mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

The PID of the stub process can be obtained from current_mm_id(). There is no need to track it via userspace_pid[]. Stop doing that to simplify the code. Signed-off-by: Tiwei Bie <tiwei.btw@antgroup.com> Link: https://patch.msgid.link/20250711065021.2535362-4-tiwei.bie@linux.dev Signed-off-by: Johannes Berg <johannes.berg@intel.com>
904 lines
22 KiB
C
904 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2021 Benjamin Berg <benjamin@sipsolutions.net>
|
|
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
|
|
* Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <unistd.h>
|
|
#include <sched.h>
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
#include <mem_user.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/socket.h>
|
|
#include <asm/unistd.h>
|
|
#include <as-layout.h>
|
|
#include <init.h>
|
|
#include <kern_util.h>
|
|
#include <mem.h>
|
|
#include <os.h>
|
|
#include <ptrace_user.h>
|
|
#include <registers.h>
|
|
#include <skas.h>
|
|
#include <sysdep/stub.h>
|
|
#include <sysdep/mcontext.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/threads.h>
|
|
#include <timetravel.h>
|
|
#include <asm-generic/rwonce.h>
|
|
#include "../internal.h"
|
|
|
|
int is_skas_winch(int pid, int fd, void *data)
|
|
{
|
|
return pid == getpgrp();
|
|
}
|
|
|
|
static const char *ptrace_reg_name(int idx)
|
|
{
|
|
#define R(n) case HOST_##n: return #n
|
|
|
|
switch (idx) {
|
|
#ifdef __x86_64__
|
|
R(BX);
|
|
R(CX);
|
|
R(DI);
|
|
R(SI);
|
|
R(DX);
|
|
R(BP);
|
|
R(AX);
|
|
R(R8);
|
|
R(R9);
|
|
R(R10);
|
|
R(R11);
|
|
R(R12);
|
|
R(R13);
|
|
R(R14);
|
|
R(R15);
|
|
R(ORIG_AX);
|
|
R(CS);
|
|
R(SS);
|
|
R(EFLAGS);
|
|
#elif defined(__i386__)
|
|
R(IP);
|
|
R(SP);
|
|
R(EFLAGS);
|
|
R(AX);
|
|
R(BX);
|
|
R(CX);
|
|
R(DX);
|
|
R(SI);
|
|
R(DI);
|
|
R(BP);
|
|
R(CS);
|
|
R(SS);
|
|
R(DS);
|
|
R(FS);
|
|
R(ES);
|
|
R(GS);
|
|
R(ORIG_AX);
|
|
#endif
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static int ptrace_dump_regs(int pid)
|
|
{
|
|
unsigned long regs[MAX_REG_NR];
|
|
int i;
|
|
|
|
if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
|
|
return -errno;
|
|
|
|
printk(UM_KERN_ERR "Stub registers -\n");
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
const char *regname = ptrace_reg_name(i);
|
|
|
|
printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Signals that are OK to receive in the stub - we'll just continue it.
|
|
* SIGWINCH will happen when UML is inside a detached screen.
