linux/arch/x86/kernel/amd_node.c
Mario Limonciello 9c19cc1f5f x86/amd_node: Add support for debugfs access to SMN registers
There are certain registers on AMD Zen systems that can only be accessed
through SMN.

Introduce a new interface that provides debugfs files for accessing SMN.  As
this introduces the capability for userspace to manipulate the hardware in
unpredictable ways, taint the kernel when writing.

Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250130-wip-x86-amd-nb-cleanup-v4-3-b5cc997e471b@amd.com
2025-03-19 11:18:33 +01:00

364 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Node helper functions and common defines
*
* Copyright (c) 2024, Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
*/
#include <linux/debugfs.h>
#include <asm/amd_node.h>
/*
* AMD Nodes are a physical collection of I/O devices within an SoC. There can be one
* or more nodes per package.
*
* The nodes are software-visible through PCI config space. All nodes are enumerated
* on segment 0 bus 0. The device (slot) numbers range from 0x18 to 0x1F (maximum 8
* nodes) with 0x18 corresponding to node 0, 0x19 to node 1, etc. Each node can be a
* multi-function device.
*
* On legacy systems, these node devices represent integrated Northbridge functionality.
* On Zen-based systems, these node devices represent Data Fabric functionality.
*
* See "Configuration Space Accesses" section in BKDGs or
* "Processor x86 Core" -> "Configuration Space" section in PPRs.
*/
struct pci_dev *amd_node_get_func(u16 node, u8 func)
{
if (node >= MAX_AMD_NUM_NODES)
return NULL;
return pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(AMD_NODE0_PCI_SLOT + node, func));
}
#define DF_BLK_INST_CNT 0x040
#define DF_CFG_ADDR_CNTL_LEGACY 0x084
#define DF_CFG_ADDR_CNTL_DF4 0xC04
#define DF_MAJOR_REVISION GENMASK(27, 24)
static u16 get_cfg_addr_cntl_offset(struct pci_dev *df_f0)
{
u32 reg;
/*
* Revision fields added for DF4 and later.
*
* Major revision of '0' is found pre-DF4. Field is Read-as-Zero.
*/
if (pci_read_config_dword(df_f0, DF_BLK_INST_CNT, &reg))
return 0;
if (reg & DF_MAJOR_REVISION)
return DF_CFG_ADDR_CNTL_DF4;
return DF_CFG_ADDR_CNTL_LEGACY;
}
struct pci_dev *amd_node_get_root(u16 node)
{
struct pci_dev *root;
u16 cntl_off;
u8 bus;
if (!cpu_feature_enabled(X86_FEATURE_ZEN))
return NULL;
/*
* D18F0xXXX [Config Address Control] (DF::CfgAddressCntl)
* Bits [7:0] (SecBusNum) holds the bus number of the root device for
* this Data Fabric instance. The segment, device, and function will be 0.
*/
struct pci_dev *df_f0 __free(pci_dev_put) = amd_node_get_func(node, 0);
if (!df_f0)
return NULL;
cntl_off = get_cfg_addr_cntl_offset(df_f0);
if (!cntl_off)
return NULL;
if (pci_read_config_byte(df_f0, cntl_off, &bus))
return NULL;
/* Grab the pointer for the actual root device instance. */
root = pci_get_domain_bus_and_slot(0, bus, 0);
pci_dbg(root, "is root for AMD node %u\n", node);
return root;
}
static struct pci_dev **amd_roots;
/* Protect the PCI config register pairs used for SMN. */
static DEFINE_MUTEX(smn_mutex);
static bool smn_exclusive;
#define SMN_INDEX_OFFSET 0x60
#define SMN_DATA_OFFSET 0x64
#define HSMP_INDEX_OFFSET 0xc4
#define HSMP_DATA_OFFSET 0xc8
/*
* SMN accesses may fail in ways that are difficult to detect here in the called
* functions amd_smn_read() and amd_smn_write(). Therefore, callers must do
* their own checking based on what behavior they expect.
*
* For SMN reads, the returned value may be zero if the register is Read-as-Zero.
* Or it may be a "PCI Error Response", e.g. all 0xFFs. The "PCI Error Response"
* can be checked here, and a proper error code can be returned.
*
* But the Read-as-Zero response cannot be verified here. A value of 0 may be
* correct in some cases, so callers must check that this correct is for the
* register/fields they need.
*
* For SMN writes, success can be determined through a "write and read back"
* However, this is not robust when done here.
*
* Possible issues:
*
* 1) Bits that are "Write-1-to-Clear". In this case, the read value should
* *not* match the write value.
*
* 2) Bits that are "Read-as-Zero"/"Writes-Ignored". This information cannot be
* known here.
*
* 3) Bits that are "Reserved / Set to 1". Ditto above.
*
* Callers of amd_smn_write() should do the "write and read back" check
* themselves, if needed.
*
* For #1, they can see if their target bits got cleared.
*
* For #2 and #3, they can check if their target bits got set as intended.
*
* This matches what is done for RDMSR/WRMSR. As long as there's no #GP, then
