/amd/nb.h>
#include <asm/cacheinfo.h>
#include <asm/cpufeature.h>
#include <asm/cpuid/api.h>
#include <asm/mtrr.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
#include "cpu.h"
/* Shared last level cache maps */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
/* Shared L2 cache maps */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
static cpumask_var_t cpu_cacheinfo_mask;
/* Kernel controls MTRR and/or PAT MSRs. */
unsigned int memory_caching_control __ro_after_init;
enum _cache_type {
CTYPE_NULL = 0,
CTYPE_DATA = 1,
CTYPE_INST = 2,
CTYPE_UNIFIED = 3
};
union _cpuid4_leaf_eax {
struct {
enum _cache_type type :5;
unsigned int level :3;
unsigned int is_self_initializing :1;
unsigned int is_fully_associative :1;
unsigned int reserved :4;
unsigned int num_threads_sharing :12;
unsigned int num_cores_on_die :6;
} split;
u32 full;
};
union _cpuid4_leaf_ebx {
struct {
unsigned int coherency_line_size :12;
unsigned int physical_line_partition :10;
unsigned int ways_of_associativity :10;
} split;
u32 full;
};
union _cpuid4_leaf_ecx {
struct {
unsigned int number_of_sets :32;
} split;
u32 full;
};
struct _cpuid4_info {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned int id;
unsigned long size;
};
/* Map CPUID(0x4) EAX.cache_type to <linux/cacheinfo.h> types */
static const enum cache_type cache_type_map[] = {
[CTYPE_NULL] = CACHE_TYPE_NOCACHE,
[CTYPE_DATA] = CACHE_TYPE_DATA,
[CTYPE_INST] = CACHE_TYPE_INST,
[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
};
/*
* Fallback AMD CPUID(0x4) emulation
* AMD CPUs with TOPOEXT can just use CPUID(0x8000001d)
*
* @AMD_L2_L3_INVALID_ASSOC: cache info for the respective L2/L3 cache should
* be determined from CPUID(0x8000001d) instead of CPUID(0x80000006).
*/
#define AMD_CPUID4_FULLY_ASSOCIATIVE 0xffff
#define AMD_L2_L3_INVALID_ASSOC 0x9
union l1_cache {
struct {
unsigned line_size :8;
unsigned lines_per_tag :8;
unsigned assoc :8;
unsigned size_in_kb :8;
};
unsigned int val;
};
union l2_cache {
struct {
unsigned line_size :8;
unsigned lines_per_tag :4;
unsigned assoc :4;
unsigned size_in_kb :16;
};
unsigned int val;
};
union l3_cache {
struct {
unsigned line_size :8;
unsigned lines_per_tag :4;
unsigned assoc :4;
unsigned res :2;
unsigned size_encoded :14;
};
unsigned int val;
};
/* L2/L3 associativity mapping */
static const unsigned short assocs[] = {
[1] = 1,
[2] = 2,
[3] = 3,
[4] = 4,
[5] = 6,
[6] = 8,
[8] = 16,
[0xa] = 32,
[0xb] = 48,
[0xc] = 64,
[0xd] = 96,
[0xe] = 128,
[0xf] = AMD_CPUID4_FULLY_ASSOCIATIVE
};
static const unsigned char levels[] = { 1, 1, 2, 3 };
static const unsigned char types[] = { 1, 2, 3, 3 };
static void legacy_amd_cpuid4(int index, union _cpuid4_leaf_eax *eax,
union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx)
{
unsigned int dummy, line_size, lines_per_tag, assoc, size_in_kb;
union l1_cache l1i, l1d, *l1;
union l2_cache l2;
union l3_cache l3;
eax->full = 0;
ebx->full = 0;
ecx->full = 0;
cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);
l1 = &l1d;
switch (index) {
case 1:
l1 = &l1i;
fallthrough;
case 0:
if (!l1->val)
return;
assoc = (l1->assoc == 0xff) ? AMD_CPUID4_FULLY_ASSOCIATIVE : l1->assoc;
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
break;
case 2:
if (!l2.assoc || l2.assoc == AMD_L2_L3_INVALID_ASSOC)
return;
/* Use x86_cache_size as it might have K7 errata fixes */
assoc = assocs[l2.assoc];
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