|
|
*/
|
|
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
|
|
|
|
/* Signals that the stub will finish with - anything else is an error */
|
|
#define STUB_DONE_MASK (1 << SIGTRAP)
|
|
|
|
void wait_stub_done(int pid)
|
|
{
|
|
int n, status, err;
|
|
|
|
while (1) {
|
|
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
|
|
if ((n < 0) || !WIFSTOPPED(status))
|
|
goto bad_wait;
|
|
|
|
if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
|
|
break;
|
|
|
|
err = ptrace(PTRACE_CONT, pid, 0, 0);
|
|
if (err) {
|
|
printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
|
|
__func__, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
}
|
|
|
|
if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
|
|
return;
|
|
|
|
bad_wait:
|
|
err = ptrace_dump_regs(pid);
|
|
if (err)
|
|
printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
|
|
-err);
|
|
printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
|
|
__func__, pid, n, errno, status);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys)
|
|
{
|
|
struct stub_data *data = (void *)mm_idp->stack;
|
|
int ret;
|
|
|
|
do {
|
|
const char byte = 0;
|
|
struct iovec iov = {
|
|
.iov_base = (void *)&byte,
|
|
.iov_len = sizeof(byte),
|
|
};
|
|
union {
|
|
char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))];
|
|
struct cmsghdr align;
|
|
} ctrl;
|
|
struct msghdr msgh = {
|
|
.msg_iov = &iov,
|
|
.msg_iovlen = 1,
|
|
};
|
|
|
|
if (!running) {
|
|
if (mm_idp->syscall_fd_num) {
|
|
unsigned int fds_size =
|
|
sizeof(int) * mm_idp->syscall_fd_num;
|
|
struct cmsghdr *cmsg;
|
|
|
|
msgh.msg_control = ctrl.data;
|
|
msgh.msg_controllen = CMSG_SPACE(fds_size);
|
|
cmsg = CMSG_FIRSTHDR(&msgh);
|
|
cmsg->cmsg_level = SOL_SOCKET;
|
|
cmsg->cmsg_type = SCM_RIGHTS;
|
|
cmsg->cmsg_len = CMSG_LEN(fds_size);
|
|
memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map,
|
|
fds_size);
|
|
|
|
CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock,
|
|
&msgh, 0));
|
|
}
|
|
|
|
data->signal = 0;
|
|
data->futex = FUTEX_IN_CHILD;
|
|
CATCH_EINTR(syscall(__NR_futex, &data->futex,
|
|
FUTEX_WAKE, 1, NULL, NULL, 0));
|
|
}
|
|
|
|
do {
|
|
/*
|
|
* We need to check whether the child is still alive
|
|
* before and after the FUTEX_WAIT call. Before, in
|
|
* case it just died but we still updated data->futex
|
|
* to FUTEX_IN_CHILD. And after, in case it died while
|
|
* we were waiting (and SIGCHLD woke us up, see the
|
|
* IRQ handler in mmu.c).
|
|
*
|
|
* Either way, if PID is negative, then we have no
|
|
* choice but to kill the task.
|
|
*/
|
|
if (__READ_ONCE(mm_idp->pid) < 0)
|
|
goto out_kill;
|
|
|
|
ret = syscall(__NR_futex, &data->futex,
|
|
FUTEX_WAIT, FUTEX_IN_CHILD,
|
|
NULL, NULL, 0);
|
|
if (ret < 0 && errno != EINTR && errno != EAGAIN) {
|
|
printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n",
|
|
__func__, errno);
|
|
goto out_kill;
|
|
}
|
|
} while (data->futex == FUTEX_IN_CHILD);
|
|
|
|
if (__READ_ONCE(mm_idp->pid) < 0)
|
|
goto out_kill;
|
|
|
|
running = 0;
|
|
|
|
/* We may receive a SIGALRM before SIGSYS, iterate again. */
|
|
} while (wait_sigsys && data->signal == SIGALRM);
|
|
|
|
if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) {
|
|
printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__);
|
|
goto out_kill;
|
|
}
|
|
|
|
if (wait_sigsys && data->signal != SIGSYS) {
|
|
printk(UM_KERN_ERR "%s : expected SIGSYS but got %d",
|
|
__func__, data->signal);
|
|
goto out_kill;
|
|
}
|
|
|
|
return;
|
|
|
|
out_kill:
|
|
printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n",
|
|
__func__, mm_idp->pid, errno);
|
|
/* This is not true inside start_userspace */
|
|
if (current_mm_id() == mm_idp)
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
extern unsigned long current_stub_stack(void);
|
|
|
|
static void get_skas_faultinfo(int pid, struct faultinfo *fi)
|
|
{
|
|
int err;
|
|
|
|
err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
|
|
if (err) {
|
|
printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
|
|
"errno = %d\n", pid, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
wait_stub_done(pid);
|
|
|
|
/*
|
|
* faultinfo is prepared by the stub_segv_handler at start of
|
|
* the stub stack page. We just have to copy it.
