linux/arch/um/os-Linux/skas/process.c
Tiwei Bie f7e9077a16 um: Stop tracking stub's PID via userspace_pid[]
The PID of the stub process can be obtained from current_mm_id().
There is no need to track it via userspace_pid[]. Stop doing that
to simplify the code.

Signed-off-by: Tiwei Bie <tiwei.btw@antgroup.com>
Link: https://patch.msgid.link/20250711065021.2535362-4-tiwei.bie@linux.dev
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2025-07-13 19:42:49 +02:00

904 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Benjamin Berg <benjamin@sipsolutions.net>
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
* Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
*/
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <sched.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <mem_user.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <asm/unistd.h>
#include <as-layout.h>
#include <init.h>
#include <kern_util.h>
#include <mem.h>
#include <os.h>
#include <ptrace_user.h>
#include <registers.h>
#include <skas.h>
#include <sysdep/stub.h>
#include <sysdep/mcontext.h>
#include <linux/futex.h>
#include <linux/threads.h>
#include <timetravel.h>
#include <asm-generic/rwonce.h>
#include "../internal.h"
int is_skas_winch(int pid, int fd, void *data)
{
return pid == getpgrp();
}
static const char *ptrace_reg_name(int idx)
{
#define R(n) case HOST_##n: return #n
switch (idx) {
#ifdef __x86_64__
R(BX);
R(CX);
R(DI);
R(SI);
R(DX);
R(BP);
R(AX);
R(R8);
R(R9);
R(R10);
R(R11);
R(R12);
R(R13);
R(R14);
R(R15);
R(ORIG_AX);
R(CS);
R(SS);
R(EFLAGS);
#elif defined(__i386__)
R(IP);
R(SP);
R(EFLAGS);
R(AX);
R(BX);
R(CX);
R(DX);
R(SI);
R(DI);
R(BP);
R(CS);
R(SS);
R(DS);
R(FS);
R(ES);
R(GS);
R(ORIG_AX);
#endif
}
return "";
}
static int ptrace_dump_regs(int pid)
{
unsigned long regs[MAX_REG_NR];
int i;
if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
return -errno;
printk(UM_KERN_ERR "Stub registers -\n");
for (i = 0; i < ARRAY_SIZE(regs); i++) {
const char *regname = ptrace_reg_name(i);
printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
}
return 0;
}
/*
* Signals that are OK to receive in the stub - we'll just continue it.
* SIGWINCH will happen when UML is inside a detached screen.
*/
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
/* Signals that the stub will finish with - anything else is an error */
#define STUB_DONE_MASK (1 << SIGTRAP)
void wait_stub_done(int pid)
{
int n, status, err;
while (1) {
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
if ((n < 0) || !WIFSTOPPED(status))
goto bad_wait;
if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
break;
err = ptrace(PTRACE_CONT, pid, 0, 0);
if (err) {
printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
}
if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
return;
bad_wait:
err = ptrace_dump_regs(pid);
if (err)
printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
-err);
printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
__func__, pid, n, errno, status);
fatal_sigsegv();
}
void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys)
{
struct stub_data *data = (void *)mm_idp->stack;
int ret;
do {
const char byte = 0;
struct iovec iov = {
.iov_base = (void *)&byte,
.iov_len = sizeof(byte),
};
union {
char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))];
struct cmsghdr align;
} ctrl;
struct msghdr msgh = {
.msg_iov = &iov,
.msg_iovlen = 1,
};
if (!running) {
if (mm_idp->syscall_fd_num) {
unsigned int fds_size =
sizeof(int) * mm_idp->syscall_fd_num;
struct cmsghdr *cmsg;
msgh.msg_control = ctrl.data;
msgh.msg_controllen = CMSG_SPACE(fds_size);
cmsg = CMSG_FIRSTHDR(&msgh);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(fds_size);
memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map,
fds_size);
CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock,
&msgh, 0));
}
data->signal = 0;
data->futex = FUTEX_IN_CHILD;
CATCH_EINTR(syscall(__NR_futex, &data->futex,
FUTEX_WAKE, 1, NULL, NULL, 0));
}
do {
/*
* We need to check whether the child is still alive
* before and after the FUTEX_WAIT call. Before, in
* case it just died but we still updated data->futex
* to FUTEX_IN_CHILD. And after, in case it died while
* we were waiting (and SIGCHLD woke us up, see the
* IRQ handler in mmu.c).
