linux/arch/x86/coco/sev/core.c
Linus Torvalds 14bed9bc81 - Map the SNP calling area pages too so that OVMF EFI fw can issue SVSM
calls properly with the goal of implementing EFI variable store in the
   SVSM - a component which is trusted by the guest, vs in the firmware, which
   is not
 
 - Allow the kernel to handle #VC exceptions from EFI runtime services
   properly when running as a SNP guest
 
 - Rework and cleanup the SNP guest request issue glue code a bit
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmiH13gACgkQEsHwGGHe
 VUr88A//fIbR7eaz7QRiHq32S57NOpyOAciYrGsBrWSo1BLSFcrelYG4RTnzaKzR
 ACVr2yALoeoZooH7gtPgjt7554xWJHA9DR9Ln2YPGd5a2Np8fknY0Uu1MGFVIorC
 4z2u1EATlsB0I/nCh/LboryVxFN4C+qRKRk7iJ7wibdJ15zguc0T/P5lU8gY1eB8
 0NZ2e0T8QnpjIc8cx/XSYXDXIwvOJ5rX36Xm5/g6A/vPubLy1UO0hkBDGfVh+2WG
 dt8T+szidtqru8RQ522jW/3R/ct8iZa0U8Cp9QDdwwcQC3jBvo/xyIv5K4ueDEEI
 J0KfcIKn5zbDeQbBHMw5a9XvPshwHKQIUjY83JfSsviZ1yVseQEQHeJOE6mDn2Mj
 QeCWuqtwMaEoElhNX5xhe9p60KID8VoBJqB+bb1bgbN8sPeYoHc8f9p13XJaU1Mo
 hV0dwlpFwCaxCZgWdtxDVji9mmvzaUT4O1QEO88AdfhDNMa+b/T5L0dJb1gnZaUY
 rQ6ePImHh9nXRtJncfK3UsGmSE6HPc4O7dyV83IAcniGTgQycIYlOIUzkUbpF+wJ
 advBv5Zhx2xCOBDI1ucpHNWXCCe99YVE5GeaLjq6DMLgD0HdGnXqrCw4kOluZDBQ
 Xoy07x1XANQVLk0xQ5Bf1MsOiztbCZG9Rvb2dN9lCA06W5v+0MA=
 =KRgO
 -----END PGP SIGNATURE-----

Merge tag 'x86_sev_for_v6.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 SEV updates from Borislav Petkov:

 - Map the SNP calling area pages too so that OVMF EFI fw can issue SVSM
   calls properly with the goal of implementing EFI variable store in
   the SVSM - a component which is trusted by the guest, vs in the
   firmware, which is not

 - Allow the kernel to handle #VC exceptions from EFI runtime services
   properly when running as a SNP guest

 - Rework and cleanup the SNP guest request issue glue code a bit

* tag 'x86_sev_for_v6.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sev: Let sev_es_efi_map_ghcbs() map the CA pages too
  x86/sev/vc: Fix EFI runtime instruction emulation
  x86/sev: Drop unnecessary parameter in snp_issue_guest_request()
  x86/sev: Document requirement for linear mapping of guest request buffers
  x86/sev: Allocate request in TSC_INFO_REQ on stack
  virt: sev-guest: Contain snp_guest_request_ioctl in sev-guest
2025-07-29 17:18:46 -07:00

2204 lines
55 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD Memory Encryption Support
*
* Copyright (C) 2019 SUSE
*
* Author: Joerg Roedel <jroedel@suse.de>
*/
#define pr_fmt(fmt) "SEV: " fmt
#include <linux/sched/debug.h> /* For show_regs() */
#include <linux/percpu-defs.h>
#include <linux/cc_platform.h>
#include <linux/printk.h>
#include <linux/mm_types.h>
#include <linux/set_memory.h>
#include <linux/memblock.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/efi.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/psp-sev.h>
#include <linux/dmi.h>
#include <uapi/linux/sev-guest.h>
#include <crypto/gcm.h>
#include <asm/init.h>
#include <asm/cpu_entry_area.h>
#include <asm/stacktrace.h>
#include <asm/sev.h>
#include <asm/sev-internal.h>
#include <asm/insn-eval.h>
#include <asm/fpu/xcr.h>
#include <asm/processor.h>
#include <asm/realmode.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/svm.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/cpuid/api.h>
#include <asm/cmdline.h>
#include <asm/msr.h>
/* AP INIT values as documented in the APM2 section "Processor Initialization State" */
#define AP_INIT_CS_LIMIT 0xffff
#define AP_INIT_DS_LIMIT 0xffff
#define AP_INIT_LDTR_LIMIT 0xffff
#define AP_INIT_GDTR_LIMIT 0xffff
#define AP_INIT_IDTR_LIMIT 0xffff
#define AP_INIT_TR_LIMIT 0xffff
#define AP_INIT_RFLAGS_DEFAULT 0x2
#define AP_INIT_DR6_DEFAULT 0xffff0ff0
#define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
#define AP_INIT_XCR0_DEFAULT 0x1
#define AP_INIT_X87_FTW_DEFAULT 0x5555
#define AP_INIT_X87_FCW_DEFAULT 0x0040
#define AP_INIT_CR0_DEFAULT 0x60000010
#define AP_INIT_MXCSR_DEFAULT 0x1f80
static const char * const sev_status_feat_names[] = {
[MSR_AMD64_SEV_ENABLED_BIT] = "SEV",
[MSR_AMD64_SEV_ES_ENABLED_BIT] = "SEV-ES",
[MSR_AMD64_SEV_SNP_ENABLED_BIT] = "SEV-SNP",
[MSR_AMD64_SNP_VTOM_BIT] = "vTom",
[MSR_AMD64_SNP_REFLECT_VC_BIT] = "ReflectVC",
[MSR_AMD64_SNP_RESTRICTED_INJ_BIT] = "RI",
[MSR_AMD64_SNP_ALT_INJ_BIT] = "AI",
[MSR_AMD64_SNP_DEBUG_SWAP_BIT] = "DebugSwap",
[MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT] = "NoHostIBS",
[MSR_AMD64_SNP_BTB_ISOLATION_BIT] = "BTBIsol",
[MSR_AMD64_SNP_VMPL_SSS_BIT] = "VmplSSS",
[MSR_AMD64_SNP_SECURE_TSC_BIT] = "SecureTSC",
[MSR_AMD64_SNP_VMGEXIT_PARAM_BIT] = "VMGExitParam",
[MSR_AMD64_SNP_IBS_VIRT_BIT] = "IBSVirt",
[MSR_AMD64_SNP_VMSA_REG_PROT_BIT] = "VMSARegProt",
[MSR_AMD64_SNP_SMT_PROT_BIT] = "SMTProt",
};
/*
* For Secure TSC guests, the BSP fetches TSC_INFO using SNP guest messaging and
* initializes snp_tsc_scale and snp_tsc_offset. These values are replicated
* across the APs VMSA fields (TSC_SCALE and TSC_OFFSET).
*/
static u64 snp_tsc_scale __ro_after_init;
static u64 snp_tsc_offset __ro_after_init;
static unsigned long snp_tsc_freq_khz __ro_after_init;
DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
/*
* SVSM related information:
* When running under an SVSM, the VMPL that Linux is executing at must be
* non-zero. The VMPL is therefore used to indicate the presence of an SVSM.