|
|
*/
|
|
memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
|
|
}
|
|
|
|
static void handle_trap(struct uml_pt_regs *regs)
|
|
{
|
|
if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
|
|
fatal_sigsegv();
|
|
|
|
handle_syscall(regs);
|
|
}
|
|
|
|
extern char __syscall_stub_start[];
|
|
|
|
static int stub_exe_fd;
|
|
|
|
struct tramp_data {
|
|
struct stub_data *stub_data;
|
|
/* 0 is inherited, 1 is the kernel side */
|
|
int sockpair[2];
|
|
};
|
|
|
|
#ifndef CLOSE_RANGE_CLOEXEC
|
|
#define CLOSE_RANGE_CLOEXEC (1U << 2)
|
|
#endif
|
|
|
|
static int userspace_tramp(void *data)
|
|
{
|
|
struct tramp_data *tramp_data = data;
|
|
char *const argv[] = { "uml-userspace", NULL };
|
|
unsigned long long offset;
|
|
struct stub_init_data init_data = {
|
|
.seccomp = using_seccomp,
|
|
.stub_start = STUB_START,
|
|
};
|
|
struct iomem_region *iomem;
|
|
int ret;
|
|
|
|
if (using_seccomp) {
|
|
init_data.signal_handler = STUB_CODE +
|
|
(unsigned long) stub_signal_interrupt -
|
|
(unsigned long) __syscall_stub_start;
|
|
init_data.signal_restorer = STUB_CODE +
|
|
(unsigned long) stub_signal_restorer -
|
|
(unsigned long) __syscall_stub_start;
|
|
} else {
|
|
init_data.signal_handler = STUB_CODE +
|
|
(unsigned long) stub_segv_handler -
|
|
(unsigned long) __syscall_stub_start;
|
|
init_data.signal_restorer = 0;
|
|
}
|
|
|
|
init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
|
|
&offset);
|
|
init_data.stub_code_offset = MMAP_OFFSET(offset);
|
|
|
|
init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data),
|
|
&offset);
|
|
init_data.stub_data_offset = MMAP_OFFSET(offset);
|
|
|
|
/*
|
|
* Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
|
|
* and then unsetting it on all memory related FDs.
|
|
* This is not strictly necessary from a safety perspective.
|
|
*/
|
|
syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
|
|
|
|
fcntl(init_data.stub_data_fd, F_SETFD, 0);
|
|
|
|
/* In SECCOMP mode, these FDs are passed when needed */
|
|
if (!using_seccomp) {
|
|
for (iomem = iomem_regions; iomem; iomem = iomem->next)
|
|
fcntl(iomem->fd, F_SETFD, 0);
|
|
}
|
|
|
|
/* dup2 signaling FD/socket to STDIN */
|
|
if (dup2(tramp_data->sockpair[0], 0) < 0)
|
|
exit(3);
|
|
close(tramp_data->sockpair[0]);
|
|
|
|
/* Write init_data and close write side */
|
|
ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data));
|
|
close(tramp_data->sockpair[1]);
|
|
|
|
if (ret != sizeof(init_data))
|
|
exit(4);
|
|
|
|
/* Raw execveat for compatibility with older libc versions */
|
|
syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
|
|
(unsigned long)argv, NULL, AT_EMPTY_PATH);
|
|
|
|
exit(5);
|
|
}
|
|
|
|
extern char stub_exe_start[];
|
|
extern char stub_exe_end[];
|
|
|
|
extern char *tempdir;
|
|
|
|
#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
|
|
|
|
#ifndef MFD_EXEC
|
|
#define MFD_EXEC 0x0010U
|
|
#endif
|
|
|
|
static int __init init_stub_exe_fd(void)
|
|
{
|
|
size_t written = 0;
|
|
char *tmpfile = NULL;
|
|
|
|
stub_exe_fd = memfd_create("uml-userspace",
|
|
MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
|
|
|
|
if (stub_exe_fd < 0) {
|
|
printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
|
|
|
|
tmpfile = malloc(strlen(tempdir) +
|
|
strlen(STUB_EXE_NAME_TEMPLATE) + 1);
|
|
if (tmpfile == NULL)
|
|
panic("Failed to allocate memory for stub binary name");
|
|
|
|
strcpy(tmpfile, tempdir);
|
|
strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
|
|
|
|
stub_exe_fd = mkstemp(tmpfile);
|
|
if (stub_exe_fd < 0)
|
|
panic("Could not create temporary file for stub binary: %d",
|
|
-errno);
|
|
}
|
|
|
|
while (written < stub_exe_end - stub_exe_start) {
|
|
ssize_t res = write(stub_exe_fd, stub_exe_start + written,
|
|