*
* Either way, if PID is negative, then we have no
* choice but to kill the task.
*/
if (__READ_ONCE(mm_idp->pid) < 0)
goto out_kill;
ret = syscall(__NR_futex, &data->futex,
FUTEX_WAIT, FUTEX_IN_CHILD,
NULL, NULL, 0);
if (ret < 0 && errno != EINTR && errno != EAGAIN) {
printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
} while (data->futex == FUTEX_IN_CHILD);
if (__READ_ONCE(mm_idp->pid) < 0)
goto out_kill;
running = 0;
/* We may receive a SIGALRM before SIGSYS, iterate again. */
} while (wait_sigsys && data->signal == SIGALRM);
if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) {
printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__);
goto out_kill;
}
if (wait_sigsys && data->signal != SIGSYS) {
printk(UM_KERN_ERR "%s : expected SIGSYS but got %d",
__func__, data->signal);
goto out_kill;
}
return;
out_kill:
printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n",
__func__, mm_idp->pid, errno);
/* This is not true inside start_userspace */
if (current_mm_id() == mm_idp)
fatal_sigsegv();
}
extern unsigned long current_stub_stack(void);
static void get_skas_faultinfo(int pid, struct faultinfo *fi)
{
int err;
err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
if (err) {
printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
"errno = %d\n", pid, errno);
fatal_sigsegv();
}
wait_stub_done(pid);
/*
* faultinfo is prepared by the stub_segv_handler at start of
* the stub stack page. We just have to copy it.
*/
memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
}
static void handle_trap(struct uml_pt_regs *regs)
{
if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
fatal_sigsegv();
handle_syscall(regs);
}
extern char __syscall_stub_start[];
static int stub_exe_fd;
struct tramp_data {
struct stub_data *stub_data;
/* 0 is inherited, 1 is the kernel side */
int sockpair[2];
};
#ifndef CLOSE_RANGE_CLOEXEC
#define CLOSE_RANGE_CLOEXEC (1U << 2)
#endif
static int userspace_tramp(void *data)
{
struct tramp_data *tramp_data = data;
char *const argv[] = { "uml-userspace", NULL };
unsigned long long offset;
struct stub_init_data init_data = {
.seccomp = using_seccomp,
.stub_start = STUB_START,
};
struct iomem_region *iomem;
int ret;
if (using_seccomp) {
init_data.signal_handler = STUB_CODE +
(unsigned long) stub_signal_interrupt -
(unsigned long) __syscall_stub_start;
init_data.signal_restorer = STUB_CODE +
(unsigned long) stub_signal_restorer -
(unsigned long) __syscall_stub_start;
} else {
init_data.signal_handler = STUB_CODE +
(unsigned long) stub_segv_handler -
(unsigned long) __syscall_stub_start;
init_data.signal_restorer = 0;
}
init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
&offset);
init_data.stub_code_offset = MMAP_OFFSET(offset);
init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data),
&offset);
init_data.stub_data_offset = MMAP_OFFSET(offset);
/*
* Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
* and then unsetting it on all memory related FDs.
* This is not strictly necessary from a safety perspective.
