mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

The caller has already passed in the memslot, and there are two instances `{kvm_faultin_pfn/mark_page_dirty}` of retrieving the memslot again in `kvm_riscv_gstage_map`, we can replace them with `{__kvm_faultin_pfn/mark_page_dirty_in_slot}`. Signed-off-by: Quan Zhou <zhouquan@iscas.ac.cn> Reviewed-by: Anup Patel <anup@brainfault.org> Link: https://lore.kernel.org/r/50989f0a02790f9d7dc804c2ade6387c4e7fbdbc.1749634392.git.zhouquan@iscas.ac.cn Signed-off-by: Anup Patel <anup@brainfault.org>
487 lines
12 KiB
C
487 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Anup Patel <anup.patel@wdc.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/module.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nacl.h>
|
|
|
|
static void mmu_wp_memory_region(struct kvm *kvm, int slot)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
|
|
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
|
struct kvm_gstage gstage;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm_riscv_gstage_wp_range(&gstage, start, end);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_flush_remote_tlbs_memslot(kvm, memslot);
|
|
}
|
|
|
|
int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
|
|
unsigned long size, bool writable, bool in_atomic)
|
|
{
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
phys_addr_t addr, end;
|
|
struct kvm_mmu_memory_cache pcache = {
|
|
.gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0,
|
|
.gfp_zero = __GFP_ZERO,
|
|
};
|
|
struct kvm_gstage_mapping map;
|
|
struct kvm_gstage gstage;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
|
|
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(hpa);
|
|
|
|
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
|
|
map.addr = addr;
|
|
map.pte = pfn_pte(pfn, PAGE_KERNEL_IO);
|
|
map.level = 0;
|
|
|
|
if (!writable)
|
|
map.pte = pte_wrprotect(map.pte);
|
|
|
|
ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels);
|
|
if (ret)
|
|
goto out;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
kvm_mmu_free_memory_cache(&pcache);
|
|
return ret;
|
|
}
|
|
|
|
void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size)
|
|
{
|
|
struct kvm_gstage gstage;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot,
|
|
gfn_t gfn_offset,
|
|
unsigned long mask)
|
|
{
|
|
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
|
|
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
|
|
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
|
|
struct kvm_gstage gstage;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
|
|
kvm_riscv_gstage_wp_range(&gstage, start, end);
|
|
}
|
|
|
|
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
|
{
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
kvm_riscv_mmu_free_pgd(kvm);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
|
|
phys_addr_t size = slot->npages << PAGE_SHIFT;
|
|
struct kvm_gstage gstage;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* At this point memslot has been committed and there is an
|
|
* allocated dirty_bitmap[], dirty pages will be tracked while
|
|
* the memory slot is write protected.
|
|
*/
|
|
if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
|
|
mmu_wp_memory_region(kvm, new->id);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
const struct kvm_memory_slot *old,
|
|
struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
hva_t hva, reg_end, size;
|
|
gpa_t base_gpa;
|
|
bool writable;
|
|
int ret = 0;
|
|
|
|
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
|
|
change != KVM_MR_FLAGS_ONLY)
|
|
return 0;
|
|
|
|
/*
|
|
* Prevent userspace from creating a memory region outside of the GPA
|
|
* space addressable by the KVM guest GPA space.
|
|
*/
|
|
if ((new->base_gfn + new->npages) >=
|
|
(kvm_riscv_gstage_gpa_size >> PAGE_SHIFT))
|
|
return -EFAULT;
|
|
|
|
hva = new->userspace_addr;
|
|
size = new->npages << PAGE_SHIFT;
|
|
reg_end = hva + size;
|
|
base_gpa = new->base_gfn << PAGE_SHIFT;
|
|
writable = !(new->flags & KVM_MEM_READONLY);
|
|
|
|
mmap_read_lock(current->mm);
|
|
|
|
/*
|
|
* A memory region could potentially cover multiple VMAs, and
|
|
* any holes between them, so iterate over all of them to find
|
|
* out if we can map any of them right now.
|
|
*
|
|
* +--------------------------------------------+
|
|
* +---------------+----------------+ +----------------+
|
|
* | : VMA 1 | VMA 2 | | VMA 3 : |
|
|
* +---------------+----------------+ +----------------+
|
|
* | memory region |
|
|
* +--------------------------------------------+
|
|
*/
|
|
do {
|
|
struct vm_area_struct *vma;
|
|
hva_t vm_start, vm_end;
|
|
|
|
vma = find_vma_intersection(current->mm, hva, reg_end);
|
|
if (!vma)
|
|
break;
|
|
|
|
/*
|
|
* Mapping a read-only VMA is only allowed if the
|
|
* memory region is configured as read-only.