stub_exe_end - stub_exe_start - written);
|
|
if (res < 0) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
|
|
if (tmpfile)
|
|
unlink(tmpfile);
|
|
panic("Failed write stub binary: %d", -errno);
|
|
}
|
|
|
|
written += res;
|
|
}
|
|
|
|
if (!tmpfile) {
|
|
fcntl(stub_exe_fd, F_ADD_SEALS,
|
|
F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
|
|
} else {
|
|
if (fchmod(stub_exe_fd, 00500) < 0) {
|
|
unlink(tmpfile);
|
|
panic("Could not make stub binary executable: %d",
|
|
-errno);
|
|
}
|
|
|
|
close(stub_exe_fd);
|
|
stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
|
|
if (stub_exe_fd < 0) {
|
|
unlink(tmpfile);
|
|
panic("Could not reopen stub binary: %d", -errno);
|
|
}
|
|
|
|
unlink(tmpfile);
|
|
free(tmpfile);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
__initcall(init_stub_exe_fd);
|
|
|
|
int using_seccomp;
|
|
|
|
/**
|
|
* start_userspace() - prepare a new userspace process
|
|
* @mm_id: The corresponding struct mm_id
|
|
*
|
|
* Setups a new temporary stack page that is used while userspace_tramp() runs
|
|
* Clones the kernel process into a new userspace process, with FDs only.
|
|
*
|
|
* Return: When positive: the process id of the new userspace process,
|
|
* when negative: an error number.
|
|
* FIXME: can PIDs become negative?!
|
|
*/
|
|
int start_userspace(struct mm_id *mm_id)
|
|
{
|
|
struct stub_data *proc_data = (void *)mm_id->stack;
|
|
struct tramp_data tramp_data = {
|
|
.stub_data = proc_data,
|
|
};
|
|
void *stack;
|
|
unsigned long sp;
|
|
int status, n, err;
|
|
|
|
/* setup a temporary stack page */
|
|
stack = mmap(NULL, UM_KERN_PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (stack == MAP_FAILED) {
|
|
err = -errno;
|
|
printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
|
|
__func__, errno);
|
|
return err;
|
|
}
|
|
|
|
/* set stack pointer to the end of the stack page, so it can grow downwards */
|
|
sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
|
|
|
|
/* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */
|
|
if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) {
|
|
err = -errno;
|
|
printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n",
|
|
__func__, errno);
|
|
return err;
|
|
}
|
|
|
|
if (using_seccomp)
|
|
proc_data->futex = FUTEX_IN_CHILD;
|
|
|
|
mm_id->pid = clone(userspace_tramp, (void *) sp,
|
|
CLONE_VFORK | CLONE_VM | SIGCHLD,
|
|
(void *)&tramp_data);
|
|
if (mm_id->pid < 0) {
|
|
err = -errno;
|
|
printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
|
|
__func__, errno);
|
|
goto out_close;
|
|
}
|
|
|
|
if (using_seccomp) {
|
|
wait_stub_done_seccomp(mm_id, 1, 1);
|
|
} else {
|
|
do {
|
|
CATCH_EINTR(n = waitpid(mm_id->pid, &status,
|
|
WUNTRACED | __WALL));
|
|
if (n < 0) {
|
|
err = -errno;
|
|
printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
|
|
__func__, errno);
|
|
goto out_kill;
|
|
}
|
|
} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
|
|
|
|
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
|
|
err = -EINVAL;
|
|
printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
|
|
__func__, status);
|
|
goto out_kill;
|
|
}
|
|
|
|
if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL,
|
|
(void *) PTRACE_O_TRACESYSGOOD) < 0) {
|
|
err = -errno;
|
|
printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
|
|
__func__, errno);
|
|
goto out_kill;
|
|
}
|
|
}
|
|
|
|
if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
|
|
err = -errno;
|
|
printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
|
|
__func__, errno);
|
|
goto out_kill;
|
|
}
|
|
|
|
close(tramp_data.sockpair[0]);
|
|
if (using_seccomp)
|
|
mm_id->sock = tramp_data.sockpair[1];
|
|
else
|
|
close(tramp_data.sockpair[1]);
|
|
|
|
return 0;
|
|
|
|
out_kill:
|
|