*/
syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
fcntl(init_data.stub_data_fd, F_SETFD, 0);
/* In SECCOMP mode, these FDs are passed when needed */
if (!using_seccomp) {
for (iomem = iomem_regions; iomem; iomem = iomem->next)
fcntl(iomem->fd, F_SETFD, 0);
}
/* dup2 signaling FD/socket to STDIN */
if (dup2(tramp_data->sockpair[0], 0) < 0)
exit(3);
close(tramp_data->sockpair[0]);
/* Write init_data and close write side */
ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data));
close(tramp_data->sockpair[1]);
if (ret != sizeof(init_data))
exit(4);
/* Raw execveat for compatibility with older libc versions */
syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
(unsigned long)argv, NULL, AT_EMPTY_PATH);
exit(5);
}
extern char stub_exe_start[];
extern char stub_exe_end[];
extern char *tempdir;
#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
#ifndef MFD_EXEC
#define MFD_EXEC 0x0010U
#endif
static int __init init_stub_exe_fd(void)
{
size_t written = 0;
char *tmpfile = NULL;
stub_exe_fd = memfd_create("uml-userspace",
MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
if (stub_exe_fd < 0) {
printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
tmpfile = malloc(strlen(tempdir) +
strlen(STUB_EXE_NAME_TEMPLATE) + 1);
if (tmpfile == NULL)
panic("Failed to allocate memory for stub binary name");
strcpy(tmpfile, tempdir);
strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
stub_exe_fd = mkstemp(tmpfile);
if (stub_exe_fd < 0)
panic("Could not create temporary file for stub binary: %d",
-errno);
}
while (written < stub_exe_end - stub_exe_start) {
ssize_t res = write(stub_exe_fd, stub_exe_start + written,
stub_exe_end - stub_exe_start - written);
if (res < 0) {
if (errno == EINTR)
continue;
if (tmpfile)
unlink(tmpfile);
panic("Failed write stub binary: %d", -errno);
}
written += res;
}
if (!tmpfile) {
fcntl(stub_exe_fd, F_ADD_SEALS,
F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
} else {
if (fchmod(stub_exe_fd, 00500) < 0) {
unlink(tmpfile);
panic("Could not make stub binary executable: %d",
-errno);
}
close(stub_exe_fd);
stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
if (stub_exe_fd < 0) {
unlink(tmpfile);
panic("Could not reopen stub binary: %d", -errno);
}
unlink(tmpfile);
free(tmpfile);
}
return 0;
}
__initcall(init_stub_exe_fd);
int using_seccomp;
/**
* start_userspace() - prepare a new userspace process
* @mm_id: The corresponding struct mm_id
*
* Setups a new temporary stack page that is used while userspace_tramp() runs
* Clones the kernel process into a new userspace process, with FDs only.
*
* Return: When positive: the process id of the new userspace process,
* when negative: an error number.
* FIXME: can PIDs become negative?!
*/
int start_userspace(struct mm_id *mm_id)
{
struct stub_data *proc_data = (void *)mm_id->stack;
struct tramp_data tramp_data = {
.stub_data = proc_data,
};
void *stack;
unsigned long sp;
int status, n, err;
/* setup a temporary stack page */
stack = mmap(NULL, UM_KERN_PAGE_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (stack == MAP_FAILED) {
err = -errno;
printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
__func__, errno);
return err;
}
/* set stack pointer to the end of the stack page, so it can grow downwards */
sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
/* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) {
err = -errno;
printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n",
__func__, errno);
return err;
}
if (using_seccomp)
proc_data->futex = FUTEX_IN_CHILD;
mm_id->pid = clone(userspace_tramp, (void *) sp,
CLONE_VFORK | CLONE_VM | SIGCHLD,
(void *)&tramp_data);
if (mm_id->pid < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
__func__, errno);
goto out_close;
}
if (using_seccomp) {
wait_stub_done_seccomp(mm_id, 1, 1);
} else {
do {
CATCH_EINTR(n = waitpid(mm_id->pid, &status,
WUNTRACED | __WALL));
if (n < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
err = -EINVAL;
printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
__func__, status);
goto out_kill;
}
if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL,
(void *) PTRACE_O_TRACESYSGOOD) < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
}
if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
close(tramp_data.sockpair[0]);
if (using_seccomp)
mm_id->sock = tramp_data.sockpair[1];
else
close(tramp_data.sockpair[1]);
return 0;
out_kill:
os_kill_ptraced_process(mm_id->pid, 1);
out_close:
close(tramp_data.sockpair[0]);
close(tramp_data.sockpair[1]);
mm_id->pid = -1;
return err;
}
static int unscheduled_userspace_iterations;
extern unsigned long tt_extra_sched_jiffies;
void userspace(struct uml_pt_regs *regs)
{
int err, status, op;
siginfo_t si_ptrace;
siginfo_t *si;
int sig;
/* Handle any immediate reschedules or signals */
interrupt_end();
while (1) {
struct mm_id *mm_id = current_mm_id();
/*
* When we are in time-travel mode, userspace can theoretically
* do a *lot* of work without being scheduled. The problem with
* this is that it will prevent kernel bookkeeping (primarily
* the RCU) from running and this can for example cause OOM
* situations.