*/
u8 snp_vmpl __ro_after_init;
EXPORT_SYMBOL_GPL(snp_vmpl);
static u64 __init get_snp_jump_table_addr(void)
{
struct snp_secrets_page *secrets;
void __iomem *mem;
u64 addr;
mem = ioremap_encrypted(sev_secrets_pa, PAGE_SIZE);
if (!mem) {
pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
return 0;
}
secrets = (__force struct snp_secrets_page *)mem;
addr = secrets->os_area.ap_jump_table_pa;
iounmap(mem);
return addr;
}
static u64 __init get_jump_table_addr(void)
{
struct ghcb_state state;
unsigned long flags;
struct ghcb *ghcb;
u64 ret = 0;
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return get_snp_jump_table_addr();
local_irq_save(flags);
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
ghcb_set_sw_exit_info_2(ghcb, 0);
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
ghcb_sw_exit_info_2_is_valid(ghcb))
ret = ghcb->save.sw_exit_info_2;
__sev_put_ghcb(&state);
local_irq_restore(flags);
return ret;
}
static inline void __pval_terminate(u64 pfn, bool action, unsigned int page_size,
int ret, u64 svsm_ret)
{
WARN(1, "PVALIDATE failure: pfn: 0x%llx, action: %u, size: %u, ret: %d, svsm_ret: 0x%llx\n",
pfn, action, page_size, ret, svsm_ret);
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
}
static void svsm_pval_terminate(struct svsm_pvalidate_call *pc, int ret, u64 svsm_ret)
{
unsigned int page_size;
bool action;
u64 pfn;
pfn = pc->entry[pc->cur_index].pfn;
action = pc->entry[pc->cur_index].action;
page_size = pc->entry[pc->cur_index].page_size;
__pval_terminate(pfn, action, page_size, ret, svsm_ret);
}
static void pval_pages(struct snp_psc_desc *desc)
{
struct psc_entry *e;
unsigned long vaddr;
unsigned int size;
unsigned int i;
bool validate;
u64 pfn;
int rc;
for (i = 0; i <= desc->hdr.end_entry; i++) {
e = &desc->entries[i];
pfn = e->gfn;
vaddr = (unsigned long)pfn_to_kaddr(pfn);
size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
validate = e->operation == SNP_PAGE_STATE_PRIVATE;
rc = pvalidate(vaddr, size, validate);
if (!rc)
continue;
if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) {
unsigned long vaddr_end = vaddr + PMD_SIZE;
for (; vaddr < vaddr_end; vaddr += PAGE_SIZE, pfn++) {
rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
if (rc)
__pval_terminate(pfn, validate, RMP_PG_SIZE_4K, rc, 0);
}
} else {
__pval_terminate(pfn, validate, size, rc, 0);
}
}
}
static u64 svsm_build_ca_from_pfn_range(u64 pfn, u64 pfn_end, bool action,
struct svsm_pvalidate_call *pc)
{
struct svsm_pvalidate_entry *pe;
/* Nothing in the CA yet */
pc->num_entries = 0;
pc->cur_index = 0;
pe = &pc->entry[0];
while (pfn < pfn_end) {
pe->page_size = RMP_PG_SIZE_4K;
pe->action = action;
pe->ignore_cf = 0;
pe->pfn = pfn;
pe++;
pfn++;
pc->num_entries++;
if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT)
break;
}
return pfn;
}
static int svsm_build_ca_from_psc_desc(struct snp_psc_desc *desc, unsigned int desc_entry,
struct svsm_pvalidate_call *pc)
{
struct svsm_pvalidate_entry *pe;
struct psc_entry *e;
/* Nothing in the CA yet */
pc->num_entries = 0;
pc->cur_index = 0;
pe = &pc->entry[0];
e = &desc->entries[desc_entry];
while (desc_entry <= desc->hdr.end_entry) {
pe->page_size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
pe->action = e->operation == SNP_PAGE_STATE_PRIVATE;
pe->ignore_cf = 0;
pe->pfn = e->gfn;
pe++;
e++;
desc_entry++;
pc->num_entries++;
if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT)
break;
}
return desc_entry;
}
static void svsm_pval_pages(struct snp_psc_desc *desc)
{
struct svsm_pvalidate_entry pv_4k[VMGEXIT_PSC_MAX_ENTRY];
unsigned int i, pv_4k_count = 0;
struct svsm_pvalidate_call *pc;
struct svsm_call call = {};
unsigned long flags;
bool action;
u64 pc_pa;
int ret;
/*
* This can be called very early in the boot, use native functions in
* order to avoid paravirt issues.
*/
flags = native_local_irq_save();
/*
* The SVSM calling area (CA) can support processing 510 entries at a
* time. Loop through the Page State Change descriptor until the CA is
* full or the last entry in the descriptor is reached, at which time
* the SVSM is invoked. This repeats until all entries in the descriptor
* are processed.
*/
call.caa = svsm_get_caa();
pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
/* Protocol 0, Call ID 1 */
call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
call.rcx = pc_pa;
for (i = 0; i <= desc->hdr.end_entry;) {
i = svsm_build_ca_from_psc_desc(desc, i, pc);
do {
ret = svsm_perform_call_protocol(&call);
if (!ret)
continue;
/*
* Check if the entry failed because of an RMP mismatch (a
* PVALIDATE at 2M was requested, but the page is mapped in
* the RMP as 4K).
*/
if (call.rax_out == SVSM_PVALIDATE_FAIL_SIZEMISMATCH &&
pc->entry[pc->cur_index].page_size == RMP_PG_SIZE_2M) {
/* Save this entry for post-processing at 4K */
pv_4k[pv_4k_count++] = pc->entry[pc->cur_index];
/* Skip to the next one unless at the end of the list */
pc->cur_index++;
if (pc->cur_index < pc->num_entries)
ret = -EAGAIN;
else
ret = 0;
}
} while (ret == -EAGAIN);
if (ret)
svsm_pval_terminate(pc, ret, call.rax_out);
}
/* Process any entries that failed to be validated at 2M and validate them at 4K */
for (i = 0; i < pv_4k_count; i++) {
u64 pfn, pfn_end;
action = pv_4k[i].action;
pfn = pv_4k[i].pfn;
pfn_end = pfn + 512;
while (pfn < pfn_end) {
pfn = svsm_build_ca_from_pfn_range(pfn, pfn_end, action, pc);
ret = svsm_perform_call_protocol(&call);
if (ret)
svsm_pval_terminate(pc, ret, call.rax_out);
}
}
native_local_irq_restore(flags);
}
static void pvalidate_pages(struct snp_psc_desc *desc)
{
if (snp_vmpl)
svsm_pval_pages(desc);
else
pval_pages(desc);
}
static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc)
{
int cur_entry, end_entry, ret = 0;
struct snp_psc_desc *data;
struct es_em_ctxt ctxt;
vc_ghcb_invalidate(ghcb);
/* Copy the input desc into GHCB shared buffer */
data = (struct snp_psc_desc *)ghcb->shared_buffer;
memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
/*
* As per the GHCB specification, the hypervisor can resume the guest
* before processing all the entries. Check whether all the entries
* are processed. If not, then keep retrying. Note, the hypervisor
* will update the data memory directly to indicate the status, so
* reference the data->hdr everywhere.
*
* The strategy here is to wait for the hypervisor to change the page
* state in the RMP table before guest accesses the memory pages. If the
* page state change was not successful, then later memory access will
* result in a crash.
*/
cur_entry = data->hdr.cur_entry;
end_entry = data->hdr.end_entry;
while (data->hdr.cur_entry <= data->hdr.end_entry) {
ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
/* This will advance the shared buffer data points to. */
ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
/*
* Page State Change VMGEXIT can pass error code through
* exit_info_2.
*/
if (WARN(ret || ghcb->save.sw_exit_info_2,
"SNP: PSC failed ret=%d exit_info_2=%llx\n",
ret, ghcb->save.sw_exit_info_2)) {
ret = 1;
goto out;
}
/* Verify that reserved bit is not set */
if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
ret = 1;
goto out;
}
/*
* Sanity check that entry processing is not going backwards.
* This will happen only if hypervisor is tricking us.