size_in_kb = __this_cpu_read(cpu_info.x86_cache_size);
break;
case 3:
if (!l3.assoc || l3.assoc == AMD_L2_L3_INVALID_ASSOC)
return;
assoc = assocs[l3.assoc];
line_size = l3.line_size;
lines_per_tag = l3.lines_per_tag;
size_in_kb = l3.size_encoded * 512;
if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
size_in_kb = size_in_kb >> 1;
assoc = assoc >> 1;
}
break;
default:
return;
}
eax->split.is_self_initializing = 1;
eax->split.type = types[index];
eax->split.level = levels[index];
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = topology_num_cores_per_package();
if (assoc == AMD_CPUID4_FULLY_ASSOCIATIVE)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assoc - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
}
static int cpuid4_info_fill_done(struct _cpuid4_info *id4, union _cpuid4_leaf_eax eax,
union _cpuid4_leaf_ebx ebx, union _cpuid4_leaf_ecx ecx)
{
if (eax.split.type == CTYPE_NULL)
return -EIO;
id4->eax = eax;
id4->ebx = ebx;
id4->ecx = ecx;
id4->size = (ecx.split.number_of_sets + 1) *
(ebx.split.coherency_line_size + 1) *
(ebx.split.physical_line_partition + 1) *
(ebx.split.ways_of_associativity + 1);
return 0;
}
static int amd_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
u32 ignored;
if (boot_cpu_has(X86_FEATURE_TOPOEXT) || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &ignored);
else
legacy_amd_cpuid4(index, &eax, &ebx, &ecx);
return cpuid4_info_fill_done(id4, eax, ebx, ecx);
}
static int intel_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
u32 ignored;
cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &ignored);
return cpuid4_info_fill_done(id4, eax, ebx, ecx);
}
static int fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
u8 cpu_vendor = boot_cpu_data.x86_vendor;
return (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON) ?
amd_fill_cpuid4_info(index, id4) :
intel_fill_cpuid4_info(index, id4);
}
static int find_num_cache_leaves(struct cpuinfo_x86 *c)
{
unsigned int eax, ebx, ecx, edx, op;
union _cpuid4_leaf_eax cache_eax;
int i = -1;
/* Do a CPUID(op) loop to calculate num_cache_leaves */
op = (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) ? 0x8000001d : 4;
do {
++i;
cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
} while (cache_eax.split.type != CTYPE_NULL);
return i;
}
/*
* AMD/Hygon CPUs may have multiple LLCs if L3 caches exist.
*/
void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id)
{
if (!cpuid_amd_hygon_has_l3_cache())
return;
if (c->x86 < 0x17) {
/* Pre-Zen: LLC is at the node level */
c->topo.llc_id = die_id;
} else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
/*
* Family 17h up to 1F models: LLC is at the core
* complex level. Core complex ID is ApicId[3].
*/
c->topo.llc_id = c->topo.apicid >> 3;
} else {
/*
* Newer families: LLC ID is calculated from the number
* of threads sharing the L3 cache.
*/
u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
u32 llc_index = find_num_cache_leaves(c) - 1;
cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
if (eax)
num_sharing_cache = ((eax >> 14) & 0xfff) + 1;
if (num_sharing_cache) {
int index_msb = get_count_order(num_sharing_cache);
c->topo.llc_id = c->topo.apicid >> index_msb;
}
}
}
void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c)
{
if (!cpuid_amd_hygon_has_l3_cache())
return;
/*
* Hygons are similar to AMD Family 17h up to 1F models: LLC is
* at the core complex level. Core complex ID is ApicId[3].