|
|
*/
|
|
if (writable && !(vma->vm_flags & VM_WRITE)) {
|
|
ret = -EPERM;
|
|
break;
|
|
}
|
|
|
|
/* Take the intersection of this VMA with the memory region */
|
|
vm_start = max(hva, vma->vm_start);
|
|
vm_end = min(reg_end, vma->vm_end);
|
|
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
gpa_t gpa = base_gpa + (vm_start - hva);
|
|
phys_addr_t pa;
|
|
|
|
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
pa += vm_start - vma->vm_start;
|
|
|
|
/* IO region dirty page logging not allowed */
|
|
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = kvm_riscv_mmu_ioremap(kvm, gpa, pa, vm_end - vm_start,
|
|
writable, false);
|
|
if (ret)
|
|
break;
|
|
}
|
|
hva = vm_end;
|
|
} while (hva < reg_end);
|
|
|
|
if (change == KVM_MR_FLAGS_ONLY)
|
|
goto out;
|
|
|
|
if (ret)
|
|
kvm_riscv_mmu_iounmap(kvm, base_gpa, size);
|
|
|
|
out:
|
|
mmap_read_unlock(current->mm);
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
struct kvm_gstage gstage;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT,
|
|
(range->end - range->start) << PAGE_SHIFT,
|
|
range->may_block);
|
|
return false;
|
|
}
|
|
|
|
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
pte_t *ptep;
|
|
u32 ptep_level = 0;
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
struct kvm_gstage gstage;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
|
|
&ptep, &ptep_level))
|
|
return false;
|
|
|
|
return ptep_test_and_clear_young(NULL, 0, ptep);
|
|
}
|
|
|
|
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
|
|
{
|
|
pte_t *ptep;
|
|
u32 ptep_level = 0;
|
|
u64 size = (range->end - range->start) << PAGE_SHIFT;
|
|
struct kvm_gstage gstage;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return false;
|
|
|
|
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT,
|
|
&ptep, &ptep_level))
|
|
return false;
|
|
|
|
return pte_young(ptep_get(ptep));
|
|
}
|
|
|
|
int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
|
|
gpa_t gpa, unsigned long hva, bool is_write,
|
|
struct kvm_gstage_mapping *out_map)
|
|
{
|
|
int ret;
|
|
kvm_pfn_t hfn;
|
|
bool writable;
|
|
short vma_pageshift;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
struct vm_area_struct *vma;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
|
|
bool logging = (memslot->dirty_bitmap &&
|
|
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
|
|
unsigned long vma_pagesize, mmu_seq;
|
|
struct kvm_gstage gstage;
|
|
struct page *page;
|
|
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
|
|
/* Setup initial state of output mapping */
|
|
memset(out_map, 0, sizeof(*out_map));
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels);
|
|
if (ret) {
|
|
kvm_err("Failed to topup G-stage cache\n");
|
|
return ret;
|
|
}
|
|
|
|
mmap_read_lock(current->mm);
|
|
|
|
vma = vma_lookup(current->mm, hva);
|
|
if (unlikely(!vma)) {
|
|
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
|
|
mmap_read_unlock(current->mm);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
vma_pageshift = huge_page_shift(hstate_vma(vma));
|
|
else
|
|
vma_pageshift = PAGE_SHIFT;
|
|
vma_pagesize = 1ULL << vma_pageshift;
|
|
if (logging || (vma->vm_flags & VM_PFNMAP))
|
|
vma_pagesize = PAGE_SIZE;
|
|
|
|
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
|
|
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* Read mmu_invalidate_seq so that KVM can detect if the results of
|
|
* vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring
|
|
* kvm->mmu_lock.
|
|
*
|
|
* Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
|
|
* with the smp_wmb() in kvm_mmu_invalidate_end().
|
|
*/
|
|
mmu_seq = kvm->mmu_invalidate_seq;
|
|
mmap_read_unlock(current->mm);
|
|
|
|
if (vma_pagesize != PUD_SIZE &&
|
|
vma_pagesize != PMD_SIZE &&
|
|
vma_pagesize != PAGE_SIZE) {
|
|
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
|
|
return -EFAULT;
|
|
}
|
|
|
|
hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0,
|
|
&writable, &page);
|
|
if (hfn == KVM_PFN_ERR_HWPOISON) {
|
|
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
|
|
vma_pageshift, current);
|
|
return 0;
|
|
}
|
|
if (is_error_noslot_pfn(hfn))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If logging is active then we allow writable pages only
|
|
* for write faults.
|
|
*/
|
|
if (logging && !is_write)
|
|
writable = false;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
if (mmu_invalidate_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
if (writable) {
|
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
|
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
|
|
vma_pagesize, false, true, out_map);
|
|
} else {
|
|
ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT,
|
|
vma_pagesize, true, true, out_map);
|
|
}
|
|
|
|
if (ret)
|
|
kvm_err("Failed to map in G-stage\n");
|
|
|
|
out_unlock:
|
|
kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm)
|
|
{
|
|
struct page *pgd_page;
|
|
|
|
if (kvm->arch.pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(kvm_riscv_gstage_pgd_size));
|
|
if (!pgd_page)
|
|
return -ENOMEM;
|
|
kvm->arch.pgd = page_to_virt(pgd_page);
|
|
kvm->arch.pgd_phys = page_to_phys(pgd_page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_riscv_mmu_free_pgd(struct kvm *kvm)
|
|
{
|
|
struct kvm_gstage gstage;
|
|
void *pgd = NULL;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (kvm->arch.pgd) {
|
|
gstage.kvm = kvm;
|
|
gstage.flags = 0;
|
|
gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid);
|
|
gstage.pgd = kvm->arch.pgd;
|
|
kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false);
|
|
pgd = READ_ONCE(kvm->arch.pgd);
|
|
kvm->arch.pgd = NULL;
|
|
kvm->arch.pgd_phys = 0;
|
|
}
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
if (pgd)
|
|
free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size));
|
|
}
|
|
|
|
void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT;
|
|
struct kvm_arch *k = &vcpu->kvm->arch;
|
|
|
|
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID;
|
|
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
|
|
|
|
ncsr_write(CSR_HGATP, hgatp);
|
|
|
|
if (!kvm_riscv_gstage_vmid_bits())
|
|
kvm_riscv_local_hfence_gvma_all();
|
|
}
|