*/
if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
"SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
ret = 1;
goto out;
}
}
out:
return ret;
}
static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
unsigned long vaddr_end, int op)
{
struct ghcb_state state;
bool use_large_entry;
struct psc_hdr *hdr;
struct psc_entry *e;
unsigned long flags;
unsigned long pfn;
struct ghcb *ghcb;
int i;
hdr = &data->hdr;
e = data->entries;
memset(data, 0, sizeof(*data));
i = 0;
while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
hdr->end_entry = i;
if (is_vmalloc_addr((void *)vaddr)) {
pfn = vmalloc_to_pfn((void *)vaddr);
use_large_entry = false;
} else {
pfn = __pa(vaddr) >> PAGE_SHIFT;
use_large_entry = true;
}
e->gfn = pfn;
e->operation = op;
if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
(vaddr_end - vaddr) >= PMD_SIZE) {
e->pagesize = RMP_PG_SIZE_2M;
vaddr += PMD_SIZE;
} else {
e->pagesize = RMP_PG_SIZE_4K;
vaddr += PAGE_SIZE;
}
e++;
i++;
}
/* Page validation must be rescinded before changing to shared */
if (op == SNP_PAGE_STATE_SHARED)
pvalidate_pages(data);
local_irq_save(flags);
if (sev_cfg.ghcbs_initialized)
ghcb = __sev_get_ghcb(&state);
else
ghcb = boot_ghcb;
/* Invoke the hypervisor to perform the page state changes */
if (!ghcb || vmgexit_psc(ghcb, data))
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
if (sev_cfg.ghcbs_initialized)
__sev_put_ghcb(&state);
local_irq_restore(flags);
/* Page validation must be performed after changing to private */
if (op == SNP_PAGE_STATE_PRIVATE)
pvalidate_pages(data);
return vaddr;
}
static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
{
struct snp_psc_desc desc;
unsigned long vaddr_end;
/* Use the MSR protocol when a GHCB is not available. */
if (!boot_ghcb)
return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
vaddr = vaddr & PAGE_MASK;
vaddr_end = vaddr + (npages << PAGE_SHIFT);
while (vaddr < vaddr_end)
vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
}
void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
}
void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
}
void snp_accept_memory(phys_addr_t start, phys_addr_t end)
{
unsigned long vaddr, npages;
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
vaddr = (unsigned long)__va(start);
npages = (end - start) >> PAGE_SHIFT;
set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
}
static int vmgexit_ap_control(u64 event, struct sev_es_save_area *vmsa, u32 apic_id)
{
bool create = event != SVM_VMGEXIT_AP_DESTROY;
struct ghcb_state state;
unsigned long flags;
struct ghcb *ghcb;
int ret = 0;
local_irq_save(flags);
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
if (create)
ghcb_set_rax(ghcb, vmsa->sev_features);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
ghcb_set_sw_exit_info_1(ghcb,
((u64)apic_id << 32) |
((u64)snp_vmpl << 16) |
event);
ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
lower_32_bits(ghcb->save.sw_exit_info_1)) {
pr_err("SNP AP %s error\n", (create ? "CREATE" : "DESTROY"));
ret = -EINVAL;
}
__sev_put_ghcb(&state);
local_irq_restore(flags);
return ret;
}
static int snp_set_vmsa(void *va, void *caa, int apic_id, bool make_vmsa)
{
int ret;
if (snp_vmpl) {
struct svsm_call call = {};
unsigned long flags;
local_irq_save(flags);
call.caa = this_cpu_read(svsm_caa);
call.rcx = __pa(va);
if (make_vmsa) {
/* Protocol 0, Call ID 2 */
call.rax = SVSM_CORE_CALL(SVSM_CORE_CREATE_VCPU);
call.rdx = __pa(caa);
call.r8 = apic_id;
} else {
/* Protocol 0, Call ID 3 */
call.rax = SVSM_CORE_CALL(SVSM_CORE_DELETE_VCPU);
}
ret = svsm_perform_call_protocol(&call);
local_irq_restore(flags);
} else {
/*
* If the kernel runs at VMPL0, it can change the VMSA
* bit for a page using the RMPADJUST instruction.
* However, for the instruction to succeed it must
* target the permissions of a lesser privileged (higher
* numbered) VMPL level, so use VMPL1.
*/
u64 attrs = 1;
if (make_vmsa)
attrs |= RMPADJUST_VMSA_PAGE_BIT;
ret = rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
}
return ret;
}
static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa, int apic_id)
{
int err;
err = snp_set_vmsa(vmsa, NULL, apic_id, false);
if (err)
pr_err("clear VMSA page failed (%u), leaking page\n", err);
else
free_page((unsigned long)vmsa);
}
static void set_pte_enc(pte_t *kpte, int level, void *va)
{
struct pte_enc_desc d = {
.kpte = kpte,
.pte_level = level,
.va = va,
.encrypt = true
};
prepare_pte_enc(&d);
set_pte_enc_mask(kpte, d.pfn, d.new_pgprot);
}
static void unshare_all_memory(void)
{
unsigned long addr, end, size, ghcb;
struct sev_es_runtime_data *data;
unsigned int npages, level;
bool skipped_addr;
pte_t *pte;
int cpu;
/* Unshare the direct mapping. */
addr = PAGE_OFFSET;
end = PAGE_OFFSET + get_max_mapped();
while (addr < end) {
pte = lookup_address(addr, &level);
size = page_level_size(level);
npages = size / PAGE_SIZE;
skipped_addr = false;
if (!pte || !pte_decrypted(*pte) || pte_none(*pte)) {
addr += size;
continue;
}
/*
* Ensure that all the per-CPU GHCBs are made private at the
* end of the unsharing loop so that the switch to the slower
* MSR protocol happens last.
*/
for_each_possible_cpu(cpu) {
data = per_cpu(runtime_data, cpu);
ghcb = (unsigned long)&data->ghcb_page;
/* Handle the case of a huge page containing the GHCB page */
if (addr <= ghcb && ghcb < addr + size) {
skipped_addr = true;
break;
}
}
if (!skipped_addr) {
set_pte_enc(pte, level, (void *)addr);
snp_set_memory_private(addr, npages);
}
addr += size;
}
/* Unshare all bss decrypted memory. */
addr = (unsigned long)__start_bss_decrypted;
end = (unsigned long)__start_bss_decrypted_unused;
npages = (end - addr) >> PAGE_SHIFT;
for (; addr < end; addr += PAGE_SIZE) {
pte = lookup_address(addr, &level);
if (!pte || !pte_decrypted(*pte) || pte_none(*pte))
continue;
set_pte_enc(pte, level, (void *)addr);
}
addr = (unsigned long)__start_bss_decrypted;
snp_set_memory_private(addr, npages);
__flush_tlb_all();
}
/* Stop new private<->shared conversions */
void snp_kexec_begin(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
return;
/*
* Crash kernel ends up here with interrupts disabled: can't wait for
* conversions to finish.
*
* If race happened, just report and proceed.
*/
if (!set_memory_enc_stop_conversion())
pr_warn("Failed to stop shared<->private conversions\n");
}
/*
* Shutdown all APs except the one handling kexec/kdump and clearing
* the VMSA tag on AP's VMSA pages as they are not being used as
* VMSA page anymore.
*/
static void shutdown_all_aps(void)
{
struct sev_es_save_area *vmsa;
int apic_id, this_cpu, cpu;
this_cpu = get_cpu();
/*
* APs are already in HLT loop when enc_kexec_finish() callback
* is invoked.
*/
for_each_present_cpu(cpu) {
vmsa = per_cpu(sev_vmsa, cpu);
/*
* The BSP or offlined APs do not have guest allocated VMSA
* and there is no need to clear the VMSA tag for this page.
*/
if (!vmsa)
continue;
/*
* Cannot clear the VMSA tag for the currently running vCPU.
*/
if (this_cpu == cpu) {
unsigned long pa;
struct page *p;
pa = __pa(vmsa);
/*
* Mark the VMSA page of the running vCPU as offline
* so that is excluded and not touched by makedumpfile
* while generating vmcore during kdump.