*/
c->topo.llc_id = c->topo.apicid >> 3;
}
void init_amd_cacheinfo(struct cpuinfo_x86 *c)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
if (boot_cpu_has(X86_FEATURE_TOPOEXT))
ci->num_leaves = find_num_cache_leaves(c);
else if (c->extended_cpuid_level >= 0x80000006)
ci->num_leaves = (cpuid_edx(0x80000006) & 0xf000) ? 4 : 3;
}
void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
ci->num_leaves = find_num_cache_leaves(c);
}
static void intel_cacheinfo_done(struct cpuinfo_x86 *c, unsigned int l3,
unsigned int l2, unsigned int l1i, unsigned int l1d)
{
/*
* If llc_id is still unset, then cpuid_level < 4, which implies
* that the only possibility left is SMT. Since CPUID(0x2) doesn't
* specify any shared caches and SMT shares all caches, we can
* unconditionally set LLC ID to the package ID so that all
* threads share it.
*/
if (c->topo.llc_id == BAD_APICID)
c->topo.llc_id = c->topo.pkg_id;
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : l1i + l1d);
if (!l2)
cpu_detect_cache_sizes(c);
}
/*
* Legacy Intel CPUID(0x2) path if CPUID(0x4) is not available.
*/
static void intel_cacheinfo_0x2(struct cpuinfo_x86 *c)
{
unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0;
const struct leaf_0x2_table *desc;
union leaf_0x2_regs regs;
u8 *ptr;
if (c->cpuid_level < 2)
return;
cpuid_leaf_0x2(&regs);
for_each_cpuid_0x2_desc(regs, ptr, desc) {
switch (desc->c_type) {
case CACHE_L1_INST: l1i += desc->c_size; break;
case CACHE_L1_DATA: l1d += desc->c_size; break;
case CACHE_L2: l2 += desc->c_size; break;
case CACHE_L3: l3 += desc->c_size; break;
}
}
intel_cacheinfo_done(c, l3, l2, l1i, l1d);
}
static unsigned int calc_cache_topo_id(struct cpuinfo_x86 *c, const struct _cpuid4_info *id4)
{
unsigned int num_threads_sharing;
int index_msb;
num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
return c->topo.apicid & ~((1 << index_msb) - 1);
}
static bool intel_cacheinfo_0x4(struct cpuinfo_x86 *c)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
unsigned int l2_id = BAD_APICID, l3_id = BAD_APICID;
unsigned int l1d = 0, l1i = 0, l2 = 0, l3 = 0;
if (c->cpuid_level < 4)
return false;
/*
* There should be at least one leaf. A non-zero value means
* that the number of leaves has been previously initialized.
*/
if (!ci->num_leaves)
ci->num_leaves = find_num_cache_leaves(c);
if (!ci->num_leaves)
return false;
for (int i = 0; i < ci->num_leaves; i++) {
struct _cpuid4_info id4 = {};
int ret;
ret = intel_fill_cpuid4_info(i, &id4);
if (ret < 0)
continue;
switch (id4.eax.split.level) {
case 1:
if (id4.eax.split.type == CTYPE_DATA)
l1d = id4.size / 1024;
else if (id4.eax.split.type == CTYPE_INST)
l1i = id4.size / 1024;
break;
case 2:
l2 = id4.size / 1024;
l2_id = calc_cache_topo_id(c, &id4);
break;
case 3:
l3 = id4.size / 1024;
l3_id = calc_cache_topo_id(c, &id4);
break;
default:
break;
}
}
c->topo.l2c_id = l2_id;
c->topo.llc_id = (l3_id == BAD_APICID) ? l2_id : l3_id;
intel_cacheinfo_done(c, l3, l2, l1i, l1d);
return true;
}
void init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
/* Don't use CPUID(0x2) if CPUID(0x4) is supported. */
if (intel_cacheinfo_0x4(c))
return;
intel_cacheinfo_0x2(c);
}
/*
* <linux/cacheinfo.h> shared_cpu_map setup, AMD/Hygon
*/
static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
const struct _cpuid4_info *id4)
{
struct cpu_cacheinfo *this_cpu_ci;
struct cacheinfo *ci;
int i, sibling;
/*
* For L3, always use the pre-calculated cpu_llc_shared_mask
* to derive shared_cpu_map.
