linux/arch/riscv/kvm/mmu.c
Quan Zhou 07a289a031 RISC-V: KVM: Avoid re-acquiring memslot in kvm_riscv_gstage_map()
The caller has already passed in the memslot, and there are
two instances `{kvm_faultin_pfn/mark_page_dirty}` of retrieving
the memslot again in `kvm_riscv_gstage_map`, we can replace them
with `{__kvm_faultin_pfn/mark_page_dirty_in_slot}`.

Signed-off-by: Quan Zhou <zhouquan@iscas.ac.cn>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/50989f0a02790f9d7dc804c2ade6387c4e7fbdbc.1749634392.git.zhouquan@iscas.ac.cn
Signed-off-by: Anup Patel <anup@brainfault.org>
2025-07-28 22:28:31 +05:30

487 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
*
* Authors:
* Anup Patel <anup.patel@wdc.com>
*/
#include <linux/errno.h>
#include <linux/hugetlb.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/kvm_host.h>
#include <linux/sched/signal.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nacl.h>
static void mmu_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
spin_lock(&kvm->mmu_lock);
kvm_riscv_gstage_wp_range(&gstage, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs_memslot(kvm, memslot);
}
int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
unsigned long size, bool writable, bool in_atomic)
{
int ret = 0;
unsigned long pfn;
phys_addr_t addr, end;
struct kvm_mmu_memory_cache pcache = {
.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
.gfp_zero = __GFP_ZERO,
};
struct kvm_gstage_mapping map;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
pfn = __phys_to_pfn(hpa);
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
map.addr = addr;
map.pte = pfn_pte(pfn, PAGE_KERNEL_IO);
map.level = 0;
if (!writable)
map.pte = pte_wrprotect(map.pte);
ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels);
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
pfn++;
}
out:
kvm_mmu_free_memory_cache(&pcache);
return ret;
}
void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
{
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
spin_lock(&kvm->mmu_lock);
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask)
{
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
kvm_riscv_gstage_wp_range(&gstage, start, end);
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
{
}
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_riscv_mmu_free_pgd(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
phys_addr_t size = slot->npages << PAGE_SHIFT;
struct kvm_gstage gstage;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
spin_lock(&kvm->mmu_lock);
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
spin_unlock(&kvm->mmu_lock);
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be tracked while
* the memory slot is write protected.
*/
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
mmu_wp_memory_region(kvm, new->id);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *old,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
hva_t hva, reg_end, size;
gpa_t base_gpa;
bool writable;
int ret = 0;
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
change != KVM_MR_FLAGS_ONLY)
return 0;
/*
* Prevent userspace from creating a memory region outside of the GPA
* space addressable by the KVM guest GPA space.
*/
if ((new->base_gfn + new->npages) >=
(kvm_riscv_gstage_gpa_size >> PAGE_SHIFT))
return -EFAULT;
hva = new->userspace_addr;
size = new->npages << PAGE_SHIFT;
reg_end = hva + size;
base_gpa = new->base_gfn << PAGE_SHIFT;
writable = !(new->flags & KVM_MEM_READONLY);
mmap_read_lock(current->mm);
/*
* A memory region could potentially cover multiple VMAs, and
* any holes between them, so iterate over all of them to find
* out if we can map any of them right now.
*
* +--------------------------------------------+
* +---------------+----------------+ +----------------+
* | : VMA 1 | VMA 2 | | VMA 3 : |
* +---------------+----------------+ +----------------+
* | memory region |
* +--------------------------------------------+
*/
do {
struct vm_area_struct *vma;
hva_t vm_start, vm_end;
vma = find_vma_intersection(current->mm, hva, reg_end);
if (!vma)
break;
/*
* Mapping a read-only VMA is only allowed if the
* memory region is configured as read-only.