*/
p = pfn_to_online_page(pa >> PAGE_SHIFT);
if (p)
__SetPageOffline(p);
continue;
}
apic_id = cpuid_to_apicid[cpu];
/*
* Issue AP destroy to ensure AP gets kicked out of guest mode
* to allow using RMPADJUST to remove the VMSA tag on it's
* VMSA page.
*/
vmgexit_ap_control(SVM_VMGEXIT_AP_DESTROY, vmsa, apic_id);
snp_cleanup_vmsa(vmsa, apic_id);
}
put_cpu();
}
void snp_kexec_finish(void)
{
struct sev_es_runtime_data *data;
unsigned long size, addr;
unsigned int level, cpu;
struct ghcb *ghcb;
pte_t *pte;
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
return;
shutdown_all_aps();
unshare_all_memory();
/*
* Switch to using the MSR protocol to change per-CPU GHCBs to
* private. All the per-CPU GHCBs have been switched back to private,
* so can't do any more GHCB calls to the hypervisor beyond this point
* until the kexec'ed kernel starts running.
*/
boot_ghcb = NULL;
sev_cfg.ghcbs_initialized = false;
for_each_possible_cpu(cpu) {
data = per_cpu(runtime_data, cpu);
ghcb = &data->ghcb_page;
pte = lookup_address((unsigned long)ghcb, &level);
size = page_level_size(level);
/* Handle the case of a huge page containing the GHCB page */
addr = (unsigned long)ghcb & page_level_mask(level);
set_pte_enc(pte, level, (void *)addr);
snp_set_memory_private(addr, (size / PAGE_SIZE));
}
}
#define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
#define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
#define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
#define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
#define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
static void *snp_alloc_vmsa_page(int cpu)
{
struct page *p;
/*
* Allocate VMSA page to work around the SNP erratum where the CPU will
* incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
* collides with the RMP entry of VMSA page. The recommended workaround
* is to not use a large page.
*
* Allocate an 8k page which is also 8k-aligned.
*/
p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
if (!p)
return NULL;
split_page(p, 1);
/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
__free_page(p);
return page_address(p + 1);
}
static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip, unsigned int cpu)
{
struct sev_es_save_area *cur_vmsa, *vmsa;
struct svsm_ca *caa;
u8 sipi_vector;
int ret;
u64 cr4;
/*
* The hypervisor SNP feature support check has happened earlier, just check
* the AP_CREATION one here.
*/
if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
return -EOPNOTSUPP;
/*
* Verify the desired start IP against the known trampoline start IP
* to catch any future new trampolines that may be introduced that
* would require a new protected guest entry point.
*/
if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
"Unsupported SNP start_ip: %lx\n", start_ip))
return -EINVAL;
/* Override start_ip with known protected guest start IP */
start_ip = real_mode_header->sev_es_trampoline_start;
cur_vmsa = per_cpu(sev_vmsa, cpu);
/*
* A new VMSA is created each time because there is no guarantee that
* the current VMSA is the kernels or that the vCPU is not running. If
* an attempt was done to use the current VMSA with a running vCPU, a
* #VMEXIT of that vCPU would wipe out all of the settings being done
* here.
*/
vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
if (!vmsa)
return -ENOMEM;
/* If an SVSM is present, the SVSM per-CPU CAA will be !NULL */
caa = per_cpu(svsm_caa, cpu);
/* CR4 should maintain the MCE value */
cr4 = native_read_cr4() & X86_CR4_MCE;
/* Set the CS value based on the start_ip converted to a SIPI vector */
sipi_vector = (start_ip >> 12);
vmsa->cs.base = sipi_vector << 12;
vmsa->cs.limit = AP_INIT_CS_LIMIT;
vmsa->cs.attrib = INIT_CS_ATTRIBS;
vmsa->cs.selector = sipi_vector << 8;
/* Set the RIP value based on start_ip */
vmsa->rip = start_ip & 0xfff;
/* Set AP INIT defaults as documented in the APM */
vmsa->ds.limit = AP_INIT_DS_LIMIT;
vmsa->ds.attrib = INIT_DS_ATTRIBS;
vmsa->es = vmsa->ds;
vmsa->fs = vmsa->ds;
vmsa->gs = vmsa->ds;
vmsa->ss = vmsa->ds;
vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
vmsa->tr.limit = AP_INIT_TR_LIMIT;
vmsa->tr.attrib = INIT_TR_ATTRIBS;
vmsa->cr4 = cr4;
vmsa->cr0 = AP_INIT_CR0_DEFAULT;
vmsa->dr7 = DR7_RESET_VALUE;
vmsa->dr6 = AP_INIT_DR6_DEFAULT;
vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
/* SVME must be set. */
vmsa->efer = EFER_SVME;
/*
* Set the SNP-specific fields for this VMSA:
* VMPL level
* SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
*/
vmsa->vmpl = snp_vmpl;
vmsa->sev_features = sev_status >> 2;
/* Populate AP's TSC scale/offset to get accurate TSC values. */
if (cc_platform_has(CC_ATTR_GUEST_SNP_SECURE_TSC)) {
vmsa->tsc_scale = snp_tsc_scale;
vmsa->tsc_offset = snp_tsc_offset;
}
/* Switch the page over to a VMSA page now that it is initialized */
ret = snp_set_vmsa(vmsa, caa, apic_id, true);
if (ret) {
pr_err("set VMSA page failed (%u)\n", ret);
free_page((unsigned long)vmsa);
return -EINVAL;
}
/* Issue VMGEXIT AP Creation NAE event */
ret = vmgexit_ap_control(SVM_VMGEXIT_AP_CREATE, vmsa, apic_id);
if (ret) {
snp_cleanup_vmsa(vmsa, apic_id);
vmsa = NULL;
}
/* Free up any previous VMSA page */
if (cur_vmsa)
snp_cleanup_vmsa(cur_vmsa, apic_id);
/* Record the current VMSA page */
per_cpu(sev_vmsa, cpu) = vmsa;
return ret;
}
void __init snp_set_wakeup_secondary_cpu(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
/*
* Always set this override if SNP is enabled. This makes it the
* required method to start APs under SNP. If the hypervisor does
* not support AP creation, then no APs will be started.
*/
apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
}
int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
{
u16 startup_cs, startup_ip;
phys_addr_t jump_table_pa;
u64 jump_table_addr;
u16 __iomem *jump_table;
jump_table_addr = get_jump_table_addr();
/* On UP guests there is no jump table so this is not a failure */
if (!jump_table_addr)
return 0;
/* Check if AP Jump Table is page-aligned */
if (jump_table_addr & ~PAGE_MASK)
return -EINVAL;
jump_table_pa = jump_table_addr & PAGE_MASK;
startup_cs = (u16)(rmh->trampoline_start >> 4);
startup_ip = (u16)(rmh->sev_es_trampoline_start -
rmh->trampoline_start);
jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
if (!jump_table)
return -EIO;
writew(startup_ip, &jump_table[0]);
writew(startup_cs, &jump_table[1]);
iounmap(jump_table);
return 0;
}
/*
* This is needed by the OVMF UEFI firmware which will use whatever it finds in
* the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
* runtime GHCBs used by the kernel are also mapped in the EFI page-table.
*
* When running under SVSM the CA page is needed too, so map it as well.