*/
if (index == 3) {
for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
ci = this_cpu_ci->info_list + index;
for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
if (!cpu_online(sibling))
continue;
cpumask_set_cpu(sibling, &ci->shared_cpu_map);
}
}
} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
unsigned int apicid, nshared, first, last;
nshared = id4->eax.split.num_threads_sharing + 1;
apicid = cpu_data(cpu).topo.apicid;
first = apicid - (apicid % nshared);
last = first + nshared - 1;
for_each_online_cpu(i) {
this_cpu_ci = get_cpu_cacheinfo(i);
if (!this_cpu_ci->info_list)
continue;
apicid = cpu_data(i).topo.apicid;
if ((apicid < first) || (apicid > last))
continue;
ci = this_cpu_ci->info_list + index;
for_each_online_cpu(sibling) {
apicid = cpu_data(sibling).topo.apicid;
if ((apicid < first) || (apicid > last))
continue;
cpumask_set_cpu(sibling, &ci->shared_cpu_map);
}
}
} else
return 0;
return 1;
}
/*
* <linux/cacheinfo.h> shared_cpu_map setup, Intel + fallback AMD/Hygon
*/
static void __cache_cpumap_setup(unsigned int cpu, int index,
const struct _cpuid4_info *id4)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct cacheinfo *ci, *sibling_ci;
unsigned long num_threads_sharing;
int index_msb, i;
if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
if (__cache_amd_cpumap_setup(cpu, index, id4))
return;
}
ci = this_cpu_ci->info_list + index;
num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
cpumask_set_cpu(cpu, &ci->shared_cpu_map);
if (num_threads_sharing == 1)
return;
index_msb = get_count_order(num_threads_sharing);
for_each_online_cpu(i)
if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) {
struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
/* Skip if itself or no cacheinfo */
if (i == cpu || !sib_cpu_ci->info_list)
continue;
sibling_ci = sib_cpu_ci->info_list + index;
cpumask_set_cpu(i, &ci->shared_cpu_map);
cpumask_set_cpu(cpu, &sibling_ci->shared_cpu_map);
}
}
static void ci_info_init(struct cacheinfo *ci, const struct _cpuid4_info *id4,
struct amd_northbridge *nb)
{
ci->id = id4->id;
ci->attributes = CACHE_ID;
ci->level = id4->eax.split.level;
ci->type = cache_type_map[id4->eax.split.type];
ci->coherency_line_size = id4->ebx.split.coherency_line_size + 1;
ci->ways_of_associativity = id4->ebx.split.ways_of_associativity + 1;
ci->size = id4->size;
ci->number_of_sets = id4->ecx.split.number_of_sets + 1;
ci->physical_line_partition = id4->ebx.split.physical_line_partition + 1;
ci->priv = nb;
}
int init_cache_level(unsigned int cpu)
{
struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);
/* There should be at least one leaf. */
if (!ci->num_leaves)
return -ENOENT;
return 0;
}
/*
* The max shared threads number comes from CPUID(0x4) EAX[25-14] with input
* ECX as cache index. Then right shift apicid by the number's order to get
* cache id for this cache node.
*/
static void get_cache_id(int cpu, struct _cpuid4_info *id4)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
unsigned long num_threads_sharing;
int index_msb;
num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
index_msb = get_count_order(num_threads_sharing);
id4->id = c->topo.apicid >> index_msb;
}
int populate_cache_leaves(unsigned int cpu)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
struct cacheinfo *ci = this_cpu_ci->info_list;
u8 cpu_vendor = boot_cpu_data.x86_vendor;
struct amd_northbridge *nb = NULL;
struct _cpuid4_info id4 = {};
int idx, ret;
for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
ret = fill_cpuid4_info(idx, &id4);
if (ret)
return ret;
get_cache_id(cpu, &id4);
if (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON)
nb = amd_init_l3_cache(idx);
ci_info_init(ci++, &id4, nb);
__cache_cpumap_setup(cpu, idx, &id4);
}
this_cpu_ci->cpu_map_populated = true;
return 0;
}
/*
* Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
*
* Since we are disabling the cache don't allow any interrupts,
* they would run extremely slow and would only increase the pain.