*
* This code accounts a jiffie against the scheduling clock
* after the defined userspace iterations in the same thread.
* By doing so the situation is effectively prevented.
*/
if (time_travel_mode == TT_MODE_INFCPU ||
time_travel_mode == TT_MODE_EXTERNAL) {
#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
unscheduled_userspace_iterations++ >
CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
tt_extra_sched_jiffies += 1;
unscheduled_userspace_iterations = 0;
}
#endif
}
time_travel_print_bc_msg();
current_mm_sync();
if (using_seccomp) {
struct stub_data *proc_data = (void *) mm_id->stack;
err = set_stub_state(regs, proc_data, singlestepping());
if (err) {
printk(UM_KERN_ERR "%s - failed to set regs: %d",
__func__, err);
fatal_sigsegv();
}
/* Must have been reset by the syscall caller */
if (proc_data->restart_wait != 0)
panic("Programming error: Flag to only run syscalls in child was not cleared!");
/* Mark pending syscalls for flushing */
proc_data->syscall_data_len = mm_id->syscall_data_len;
wait_stub_done_seccomp(mm_id, 0, 0);
sig = proc_data->signal;
if (sig == SIGTRAP && proc_data->err != 0) {
printk(UM_KERN_ERR "%s - Error flushing stub syscalls",
__func__);
syscall_stub_dump_error(mm_id);
mm_id->syscall_data_len = proc_data->err;
fatal_sigsegv();
}
mm_id->syscall_data_len = 0;
mm_id->syscall_fd_num = 0;
err = get_stub_state(regs, proc_data, NULL);
if (err) {
printk(UM_KERN_ERR "%s - failed to get regs: %d",
__func__, err);
fatal_sigsegv();
}
if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si))
panic("%s - Invalid siginfo offset from child",
__func__);
si = (void *)&proc_data->sigstack[proc_data->si_offset];
regs->is_user = 1;
/* Fill in ORIG_RAX and extract fault information */
PT_SYSCALL_NR(regs->gp) = si->si_syscall;
if (sig == SIGSEGV) {
mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset];
GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext);
}
} else {
int pid = mm_id->pid;
/* Flush out any pending syscalls */
err = syscall_stub_flush(mm_id);
if (err) {
if (err == -ENOMEM)
report_enomem();
printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
__func__, -err);
fatal_sigsegv();
}
/*
* This can legitimately fail if the process loads a
* bogus value into a segment register. It will
* segfault and PTRACE_GETREGS will read that value
* out of the process. However, PTRACE_SETREGS will
* fail. In this case, there is nothing to do but
* just kill the process.
*/
if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (put_fp_registers(pid, regs->fp)) {
printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (singlestepping())
op = PTRACE_SYSEMU_SINGLESTEP;
else
op = PTRACE_SYSEMU;
if (ptrace(op, pid, 0, 0)) {
printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
__func__, op, errno);
fatal_sigsegv();
}
CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
if (err < 0) {
printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
regs->is_user = 1;
if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (get_fp_registers(pid, regs->fp)) {
printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (WIFSTOPPED(status)) {
sig = WSTOPSIG(status);
/*
* These signal handlers need the si argument
* and SIGSEGV needs the faultinfo.
* The SIGIO and SIGALARM handlers which constitute
* the majority of invocations, do not use it.