*/
int __init sev_es_efi_map_ghcbs_cas(pgd_t *pgd)
{
unsigned long address, pflags, pflags_enc;
struct sev_es_runtime_data *data;
int cpu;
u64 pfn;
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
return 0;
pflags = _PAGE_NX | _PAGE_RW;
pflags_enc = cc_mkenc(pflags);
for_each_possible_cpu(cpu) {
data = per_cpu(runtime_data, cpu);
address = __pa(&data->ghcb_page);
pfn = address >> PAGE_SHIFT;
if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
return 1;
if (snp_vmpl) {
address = per_cpu(svsm_caa_pa, cpu);
if (!address)
return 1;
pfn = address >> PAGE_SHIFT;
if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags_enc))
return 1;
}
}
return 0;
}
static void snp_register_per_cpu_ghcb(void)
{
struct sev_es_runtime_data *data;
struct ghcb *ghcb;
data = this_cpu_read(runtime_data);
ghcb = &data->ghcb_page;
snp_register_ghcb_early(__pa(ghcb));
}
void setup_ghcb(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
return;
/*
* Check whether the runtime #VC exception handler is active. It uses
* the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
*
* If SNP is active, register the per-CPU GHCB page so that the runtime
* exception handler can use it.
*/
if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
snp_register_per_cpu_ghcb();
sev_cfg.ghcbs_initialized = true;
return;
}
/*
* Make sure the hypervisor talks a supported protocol.
* This gets called only in the BSP boot phase.
*/
if (!sev_es_negotiate_protocol())
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
/*
* Clear the boot_ghcb. The first exception comes in before the bss
* section is cleared.
*/
memset(&boot_ghcb_page, 0, PAGE_SIZE);
/* Alright - Make the boot-ghcb public */
boot_ghcb = &boot_ghcb_page;
/* SNP guest requires that GHCB GPA must be registered. */
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
snp_register_ghcb_early(__pa(&boot_ghcb_page));
}
#ifdef CONFIG_HOTPLUG_CPU
static void sev_es_ap_hlt_loop(void)
{
struct ghcb_state state;
struct ghcb *ghcb;
ghcb = __sev_get_ghcb(&state);
while (true) {
vc_ghcb_invalidate(ghcb);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
ghcb_set_sw_exit_info_1(ghcb, 0);
ghcb_set_sw_exit_info_2(ghcb, 0);
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
/* Wakeup signal? */
if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
ghcb->save.sw_exit_info_2)
break;
}
__sev_put_ghcb(&state);
}
/*
* Play_dead handler when running under SEV-ES. This is needed because
* the hypervisor can't deliver an SIPI request to restart the AP.
* Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
* hypervisor wakes it up again.
*/
static void sev_es_play_dead(void)
{
play_dead_common();
/* IRQs now disabled */
sev_es_ap_hlt_loop();
/*
* If we get here, the VCPU was woken up again. Jump to CPU
* startup code to get it back online.
*/
soft_restart_cpu();
}
#else /* CONFIG_HOTPLUG_CPU */
#define sev_es_play_dead native_play_dead
#endif /* CONFIG_HOTPLUG_CPU */
#ifdef CONFIG_SMP
static void __init sev_es_setup_play_dead(void)
{
smp_ops.play_dead = sev_es_play_dead;
}
#else
static inline void sev_es_setup_play_dead(void) { }
#endif
static void __init alloc_runtime_data(int cpu)
{
struct sev_es_runtime_data *data;
data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
if (!data)
panic("Can't allocate SEV-ES runtime data");
per_cpu(runtime_data, cpu) = data;
if (snp_vmpl) {
struct svsm_ca *caa;
/* Allocate the SVSM CA page if an SVSM is present */
caa = memblock_alloc_or_panic(sizeof(*caa), PAGE_SIZE);
per_cpu(svsm_caa, cpu) = caa;
per_cpu(svsm_caa_pa, cpu) = __pa(caa);
}
}
static void __init init_ghcb(int cpu)
{
struct sev_es_runtime_data *data;
int err;
data = per_cpu(runtime_data, cpu);
err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
sizeof(data->ghcb_page));
if (err)
panic("Can't map GHCBs unencrypted");
memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
data->ghcb_active = false;
data->backup_ghcb_active = false;
}
void __init sev_es_init_vc_handling(void)
{
int cpu;
BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
return;
if (!sev_es_check_cpu_features())
panic("SEV-ES CPU Features missing");
/*
* SNP is supported in v2 of the GHCB spec which mandates support for HV
* features.
*/
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
sev_hv_features = get_hv_features();
if (!(sev_hv_features & GHCB_HV_FT_SNP))
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
}
/* Initialize per-cpu GHCB pages */
for_each_possible_cpu(cpu) {
alloc_runtime_data(cpu);
init_ghcb(cpu);
}
/* If running under an SVSM, switch to the per-cpu CA */
if (snp_vmpl) {
struct svsm_call call = {};
unsigned long flags;
int ret;
local_irq_save(flags);
/*
* SVSM_CORE_REMAP_CA call:
* RAX = 0 (Protocol=0, CallID=0)
* RCX = New CA GPA
*/
call.caa = svsm_get_caa();
call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA);
call.rcx = this_cpu_read(svsm_caa_pa);
ret = svsm_perform_call_protocol(&call);
if (ret)
panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n",
ret, call.rax_out);
sev_cfg.use_cas = true;
local_irq_restore(flags);
}
sev_es_setup_play_dead();
/* Secondary CPUs use the runtime #VC handler */
initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
}
/*
* SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
* enabled, as the alternative (fallback) logic for DMI probing in the legacy
* ROM region can cause a crash since this region is not pre-validated.
*/
void __init snp_dmi_setup(void)
{
if (efi_enabled(EFI_CONFIG_TABLES))
dmi_setup();
}
static void dump_cpuid_table(void)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
int i = 0;
pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
}
}
/*
* It is useful from an auditing/testing perspective to provide an easy way
* for the guest owner to know that the CPUID table has been initialized as
* expected, but that initialization happens too early in boot to print any
* sort of indicator, and there's not really any other good place to do it,
* so do it here.
*
* If running as an SNP guest, report the current VM privilege level (VMPL).
*/
static int __init report_snp_info(void)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
if (cpuid_table->count) {
pr_info("Using SNP CPUID table, %d entries present.\n",
cpuid_table->count);
if (sev_cfg.debug)
dump_cpuid_table();
}
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
pr_info("SNP running at VMPL%u.\n", snp_vmpl);
return 0;
}
arch_initcall(report_snp_info);
static void update_attest_input(struct svsm_call *call, struct svsm_attest_call *input)
{
/* If (new) lengths have been returned, propagate them up */
if (call->rcx_out != call->rcx)
input->manifest_buf.len = call->rcx_out;
if (call->rdx_out != call->rdx)
input->certificates_buf.len = call->rdx_out;
if (call->r8_out != call->r8)
input->report_buf.len = call->r8_out;
}
int snp_issue_svsm_attest_req(u64 call_id, struct svsm_call *call,
struct svsm_attest_call *input)
{
struct svsm_attest_call *ac;
unsigned long flags;
u64 attest_call_pa;
int ret;
if (!snp_vmpl)
return -EINVAL;
local_irq_save(flags);
call->caa = svsm_get_caa();
ac = (struct svsm_attest_call *)call->caa->svsm_buffer;
attest_call_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
*ac = *input;
/*
* Set input registers for the request and set RDX and R8 to known
* values in order to detect length values being returned in them.
*/
call->rax = call_id;
call->rcx = attest_call_pa;
call->rdx = -1;
call->r8 = -1;
ret = svsm_perform_call_protocol(call);
update_attest_input(call, input);
local_irq_restore(flags);
return ret;
}
EXPORT_SYMBOL_GPL(snp_issue_svsm_attest_req);
static int snp_issue_guest_request(struct snp_guest_req *req)
{
struct snp_req_data *input = &req->input;
struct ghcb_state state;
struct es_em_ctxt ctxt;
unsigned long flags;
struct ghcb *ghcb;
int ret;
req->exitinfo2 = SEV_RET_NO_FW_CALL;
/*
* __sev_get_ghcb() needs to run with IRQs disabled because it is using
* a per-CPU GHCB.