os_kill_ptraced_process(mm_id->pid, 1);
|
|
out_close:
|
|
close(tramp_data.sockpair[0]);
|
|
close(tramp_data.sockpair[1]);
|
|
|
|
mm_id->pid = -1;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int unscheduled_userspace_iterations;
|
|
extern unsigned long tt_extra_sched_jiffies;
|
|
|
|
void userspace(struct uml_pt_regs *regs)
|
|
{
|
|
int err, status, op;
|
|
siginfo_t si_ptrace;
|
|
siginfo_t *si;
|
|
int sig;
|
|
|
|
/* Handle any immediate reschedules or signals */
|
|
interrupt_end();
|
|
|
|
while (1) {
|
|
struct mm_id *mm_id = current_mm_id();
|
|
|
|
/*
|
|
* When we are in time-travel mode, userspace can theoretically
|
|
* do a *lot* of work without being scheduled. The problem with
|
|
* this is that it will prevent kernel bookkeeping (primarily
|
|
* the RCU) from running and this can for example cause OOM
|
|
* situations.
|
|
*
|
|
* This code accounts a jiffie against the scheduling clock
|
|
* after the defined userspace iterations in the same thread.
|
|
* By doing so the situation is effectively prevented.
|
|
*/
|
|
if (time_travel_mode == TT_MODE_INFCPU ||
|
|
time_travel_mode == TT_MODE_EXTERNAL) {
|
|
#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
|
|
if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
|
|
unscheduled_userspace_iterations++ >
|
|
CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
|
|
tt_extra_sched_jiffies += 1;
|
|
unscheduled_userspace_iterations = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
time_travel_print_bc_msg();
|
|
|
|
current_mm_sync();
|
|
|
|
if (using_seccomp) {
|
|
struct stub_data *proc_data = (void *) mm_id->stack;
|
|
|
|
err = set_stub_state(regs, proc_data, singlestepping());
|
|
if (err) {
|
|
printk(UM_KERN_ERR "%s - failed to set regs: %d",
|
|
__func__, err);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
/* Must have been reset by the syscall caller */
|
|
if (proc_data->restart_wait != 0)
|
|
panic("Programming error: Flag to only run syscalls in child was not cleared!");
|
|
|
|
/* Mark pending syscalls for flushing */
|
|
proc_data->syscall_data_len = mm_id->syscall_data_len;
|
|
|
|
wait_stub_done_seccomp(mm_id, 0, 0);
|
|
|
|
sig = proc_data->signal;
|
|
|
|
if (sig == SIGTRAP && proc_data->err != 0) {
|
|
printk(UM_KERN_ERR "%s - Error flushing stub syscalls",
|
|
__func__);
|
|
syscall_stub_dump_error(mm_id);
|
|
mm_id->syscall_data_len = proc_data->err;
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
mm_id->syscall_data_len = 0;
|
|
mm_id->syscall_fd_num = 0;
|
|
|
|
err = get_stub_state(regs, proc_data, NULL);
|
|
if (err) {
|
|
printk(UM_KERN_ERR "%s - failed to get regs: %d",
|
|
__func__, err);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si))
|
|
panic("%s - Invalid siginfo offset from child",
|
|
__func__);
|
|
si = (void *)&proc_data->sigstack[proc_data->si_offset];
|
|
|
|
regs->is_user = 1;
|
|
|
|
/* Fill in ORIG_RAX and extract fault information */
|
|
PT_SYSCALL_NR(regs->gp) = si->si_syscall;
|
|
if (sig == SIGSEGV) {
|
|
mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset];
|
|
|
|
GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext);
|
|
}
|
|
} else {
|
|
int pid = mm_id->pid;
|
|
|
|
/* Flush out any pending syscalls */
|
|
err = syscall_stub_flush(mm_id);
|
|
if (err) {
|
|
if (err == -ENOMEM)
|
|
report_enomem();
|
|
|
|
printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
|
|
__func__, -err);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
/*
|
|
* This can legitimately fail if the process loads a
|
|
* bogus value into a segment register. It will
|
|
* segfault and PTRACE_GETREGS will read that value
|
|
* out of the process. However, PTRACE_SETREGS will
|
|
* fail. In this case, there is nothing to do but
|
|
* just kill the process.