*/
if (writable && !(vma->vm_flags & VM_WRITE)) {
ret = -EPERM;
break;
}
/* Take the intersection of this VMA with the memory region */
vm_start = max(hva, vma->vm_start);
vm_end = min(reg_end, vma->vm_end);
if (vma->vm_flags & VM_PFNMAP) {
gpa_t gpa = base_gpa + (vm_start - hva);
phys_addr_t pa;
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
pa += vm_start - vma->vm_start;
/* IO region dirty page logging not allowed */
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
ret = -EINVAL;
goto out;
}
ret = kvm_riscv_mmu_ioremap(kvm, gpa, pa, vm_end - vm_start,
writable, false);
if (ret)
break;
}
hva = vm_end;
} while (hva < reg_end);
if (change == KVM_MR_FLAGS_ONLY)
goto out;
if (ret)
kvm_riscv_mmu_iounmap(kvm, base_gpa, size);
out:
mmap_read_unlock(current->mm);
return ret;
}
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
struct kvm_gstage gstage;
if (!kvm->arch.pgd)
return false;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT,
(range->end - range->start) << PAGE_SHIFT,
range->may_block);
return false;
}
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
pte_t *ptep;
u32 ptep_level = 0;
u64 size = (range->end - range->start) << PAGE_SHIFT;
struct kvm_gstage gstage;
if (!kvm->arch.pgd)
return false;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
&ptep, &ptep_level))
return false;
return ptep_test_and_clear_young(NULL, 0, ptep);
}
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
pte_t *ptep;
u32 ptep_level = 0;
u64 size = (range->end - range->start) << PAGE_SHIFT;
struct kvm_gstage gstage;
if (!kvm->arch.pgd)
return false;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
&ptep, &ptep_level))
return false;
return pte_young(ptep_get(ptep));
}
int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
gpa_t gpa, unsigned long hva, bool is_write,
struct kvm_gstage_mapping *out_map)
{
int ret;
kvm_pfn_t hfn;
bool writable;
short vma_pageshift;
gfn_t gfn = gpa >> PAGE_SHIFT;
struct vm_area_struct *vma;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
bool logging = (memslot->dirty_bitmap &&
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
unsigned long vma_pagesize, mmu_seq;
struct kvm_gstage gstage;
struct page *page;
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
/* Setup initial state of output mapping */
memset(out_map, 0, sizeof(*out_map));
/* We need minimum second+third level pages */
ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels);
if (ret) {
kvm_err("Failed to topup G-stage cache\n");
return ret;
}
mmap_read_lock(current->mm);
vma = vma_lookup(current->mm, hva);
if (unlikely(!vma)) {
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
mmap_read_unlock(current->mm);
return -EFAULT;
}
if (is_vm_hugetlb_page(vma))
vma_pageshift = huge_page_shift(hstate_vma(vma));
else
vma_pageshift = PAGE_SHIFT;
vma_pagesize = 1ULL << vma_pageshift;
if (logging || (vma->vm_flags & VM_PFNMAP))
vma_pagesize = PAGE_SIZE;
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
/*
* Read mmu_invalidate_seq so that KVM can detect if the results of
* vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
* kvm->mmu_lock.
*
* Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
* with the smp_wmb() in kvm_mmu_invalidate_end().
*/
mmu_seq = kvm->mmu_invalidate_seq;
mmap_read_unlock(current->mm);
if (vma_pagesize != PUD_SIZE &&
vma_pagesize != PMD_SIZE &&
vma_pagesize != PAGE_SIZE) {
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
return -EFAULT;
}
hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0,
&writable, &page);
if (hfn == KVM_PFN_ERR_HWPOISON) {
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
vma_pageshift, current);
return 0;
}
if (is_error_noslot_pfn(hfn))
return -EFAULT;
/*
* If logging is active then we allow writable pages only
* for write faults.
*/
if (logging && !is_write)
writable = false;
spin_lock(&kvm->mmu_lock);
if (mmu_invalidate_retry(kvm, mmu_seq))
goto out_unlock;
if (writable) {
mark_page_dirty_in_slot(kvm, memslot, gfn);
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, false, true, out_map);
} else {
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, true, true, out_map);
}
if (ret)
kvm_err("Failed to map in G-stage\n");
out_unlock:
kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
spin_unlock(&kvm->mmu_lock);
return ret;
}
int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm)
{
struct page *pgd_page;
if (kvm->arch.pgd != NULL) {
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
get_order(kvm_riscv_gstage_pgd_size));
if (!pgd_page)
return -ENOMEM;
kvm->arch.pgd = page_to_virt(pgd_page);
kvm->arch.pgd_phys = page_to_phys(pgd_page);
return 0;
}
void kvm_riscv_mmu_free_pgd(struct kvm *kvm)
{
struct kvm_gstage gstage;
void *pgd = NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) {
gstage.kvm = kvm;
gstage.flags = 0;
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
gstage.pgd = kvm->arch.pgd;
kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false);
pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0;
}
spin_unlock(&kvm->mmu_lock);
if (pgd)
free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size));
}
void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu)
{
unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT;
struct kvm_arch *k = &vcpu->kvm->arch;
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
ncsr_write(CSR_HGATP, hgatp);
if (!kvm_riscv_gstage_vmid_bits())
kvm_riscv_local_hfence_gvma_all();
}