*/
local_irq_save(flags);
ghcb = __sev_get_ghcb(&state);
if (!ghcb) {
ret = -EIO;
goto e_restore_irq;
}
vc_ghcb_invalidate(ghcb);
if (req->exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
ghcb_set_rax(ghcb, input->data_gpa);
ghcb_set_rbx(ghcb, input->data_npages);
}
ret = sev_es_ghcb_hv_call(ghcb, &ctxt, req->exit_code, input->req_gpa, input->resp_gpa);
if (ret)
goto e_put;
req->exitinfo2 = ghcb->save.sw_exit_info_2;
switch (req->exitinfo2) {
case 0:
break;
case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
ret = -EAGAIN;
break;
case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
/* Number of expected pages are returned in RBX */
if (req->exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
input->data_npages = ghcb_get_rbx(ghcb);
ret = -ENOSPC;
break;
}
fallthrough;
default:
ret = -EIO;
break;
}
e_put:
__sev_put_ghcb(&state);
e_restore_irq:
local_irq_restore(flags);
return ret;
}
/**
* snp_svsm_vtpm_probe() - Probe if SVSM provides a vTPM device
*
* Check that there is SVSM and that it supports at least TPM_SEND_COMMAND
* which is the only request used so far.
*
* Return: true if the platform provides a vTPM SVSM device, false otherwise.
*/
static bool snp_svsm_vtpm_probe(void)
{
struct svsm_call call = {};
/* The vTPM device is available only if a SVSM is present */
if (!snp_vmpl)
return false;
call.caa = svsm_get_caa();
call.rax = SVSM_VTPM_CALL(SVSM_VTPM_QUERY);
if (svsm_perform_call_protocol(&call))
return false;
/* Check platform commands contains TPM_SEND_COMMAND - platform command 8 */
return call.rcx_out & BIT_ULL(8);
}
/**
* snp_svsm_vtpm_send_command() - Execute a vTPM operation on SVSM
* @buffer: A buffer used to both send the command and receive the response.
*
* Execute a SVSM_VTPM_CMD call as defined by
* "Secure VM Service Module for SEV-SNP Guests" Publication # 58019 Revision: 1.00
*
* All command request/response buffers have a common structure as specified by
* the following table:
* Byte Size     In/Out    Description
* Offset    (Bytes)
* 0x000     4          In        Platform command
 *                         Out       Platform command response size
*
* Each command can build upon this common request/response structure to create
* a structure specific to the command. See include/linux/tpm_svsm.h for more
* details.
*
* Return: 0 on success, -errno on failure
*/
int snp_svsm_vtpm_send_command(u8 *buffer)
{
struct svsm_call call = {};
call.caa = svsm_get_caa();
call.rax = SVSM_VTPM_CALL(SVSM_VTPM_CMD);
call.rcx = __pa(buffer);
return svsm_perform_call_protocol(&call);
}
EXPORT_SYMBOL_GPL(snp_svsm_vtpm_send_command);
static struct platform_device sev_guest_device = {
.name = "sev-guest",
.id = -1,
};
static struct platform_device tpm_svsm_device = {
.name = "tpm-svsm",
.id = -1,
};
static int __init snp_init_platform_device(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return -ENODEV;
if (platform_device_register(&sev_guest_device))
return -ENODEV;
if (snp_svsm_vtpm_probe() &&
platform_device_register(&tpm_svsm_device))
return -ENODEV;
pr_info("SNP guest platform devices initialized.\n");
return 0;
}
device_initcall(snp_init_platform_device);
void sev_show_status(void)
{
int i;
pr_info("Status: ");
for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
if (sev_status & BIT_ULL(i)) {
if (!sev_status_feat_names[i])
continue;
pr_cont("%s ", sev_status_feat_names[i]);
}
}
pr_cont("\n");
}
void __init snp_update_svsm_ca(void)
{
if (!snp_vmpl)
return;
/* Update the CAA to a proper kernel address */
boot_svsm_caa = &boot_svsm_ca_page;
}
#ifdef CONFIG_SYSFS
static ssize_t vmpl_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%d\n", snp_vmpl);
}
static struct kobj_attribute vmpl_attr = __ATTR_RO(vmpl);
static struct attribute *vmpl_attrs[] = {
&vmpl_attr.attr,
NULL
};
static struct attribute_group sev_attr_group = {
.attrs = vmpl_attrs,
};
static int __init sev_sysfs_init(void)
{
struct kobject *sev_kobj;
struct device *dev_root;
int ret;
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return -ENODEV;
dev_root = bus_get_dev_root(&cpu_subsys);
if (!dev_root)
return -ENODEV;
sev_kobj = kobject_create_and_add("sev", &dev_root->kobj);
put_device(dev_root);
if (!sev_kobj)
return -ENOMEM;
ret = sysfs_create_group(sev_kobj, &sev_attr_group);
if (ret)
kobject_put(sev_kobj);
return ret;
}
arch_initcall(sev_sysfs_init);
#endif // CONFIG_SYSFS
static void free_shared_pages(void *buf, size_t sz)
{
unsigned int npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
int ret;
if (!buf)
return;
ret = set_memory_encrypted((unsigned long)buf, npages);
if (ret) {
WARN_ONCE(ret, "failed to restore encryption mask (leak it)\n");
return;
}
__free_pages(virt_to_page(buf), get_order(sz));
}
static void *alloc_shared_pages(size_t sz)
{
unsigned int npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
struct page *page;
int ret;
page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(sz));
if (!page)
return NULL;
ret = set_memory_decrypted((unsigned long)page_address(page), npages);
if (ret) {
pr_err("failed to mark page shared, ret=%d\n", ret);
__free_pages(page, get_order(sz));
return NULL;
}
return page_address(page);
}
static u8 *get_vmpck(int id, struct snp_secrets_page *secrets, u32 **seqno)
{
u8 *key = NULL;
switch (id) {
case 0:
*seqno = &secrets->os_area.msg_seqno_0;
key = secrets->vmpck0;
break;
case 1:
*seqno = &secrets->os_area.msg_seqno_1;
key = secrets->vmpck1;
break;
case 2:
*seqno = &secrets->os_area.msg_seqno_2;
key = secrets->vmpck2;
break;
case 3:
*seqno = &secrets->os_area.msg_seqno_3;
key = secrets->vmpck3;
break;
default:
break;
}
return key;
}
static struct aesgcm_ctx *snp_init_crypto(u8 *key, size_t keylen)
{
struct aesgcm_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
if (aesgcm_expandkey(ctx, key, keylen, AUTHTAG_LEN)) {
pr_err("Crypto context initialization failed\n");
kfree(ctx);
return NULL;
}
return ctx;
}
int snp_msg_init(struct snp_msg_desc *mdesc, int vmpck_id)
{
/* Adjust the default VMPCK key based on the executing VMPL level */
if (vmpck_id == -1)
vmpck_id = snp_vmpl;
mdesc->vmpck = get_vmpck(vmpck_id, mdesc->secrets, &mdesc->os_area_msg_seqno);
if (!mdesc->vmpck) {
pr_err("Invalid VMPCK%d communication key\n", vmpck_id);
return -EINVAL;
}
/* Verify that VMPCK is not zero. */
if (!memchr_inv(mdesc->vmpck, 0, VMPCK_KEY_LEN)) {
pr_err("Empty VMPCK%d communication key\n", vmpck_id);
return -EINVAL;
}
mdesc->vmpck_id = vmpck_id;
mdesc->ctx = snp_init_crypto(mdesc->vmpck, VMPCK_KEY_LEN);
if (!mdesc->ctx)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(snp_msg_init);
struct snp_msg_desc *snp_msg_alloc(void)
{
struct snp_msg_desc *mdesc;
void __iomem *mem;
BUILD_BUG_ON(sizeof(struct snp_guest_msg) > PAGE_SIZE);
mdesc = kzalloc(sizeof(struct snp_msg_desc), GFP_KERNEL);
if (!mdesc)
return ERR_PTR(-ENOMEM);
mem = ioremap_encrypted(sev_secrets_pa, PAGE_SIZE);
if (!mem)
goto e_free_mdesc;
mdesc->secrets = (__force struct snp_secrets_page *)mem;
/* Allocate the shared page used for the request and response message. */
mdesc->request = alloc_shared_pages(sizeof(struct snp_guest_msg));
if (!mdesc->request)
goto e_unmap;
mdesc->response = alloc_shared_pages(sizeof(struct snp_guest_msg));
if (!mdesc->response)
goto e_free_request;
return mdesc;
e_free_request:
free_shared_pages(mdesc->request, sizeof(struct snp_guest_msg));
e_unmap:
iounmap(mem);
e_free_mdesc:
kfree(mdesc);
return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL_GPL(snp_msg_alloc);
void snp_msg_free(struct snp_msg_desc *mdesc)
{
if (!mdesc)
return;
kfree(mdesc->ctx);
free_shared_pages(mdesc->response, sizeof(struct snp_guest_msg));
free_shared_pages(mdesc->request, sizeof(struct snp_guest_msg));
iounmap((__force void __iomem *)mdesc->secrets);
memset(mdesc, 0, sizeof(*mdesc));
kfree(mdesc);
}
EXPORT_SYMBOL_GPL(snp_msg_free);
/* Mutex to serialize the shared buffer access and command handling. */
static DEFINE_MUTEX(snp_cmd_mutex);
/*
* If an error is received from the host or AMD Secure Processor (ASP) there
* are two options. Either retry the exact same encrypted request or discontinue
* using the VMPCK.