|
|
*/
|
|
if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
|
|
printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
|
|
__func__, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
if (put_fp_registers(pid, regs->fp)) {
|
|
printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
|
|
__func__, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
if (singlestepping())
|
|
op = PTRACE_SYSEMU_SINGLESTEP;
|
|
else
|
|
op = PTRACE_SYSEMU;
|
|
|
|
if (ptrace(op, pid, 0, 0)) {
|
|
printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
|
|
__func__, op, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
|
|
if (err < 0) {
|
|
printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
|
|
__func__, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
regs->is_user = 1;
|
|
if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
|
|
printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
|
|
__func__, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
if (get_fp_registers(pid, regs->fp)) {
|
|
printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
|
|
__func__, errno);
|
|
fatal_sigsegv();
|
|
}
|
|
|
|
if (WIFSTOPPED(status)) {
|
|
sig = WSTOPSIG(status);
|
|
|
|
/*
|
|
* These signal handlers need the si argument
|
|
* and SIGSEGV needs the faultinfo.
|
|
* The SIGIO and SIGALARM handlers which constitute
|
|
* the majority of invocations, do not use it.
|
|
*/
|
|
switch (sig) {
|
|
case SIGSEGV:
|
|
get_skas_faultinfo(pid,
|
|
®s->faultinfo);
|
|
fallthrough;
|
|
case SIGTRAP:
|
|
case SIGILL:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGWINCH:
|
|
ptrace(PTRACE_GETSIGINFO, pid, 0,
|
|
(struct siginfo *)&si_ptrace);
|
|
si = &si_ptrace;
|
|
break;
|
|
default:
|
|
si = NULL;
|
|
break;
|
|
}
|
|
} else {
|
|
sig = 0;
|
|
}
|
|
}
|
|
|
|
UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
|
|
|
|
if (sig) {
|
|
switch (sig) {
|
|
case SIGSEGV:
|
|
if (using_seccomp || PTRACE_FULL_FAULTINFO)
|
|
(*sig_info[SIGSEGV])(SIGSEGV,
|
|
(struct siginfo *)si,
|
|
regs, NULL);
|
|
else
|
|
segv(regs->faultinfo, 0, 1, NULL, NULL);
|
|
|
|
break;
|
|
case SIGSYS:
|
|
handle_syscall(regs);
|
|
break;
|
|
case SIGTRAP + 0x80:
|
|
handle_trap(regs);
|
|
break;
|
|
case SIGTRAP:
|
|
relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL);
|
|
break;
|
|
case SIGALRM:
|
|
break;
|
|
case SIGIO:
|
|
case SIGILL:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGWINCH:
|
|
block_signals_trace();
|
|
(*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL);
|
|
unblock_signals_trace();
|
|
break;
|
|
default:
|
|
printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
|
|
__func__, sig);
|
|
fatal_sigsegv();
|
|
}
|
|
interrupt_end();
|
|
|
|
/* Avoid -ERESTARTSYS handling in host */
|
|
if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
|
|