* the operation is considered a success, and the caller does their own
* checking.
*/
static int __amd_smn_rw(u8 i_off, u8 d_off, u16 node, u32 address, u32 *value, bool write)
{
struct pci_dev *root;
int err = -ENODEV;
if (node >= amd_num_nodes())
return err;
root = amd_roots[node];
if (!root)
return err;
if (!smn_exclusive)
return err;
guard(mutex)(&smn_mutex);
err = pci_write_config_dword(root, i_off, address);
if (err) {
pr_warn("Error programming SMN address 0x%x.\n", address);
return pcibios_err_to_errno(err);
}
err = (write ? pci_write_config_dword(root, d_off, *value)
: pci_read_config_dword(root, d_off, value));
return pcibios_err_to_errno(err);
}
int __must_check amd_smn_read(u16 node, u32 address, u32 *value)
{
int err = __amd_smn_rw(SMN_INDEX_OFFSET, SMN_DATA_OFFSET, node, address, value, false);
if (PCI_POSSIBLE_ERROR(*value)) {
err = -ENODEV;
*value = 0;
}
return err;
}
EXPORT_SYMBOL_GPL(amd_smn_read);
int __must_check amd_smn_write(u16 node, u32 address, u32 value)
{
return __amd_smn_rw(SMN_INDEX_OFFSET, SMN_DATA_OFFSET, node, address, &value, true);
}
EXPORT_SYMBOL_GPL(amd_smn_write);
int __must_check amd_smn_hsmp_rdwr(u16 node, u32 address, u32 *value, bool write)
{
return __amd_smn_rw(HSMP_INDEX_OFFSET, HSMP_DATA_OFFSET, node, address, value, write);
}
EXPORT_SYMBOL_GPL(amd_smn_hsmp_rdwr);
static struct dentry *debugfs_dir;
static u16 debug_node;
static u32 debug_address;
static ssize_t smn_node_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
u16 node;
int ret;
ret = kstrtou16_from_user(userbuf, count, 0, &node);
if (ret)
return ret;
if (node >= amd_num_nodes())
return -ENODEV;
debug_node = node;
return count;
}
static int smn_node_show(struct seq_file *m, void *v)
{
seq_printf(m, "0x%08x\n", debug_node);
return 0;
}
static ssize_t smn_address_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
int ret;
ret = kstrtouint_from_user(userbuf, count, 0, &debug_address);
if (ret)
return ret;
return count;
}
static int smn_address_show(struct seq_file *m, void *v)
{
seq_printf(m, "0x%08x\n", debug_address);
return 0;
}
static int smn_value_show(struct seq_file *m, void *v)
{
u32 val;
int ret;
ret = amd_smn_read(debug_node, debug_address, &val);
if (ret)
return ret;
seq_printf(m, "0x%08x\n", val);
return 0;
}
static ssize_t smn_value_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
u32 val;
int ret;
ret = kstrtouint_from_user(userbuf, count, 0, &val);
if (ret)
return ret;
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
ret = amd_smn_write(debug_node, debug_address, val);
if (ret)
return ret;
return count;
}
DEFINE_SHOW_STORE_ATTRIBUTE(smn_node);
DEFINE_SHOW_STORE_ATTRIBUTE(smn_address);
DEFINE_SHOW_STORE_ATTRIBUTE(smn_value);
static int amd_cache_roots(void)
{
u16 node, num_nodes = amd_num_nodes();
amd_roots = kcalloc(num_nodes, sizeof(*amd_roots), GFP_KERNEL);
if (!amd_roots)
return -ENOMEM;
for (node = 0; node < num_nodes; node++)
amd_roots[node] = amd_node_get_root(node);
return 0;
}
static int reserve_root_config_spaces(void)
{
struct pci_dev *root = NULL;
struct pci_bus *bus = NULL;
while ((bus = pci_find_next_bus(bus))) {
/* Root device is Device 0 Function 0 on each Primary Bus. */
root = pci_get_slot(bus, 0);
if (!root)
continue;
if (root->vendor != PCI_VENDOR_ID_AMD &&
root->vendor != PCI_VENDOR_ID_HYGON)
continue;
pci_dbg(root, "Reserving PCI config space\n");
/*
* There are a few SMN index/data pairs and other registers
* that shouldn't be accessed by user space.
* So reserve the entire PCI config space for simplicity rather
* than covering specific registers piecemeal.
*/
if (!pci_request_config_region_exclusive(root, 0, PCI_CFG_SPACE_SIZE, NULL)) {
pci_err(root, "Failed to reserve config space\n");
return -EEXIST;
}
}
smn_exclusive = true;
return 0;
}
static bool enable_dfs;
static int __init amd_smn_enable_dfs(char *str)
{
enable_dfs = true;
return 1;
}
__setup("amd_smn_debugfs_enable", amd_smn_enable_dfs);
static int __init amd_smn_init(void)
{
int err;
if (!cpu_feature_enabled(X86_FEATURE_ZEN))
return 0;
guard(mutex)(&smn_mutex);
if (amd_roots)
return 0;
err = amd_cache_roots();
if (err)
return err;
err = reserve_root_config_spaces();
if (err)
return err;
if (enable_dfs) {
debugfs_dir = debugfs_create_dir("amd_smn", arch_debugfs_dir);
debugfs_create_file("node", 0600, debugfs_dir, NULL, &smn_node_fops);
debugfs_create_file("address", 0600, debugfs_dir, NULL, &smn_address_fops);
debugfs_create_file("value", 0600, debugfs_dir, NULL, &smn_value_fops);
}
return 0;
}
fs_initcall(amd_smn_init);