*
* This is because in the current encryption scheme GHCB v2 uses AES-GCM to
* encrypt the requests. The IV for this scheme is the sequence number. GCM
* cannot tolerate IV reuse.
*
* The ASP FW v1.51 only increments the sequence numbers on a successful
* guest<->ASP back and forth and only accepts messages at its exact sequence
* number.
*
* So if the sequence number were to be reused the encryption scheme is
* vulnerable. If the sequence number were incremented for a fresh IV the ASP
* will reject the request.
*/
static void snp_disable_vmpck(struct snp_msg_desc *mdesc)
{
pr_alert("Disabling VMPCK%d communication key to prevent IV reuse.\n",
mdesc->vmpck_id);
memzero_explicit(mdesc->vmpck, VMPCK_KEY_LEN);
mdesc->vmpck = NULL;
}
static inline u64 __snp_get_msg_seqno(struct snp_msg_desc *mdesc)
{
u64 count;
lockdep_assert_held(&snp_cmd_mutex);
/* Read the current message sequence counter from secrets pages */
count = *mdesc->os_area_msg_seqno;
return count + 1;
}
/* Return a non-zero on success */
static u64 snp_get_msg_seqno(struct snp_msg_desc *mdesc)
{
u64 count = __snp_get_msg_seqno(mdesc);
/*
* The message sequence counter for the SNP guest request is a 64-bit
* value but the version 2 of GHCB specification defines a 32-bit storage
* for it. If the counter exceeds the 32-bit value then return zero.
* The caller should check the return value, but if the caller happens to
* not check the value and use it, then the firmware treats zero as an
* invalid number and will fail the message request.
*/
if (count >= UINT_MAX) {
pr_err("request message sequence counter overflow\n");
return 0;
}
return count;
}
static void snp_inc_msg_seqno(struct snp_msg_desc *mdesc)
{
/*
* The counter is also incremented by the PSP, so increment it by 2
* and save in secrets page.
*/
*mdesc->os_area_msg_seqno += 2;
}
static int verify_and_dec_payload(struct snp_msg_desc *mdesc, struct snp_guest_req *req)
{
struct snp_guest_msg *resp_msg = &mdesc->secret_response;
struct snp_guest_msg *req_msg = &mdesc->secret_request;
struct snp_guest_msg_hdr *req_msg_hdr = &req_msg->hdr;
struct snp_guest_msg_hdr *resp_msg_hdr = &resp_msg->hdr;
struct aesgcm_ctx *ctx = mdesc->ctx;
u8 iv[GCM_AES_IV_SIZE] = {};
pr_debug("response [seqno %lld type %d version %d sz %d]\n",
resp_msg_hdr->msg_seqno, resp_msg_hdr->msg_type, resp_msg_hdr->msg_version,
resp_msg_hdr->msg_sz);
/* Copy response from shared memory to encrypted memory. */
memcpy(resp_msg, mdesc->response, sizeof(*resp_msg));
/* Verify that the sequence counter is incremented by 1 */
if (unlikely(resp_msg_hdr->msg_seqno != (req_msg_hdr->msg_seqno + 1)))
return -EBADMSG;
/* Verify response message type and version number. */
if (resp_msg_hdr->msg_type != (req_msg_hdr->msg_type + 1) ||
resp_msg_hdr->msg_version != req_msg_hdr->msg_version)
return -EBADMSG;
/*
* If the message size is greater than our buffer length then return
* an error.
*/
if (unlikely((resp_msg_hdr->msg_sz + ctx->authsize) > req->resp_sz))
return -EBADMSG;
/* Decrypt the payload */
memcpy(iv, &resp_msg_hdr->msg_seqno, min(sizeof(iv), sizeof(resp_msg_hdr->msg_seqno)));
if (!aesgcm_decrypt(ctx, req->resp_buf, resp_msg->payload, resp_msg_hdr->msg_sz,
&resp_msg_hdr->algo, AAD_LEN, iv, resp_msg_hdr->authtag))
return -EBADMSG;
return 0;
}
static int enc_payload(struct snp_msg_desc *mdesc, u64 seqno, struct snp_guest_req *req)
{
struct snp_guest_msg *msg = &mdesc->secret_request;
struct snp_guest_msg_hdr *hdr = &msg->hdr;
struct aesgcm_ctx *ctx = mdesc->ctx;
u8 iv[GCM_AES_IV_SIZE] = {};
memset(msg, 0, sizeof(*msg));
hdr->algo = SNP_AEAD_AES_256_GCM;
hdr->hdr_version = MSG_HDR_VER;
hdr->hdr_sz = sizeof(*hdr);
hdr->msg_type = req->msg_type;
hdr->msg_version = req->msg_version;
hdr->msg_seqno = seqno;
hdr->msg_vmpck = req->vmpck_id;
hdr->msg_sz = req->req_sz;
/* Verify the sequence number is non-zero */
if (!hdr->msg_seqno)
return -ENOSR;
pr_debug("request [seqno %lld type %d version %d sz %d]\n",
hdr->msg_seqno, hdr->msg_type, hdr->msg_version, hdr->msg_sz);
if (WARN_ON((req->req_sz + ctx->authsize) > sizeof(msg->payload)))
return -EBADMSG;
memcpy(iv, &hdr->msg_seqno, min(sizeof(iv), sizeof(hdr->msg_seqno)));
aesgcm_encrypt(ctx, msg->payload, req->req_buf, req->req_sz, &hdr->algo,
AAD_LEN, iv, hdr->authtag);
return 0;
}
static int __handle_guest_request(struct snp_msg_desc *mdesc, struct snp_guest_req *req)
{
unsigned long req_start = jiffies;
unsigned int override_npages = 0;
u64 override_err = 0;
int rc;
retry_request:
/*
* Call firmware to process the request. In this function the encrypted
* message enters shared memory with the host. So after this call the
* sequence number must be incremented or the VMPCK must be deleted to
* prevent reuse of the IV.
*/
rc = snp_issue_guest_request(req);
switch (rc) {
case -ENOSPC:
/*
* If the extended guest request fails due to having too
* small of a certificate data buffer, retry the same
* guest request without the extended data request in
* order to increment the sequence number and thus avoid
* IV reuse.