PT_SYSCALL_NR(regs->gp) = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
|
|
{
|
|
(*buf)[0].JB_IP = (unsigned long) handler;
|
|
(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
|
|
sizeof(void *);
|
|
}
|
|
|
|
#define INIT_JMP_NEW_THREAD 0
|
|
#define INIT_JMP_CALLBACK 1
|
|
#define INIT_JMP_HALT 2
|
|
#define INIT_JMP_REBOOT 3
|
|
|
|
void switch_threads(jmp_buf *me, jmp_buf *you)
|
|
{
|
|
unscheduled_userspace_iterations = 0;
|
|
|
|
if (UML_SETJMP(me) == 0)
|
|
UML_LONGJMP(you, 1);
|
|
}
|
|
|
|
static jmp_buf initial_jmpbuf;
|
|
|
|
/* XXX Make these percpu */
|
|
static void (*cb_proc)(void *arg);
|
|
static void *cb_arg;
|
|
static jmp_buf *cb_back;
|
|
|
|
int start_idle_thread(void *stack, jmp_buf *switch_buf)
|
|
{
|
|
int n;
|
|
|
|
set_handler(SIGWINCH);
|
|
|
|
/*
|
|
* Can't use UML_SETJMP or UML_LONGJMP here because they save
|
|
* and restore signals, with the possible side-effect of
|
|
* trying to handle any signals which came when they were
|
|
* blocked, which can't be done on this stack.
|
|
* Signals must be blocked when jumping back here and restored
|
|
* after returning to the jumper.
|
|
*/
|
|
n = setjmp(initial_jmpbuf);
|
|
switch (n) {
|
|
case INIT_JMP_NEW_THREAD:
|
|
(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
|
|
(*switch_buf)[0].JB_SP = (unsigned long) stack +
|
|
UM_THREAD_SIZE - sizeof(void *);
|
|
break;
|
|
case INIT_JMP_CALLBACK:
|
|
(*cb_proc)(cb_arg);
|
|
longjmp(*cb_back, 1);
|
|
break;
|
|
case INIT_JMP_HALT:
|
|
kmalloc_ok = 0;
|
|
return 0;
|
|
case INIT_JMP_REBOOT:
|
|
kmalloc_ok = 0;
|
|
return 1;
|
|
default:
|
|
printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
|
|
__func__, n);
|
|
fatal_sigsegv();
|
|
}
|
|
longjmp(*switch_buf, 1);
|
|
|
|
/* unreachable */
|
|
printk(UM_KERN_ERR "impossible long jump!");
|
|
fatal_sigsegv();
|
|
return 0;
|
|
}
|
|
|
|
void initial_thread_cb_skas(void (*proc)(void *), void *arg)
|
|
{
|
|
jmp_buf here;
|
|
|
|
cb_proc = proc;
|
|
cb_arg = arg;
|
|
cb_back = &here;
|
|
|
|
block_signals_trace();
|
|
if (UML_SETJMP(&here) == 0)
|
|
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
|
|
unblock_signals_trace();
|
|
|
|
cb_proc = NULL;
|
|
cb_arg = NULL;
|
|
cb_back = NULL;
|
|
}
|
|
|
|
void halt_skas(void)
|
|
{
|
|
block_signals_trace();
|
|
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
|
|
}
|
|
|
|
static bool noreboot;
|
|
|
|
static int __init noreboot_cmd_param(char *str, int *add)
|
|
{
|
|
*add = 0;
|
|
noreboot = true;
|
|
return 0;
|
|
}
|
|
|
|
__uml_setup("noreboot", noreboot_cmd_param,
|
|
"noreboot\n"
|
|
" Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
|
|
" This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
|
|
" crashes in CI\n");
|
|
|
|
void reboot_skas(void)
|
|
{
|
|
block_signals_trace();
|
|
UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
|
|
}
|