*
* The caller must ensure that local interrupts are disabled and
* are reenabled after cache_enable() has been called.
*/
static unsigned long saved_cr4;
static DEFINE_RAW_SPINLOCK(cache_disable_lock);
/*
* Cache flushing is the most time-consuming step when programming the
* MTRRs. On many Intel CPUs without known erratas, it can be skipped
* if the CPU declares cache self-snooping support.
*/
static void maybe_flush_caches(void)
{
if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
wbinvd();
}
void cache_disable(void) __acquires(cache_disable_lock)
{
unsigned long cr0;
/*
* This is not ideal since the cache is only flushed/disabled
* for this CPU while the MTRRs are changed, but changing this
* requires more invasive changes to the way the kernel boots.
*/
raw_spin_lock(&cache_disable_lock);
/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
cr0 = read_cr0() | X86_CR0_CD;
write_cr0(cr0);
maybe_flush_caches();
/* Save value of CR4 and clear Page Global Enable (bit 7) */
if (cpu_feature_enabled(X86_FEATURE_PGE)) {
saved_cr4 = __read_cr4();
__write_cr4(saved_cr4 & ~X86_CR4_PGE);
}
/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
flush_tlb_local();
if (cpu_feature_enabled(X86_FEATURE_MTRR))
mtrr_disable();
maybe_flush_caches();
}
void cache_enable(void) __releases(cache_disable_lock)
{
/* Flush TLBs (no need to flush caches - they are disabled) */
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
flush_tlb_local();
if (cpu_feature_enabled(X86_FEATURE_MTRR))
mtrr_enable();
/* Enable caches */
write_cr0(read_cr0() & ~X86_CR0_CD);
/* Restore value of CR4 */
if (cpu_feature_enabled(X86_FEATURE_PGE))
__write_cr4(saved_cr4);
raw_spin_unlock(&cache_disable_lock);
}
static void cache_cpu_init(void)
{
unsigned long flags;
local_irq_save(flags);
if (memory_caching_control & CACHE_MTRR) {
cache_disable();
mtrr_generic_set_state();
cache_enable();
}
if (memory_caching_control & CACHE_PAT)
pat_cpu_init();
local_irq_restore(flags);
}
static bool cache_aps_delayed_init = true;
void set_cache_aps_delayed_init(bool val)
{
cache_aps_delayed_init = val;
}
bool get_cache_aps_delayed_init(void)
{
return cache_aps_delayed_init;
}
static int cache_rendezvous_handler(void *unused)
{
if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
cache_cpu_init();
return 0;
}
void __init cache_bp_init(void)
{
mtrr_bp_init();
pat_bp_init();
if (memory_caching_control)
cache_cpu_init();
}
void cache_bp_restore(void)
{
if (memory_caching_control)
cache_cpu_init();
}
static int cache_ap_online(unsigned int cpu)
{
cpumask_set_cpu(cpu, cpu_cacheinfo_mask);
if (!memory_caching_control || get_cache_aps_delayed_init())
return 0;
/*
* Ideally we should hold mtrr_mutex here to avoid MTRR entries
* changed, but this routine will be called in CPU boot time,
* holding the lock breaks it.
*
* This routine is called in two cases:
*
* 1. very early time of software resume, when there absolutely
* isn't MTRR entry changes;
*
* 2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
* lock to prevent MTRR entry changes
*/
stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
cpu_cacheinfo_mask);
return 0;
}
static int cache_ap_offline(unsigned int cpu)
{
cpumask_clear_cpu(cpu, cpu_cacheinfo_mask);
return 0;
}
/*
* Delayed cache initialization for all AP's
*/
void cache_aps_init(void)
{
if (!memory_caching_control || !get_cache_aps_delayed_init())
return;
stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
set_cache_aps_delayed_init(false);
}
static int __init cache_ap_register(void)
{
zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL);
cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask);
cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
"x86/cachectrl:starting",
cache_ap_online, cache_ap_offline);
return 0;
}
early_initcall(cache_ap_register);