*/
override_npages = req->input.data_npages;
req->exit_code = SVM_VMGEXIT_GUEST_REQUEST;
/*
* Override the error to inform callers the given extended
* request buffer size was too small and give the caller the
* required buffer size.
*/
override_err = SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN);
/*
* If this call to the firmware succeeds, the sequence number can
* be incremented allowing for continued use of the VMPCK. If
* there is an error reflected in the return value, this value
* is checked further down and the result will be the deletion
* of the VMPCK and the error code being propagated back to the
* user as an ioctl() return code.
*/
goto retry_request;
/*
* The host may return SNP_GUEST_VMM_ERR_BUSY if the request has been
* throttled. Retry in the driver to avoid returning and reusing the
* message sequence number on a different message.
*/
case -EAGAIN:
if (jiffies - req_start > SNP_REQ_MAX_RETRY_DURATION) {
rc = -ETIMEDOUT;
break;
}
schedule_timeout_killable(SNP_REQ_RETRY_DELAY);
goto retry_request;
}
/*
* Increment the message sequence number. There is no harm in doing
* this now because decryption uses the value stored in the response
* structure and any failure will wipe the VMPCK, preventing further
* use anyway.
*/
snp_inc_msg_seqno(mdesc);
if (override_err) {
req->exitinfo2 = override_err;
/*
* If an extended guest request was issued and the supplied certificate
* buffer was not large enough, a standard guest request was issued to
* prevent IV reuse. If the standard request was successful, return -EIO
* back to the caller as would have originally been returned.
*/
if (!rc && override_err == SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN))
rc = -EIO;
}
if (override_npages)
req->input.data_npages = override_npages;
return rc;
}
int snp_send_guest_request(struct snp_msg_desc *mdesc, struct snp_guest_req *req)
{
u64 seqno;
int rc;
/*
* enc_payload() calls aesgcm_encrypt(), which can potentially offload to HW.
* The offload's DMA SG list of data to encrypt has to be in linear mapping.
*/
if (!virt_addr_valid(req->req_buf) || !virt_addr_valid(req->resp_buf)) {
pr_warn("AES-GSM buffers must be in linear mapping");
return -EINVAL;
}
guard(mutex)(&snp_cmd_mutex);
/* Check if the VMPCK is not empty */
if (!mdesc->vmpck || !memchr_inv(mdesc->vmpck, 0, VMPCK_KEY_LEN)) {
pr_err_ratelimited("VMPCK is disabled\n");
return -ENOTTY;
}
/* Get message sequence and verify that its a non-zero */
seqno = snp_get_msg_seqno(mdesc);
if (!seqno)
return -EIO;
/* Clear shared memory's response for the host to populate. */
memset(mdesc->response, 0, sizeof(struct snp_guest_msg));
/* Encrypt the userspace provided payload in mdesc->secret_request. */
rc = enc_payload(mdesc, seqno, req);
if (rc)
return rc;
/*
* Write the fully encrypted request to the shared unencrypted
* request page.
*/
memcpy(mdesc->request, &mdesc->secret_request, sizeof(mdesc->secret_request));
/* Initialize the input address for guest request */
req->input.req_gpa = __pa(mdesc->request);
req->input.resp_gpa = __pa(mdesc->response);
req->input.data_gpa = req->certs_data ? __pa(req->certs_data) : 0;
rc = __handle_guest_request(mdesc, req);
if (rc) {
if (rc == -EIO &&
req->exitinfo2 == SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN))
return rc;
pr_alert("Detected error from ASP request. rc: %d, exitinfo2: 0x%llx\n",
rc, req->exitinfo2);
snp_disable_vmpck(mdesc);
return rc;
}
rc = verify_and_dec_payload(mdesc, req);
if (rc) {
pr_alert("Detected unexpected decode failure from ASP. rc: %d\n", rc);
snp_disable_vmpck(mdesc);
return rc;
}
return 0;
}
EXPORT_SYMBOL_GPL(snp_send_guest_request);
static int __init snp_get_tsc_info(void)
{
struct snp_tsc_info_resp *tsc_resp;
struct snp_tsc_info_req *tsc_req;
struct snp_msg_desc *mdesc;
struct snp_guest_req req = {};
int rc = -ENOMEM;
tsc_req = kzalloc(sizeof(*tsc_req), GFP_KERNEL);
if (!tsc_req)
return rc;
/*
* The intermediate response buffer is used while decrypting the
* response payload. Make sure that it has enough space to cover
* the authtag.
*/
tsc_resp = kzalloc(sizeof(*tsc_resp) + AUTHTAG_LEN, GFP_KERNEL);
if (!tsc_resp)
goto e_free_tsc_req;
mdesc = snp_msg_alloc();
if (IS_ERR_OR_NULL(mdesc))
goto e_free_tsc_resp;
rc = snp_msg_init(mdesc, snp_vmpl);
if (rc)
goto e_free_mdesc;
req.msg_version = MSG_HDR_VER;
req.msg_type = SNP_MSG_TSC_INFO_REQ;
req.vmpck_id = snp_vmpl;
req.req_buf = tsc_req;
req.req_sz = sizeof(*tsc_req);
req.resp_buf = (void *)tsc_resp;
req.resp_sz = sizeof(*tsc_resp) + AUTHTAG_LEN;
req.exit_code = SVM_VMGEXIT_GUEST_REQUEST;
rc = snp_send_guest_request(mdesc, &req);
if (rc)
goto e_request;
pr_debug("%s: response status 0x%x scale 0x%llx offset 0x%llx factor 0x%x\n",
__func__, tsc_resp->status, tsc_resp->tsc_scale, tsc_resp->tsc_offset,
tsc_resp->tsc_factor);
if (!tsc_resp->status) {
snp_tsc_scale = tsc_resp->tsc_scale;
snp_tsc_offset = tsc_resp->tsc_offset;
} else {
pr_err("Failed to get TSC info, response status 0x%x\n", tsc_resp->status);
rc = -EIO;
}
e_request:
/* The response buffer contains sensitive data, explicitly clear it. */
memzero_explicit(tsc_resp, sizeof(*tsc_resp) + AUTHTAG_LEN);
e_free_mdesc:
snp_msg_free(mdesc);
e_free_tsc_resp:
kfree(tsc_resp);
e_free_tsc_req:
kfree(tsc_req);
return rc;
}
void __init snp_secure_tsc_prepare(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_SNP_SECURE_TSC))
return;
if (snp_get_tsc_info()) {
pr_alert("Unable to retrieve Secure TSC info from ASP\n");
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECURE_TSC);
}
pr_debug("SecureTSC enabled");
}
static unsigned long securetsc_get_tsc_khz(void)
{
return snp_tsc_freq_khz;
}
void __init snp_secure_tsc_init(void)
{
struct snp_secrets_page *secrets;
unsigned long tsc_freq_mhz;
void *mem;
if (!cc_platform_has(CC_ATTR_GUEST_SNP_SECURE_TSC))
return;
mem = early_memremap_encrypted(sev_secrets_pa, PAGE_SIZE);
if (!mem) {
pr_err("Unable to get TSC_FACTOR: failed to map the SNP secrets page.\n");
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECURE_TSC);
}
secrets = (__force struct snp_secrets_page *)mem;
setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
rdmsrq(MSR_AMD64_GUEST_TSC_FREQ, tsc_freq_mhz);
/* Extract the GUEST TSC MHZ from BIT[17:0], rest is reserved space */
tsc_freq_mhz &= GENMASK_ULL(17, 0);
snp_tsc_freq_khz = SNP_SCALE_TSC_FREQ(tsc_freq_mhz * 1000, secrets->tsc_factor);
x86_platform.calibrate_cpu = securetsc_get_tsc_khz;
x86_platform.calibrate_tsc = securetsc_get_tsc_khz;
early_memunmap(mem, PAGE_SIZE);
}