*/
switch (sig) {
case SIGSEGV:
get_skas_faultinfo(pid,
&regs->faultinfo);
fallthrough;
case SIGTRAP:
case SIGILL:
case SIGBUS:
case SIGFPE:
case SIGWINCH:
ptrace(PTRACE_GETSIGINFO, pid, 0,
(struct siginfo *)&si_ptrace);
si = &si_ptrace;
break;
default:
si = NULL;
break;
}
} else {
sig = 0;
}
}
UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
if (sig) {
switch (sig) {
case SIGSEGV:
if (using_seccomp || PTRACE_FULL_FAULTINFO)
(*sig_info[SIGSEGV])(SIGSEGV,
(struct siginfo *)si,
regs, NULL);
else
segv(regs->faultinfo, 0, 1, NULL, NULL);
break;
case SIGSYS:
handle_syscall(regs);
break;
case SIGTRAP + 0x80:
handle_trap(regs);
break;
case SIGTRAP:
relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL);
break;
case SIGALRM:
break;
case SIGIO:
case SIGILL:
case SIGBUS:
case SIGFPE:
case SIGWINCH:
block_signals_trace();
(*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL);
unblock_signals_trace();
break;
default:
printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
__func__, sig);
fatal_sigsegv();
}
interrupt_end();
/* Avoid -ERESTARTSYS handling in host */
if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
PT_SYSCALL_NR(regs->gp) = -1;
}
}
}
void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
{
(*buf)[0].JB_IP = (unsigned long) handler;
(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
sizeof(void *);
}
#define INIT_JMP_NEW_THREAD 0
#define INIT_JMP_CALLBACK 1
#define INIT_JMP_HALT 2
#define INIT_JMP_REBOOT 3
void switch_threads(jmp_buf *me, jmp_buf *you)
{
unscheduled_userspace_iterations = 0;
if (UML_SETJMP(me) == 0)
UML_LONGJMP(you, 1);
}
static jmp_buf initial_jmpbuf;
/* XXX Make these percpu */
static void (*cb_proc)(void *arg);
static void *cb_arg;
static jmp_buf *cb_back;
int start_idle_thread(void *stack, jmp_buf *switch_buf)
{
int n;
set_handler(SIGWINCH);
/*
* Can't use UML_SETJMP or UML_LONGJMP here because they save
* and restore signals, with the possible side-effect of
* trying to handle any signals which came when they were
* blocked, which can't be done on this stack.
* Signals must be blocked when jumping back here and restored
* after returning to the jumper.
*/
n = setjmp(initial_jmpbuf);
switch (n) {
case INIT_JMP_NEW_THREAD:
(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
(*switch_buf)[0].JB_SP = (unsigned long) stack +
UM_THREAD_SIZE - sizeof(void *);
break;
case INIT_JMP_CALLBACK:
(*cb_proc)(cb_arg);
longjmp(*cb_back, 1);
break;
case INIT_JMP_HALT:
kmalloc_ok = 0;
return 0;
case INIT_JMP_REBOOT:
kmalloc_ok = 0;
return 1;
default:
printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
__func__, n);
fatal_sigsegv();
}
longjmp(*switch_buf, 1);
/* unreachable */
printk(UM_KERN_ERR "impossible long jump!");
fatal_sigsegv();
return 0;
}
void initial_thread_cb_skas(void (*proc)(void *), void *arg)
{
jmp_buf here;
cb_proc = proc;
cb_arg = arg;
cb_back = &here;
block_signals_trace();
if (UML_SETJMP(&here) == 0)
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
unblock_signals_trace();
cb_proc = NULL;
cb_arg = NULL;
cb_back = NULL;
}
void halt_skas(void)
{
block_signals_trace();
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
}
static bool noreboot;
static int __init noreboot_cmd_param(char *str, int *add)
{
*add = 0;
noreboot = true;
return 0;
}
__uml_setup("noreboot", noreboot_cmd_param,
"noreboot\n"
" Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
" This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
" crashes in CI\n");
void reboot_skas(void)
{
block_signals_trace();
UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
}