linux/arch/powerpc/kexec/file_load_64.c
Sourabh Jain 6e5250eaa6 powerpc/crash: use generic APIs to locate memory hole for kdump
On PowerPC, the memory reserved for the crashkernel can contain components
like RTAS, TCE, OPAL, etc., which should be avoided when loading kexec
segments into crashkernel memory.  Due to these special components,
PowerPC has its own set of APIs to locate holes in the crashkernel memory
for loading kexec segments for kdump.  However, for loading kexec segments
in the kexec case, PowerPC already uses generic APIs to locate holes.

The previous patch in this series, titled "crash: Let arch decide usable
memory range in reserved area," introduced arch-specific hook to handle
such special regions in the crashkernel area.  So, switch PowerPC to use
the generic APIs to locate memory holes for kdump and remove the redundant
PowerPC-specific APIs.

Link: https://lkml.kernel.org/r/20250131113830.925179-5-sourabhjain@linux.ibm.com
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Baoquan he <bhe@redhat.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:30:48 -07:00

871 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ppc64 code to implement the kexec_file_load syscall
*
* Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
* Copyright (C) 2004 IBM Corp.
* Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
* Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
* Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
* Copyright (C) 2020 IBM Corporation
*
* Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
* Heavily modified for the kernel by
* Hari Bathini, IBM Corporation.
*/
#include <linux/kexec.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/memblock.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/setup.h>
#include <asm/drmem.h>
#include <asm/firmware.h>
#include <asm/kexec_ranges.h>
#include <asm/crashdump-ppc64.h>
#include <asm/mmzone.h>
#include <asm/iommu.h>
#include <asm/prom.h>
#include <asm/plpks.h>
#include <asm/cputhreads.h>
struct umem_info {
__be64 *buf; /* data buffer for usable-memory property */
u32 size; /* size allocated for the data buffer */
u32 max_entries; /* maximum no. of entries */
u32 idx; /* index of current entry */
/* usable memory ranges to look up */
unsigned int nr_ranges;
const struct range *ranges;
};
const struct kexec_file_ops * const kexec_file_loaders[] = {
&kexec_elf64_ops,
NULL
};
int arch_check_excluded_range(struct kimage *image, unsigned long start,
unsigned long end)
{
struct crash_mem *emem;
int i;
emem = image->arch.exclude_ranges;
for (i = 0; i < emem->nr_ranges; i++)
if (start < emem->ranges[i].end && end > emem->ranges[i].start)
return 1;
return 0;
}
#ifdef CONFIG_CRASH_DUMP
/**
* check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
* @um_info: Usable memory buffer and ranges info.
* @cnt: No. of entries to accommodate.
*
* Frees up the old buffer if memory reallocation fails.
*
* Returns buffer on success, NULL on error.
*/
static __be64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
{
u32 new_size;
__be64 *tbuf;
if ((um_info->idx + cnt) <= um_info->max_entries)
return um_info->buf;
new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
if (tbuf) {
um_info->buf = tbuf;
um_info->size = new_size;
um_info->max_entries = (um_info->size / sizeof(u64));
}
return tbuf;
}
/**
* add_usable_mem - Add the usable memory ranges within the given memory range
* to the buffer
* @um_info: Usable memory buffer and ranges info.
* @base: Base address of memory range to look for.
* @end: End address of memory range to look for.
*
* Returns 0 on success, negative errno on error.
*/
static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
{
u64 loc_base, loc_end;
bool add;
int i;
for (i = 0; i < um_info->nr_ranges; i++) {
add = false;
loc_base = um_info->ranges[i].start;
loc_end = um_info->ranges[i].end;
if (loc_base >= base && loc_end <= end)
add = true;
else if (base < loc_end && end > loc_base) {
if (loc_base < base)
loc_base = base;
if (loc_end > end)
loc_end = end;
add = true;
}
if (add) {
if (!check_realloc_usable_mem(um_info, 2))
return -ENOMEM;
um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
um_info->buf[um_info->idx++] =
cpu_to_be64(loc_end - loc_base + 1);
}
}
return 0;
}
/**
* kdump_setup_usable_lmb - This is a callback function that gets called by
* walk_drmem_lmbs for every LMB to set its
* usable memory ranges.
* @lmb: LMB info.
* @usm: linux,drconf-usable-memory property value.
* @data: Pointer to usable memory buffer and ranges info.
*
* Returns 0 on success, negative errno on error.
*/
static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
void *data)
{
struct umem_info *um_info;
int tmp_idx, ret;
u64 base, end;
/*
* kdump load isn't supported on kernels already booted with
* linux,drconf-usable-memory property.
*/
if (*usm) {
pr_err("linux,drconf-usable-memory property already exists!");
return -EINVAL;
}
um_info = data;
tmp_idx = um_info->idx;
if (!check_realloc_usable_mem(um_info, 1))
return -ENOMEM;
um_info->idx++;
base = lmb->base_addr;
end = base + drmem_lmb_size() - 1;
ret = add_usable_mem(um_info, base, end);
if (!ret) {
/*
* Update the no. of ranges added. Two entries (base & size)
* for every range added.
*/
um_info->buf[tmp_idx] =
cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
}
return ret;
}
#define NODE_PATH_LEN 256
/**
* add_usable_mem_property - Add usable memory property for the given
* memory node.
* @fdt: Flattened device tree for the kdump kernel.
* @dn: Memory node.
* @um_info: Usable memory buffer and ranges info.
*
* Returns 0 on success, negative errno on error.
*/
static int add_usable_mem_property(void *fdt, struct device_node *dn,
struct umem_info *um_info)
{
int node;
char path[NODE_PATH_LEN];
int i, ret;
u64 base, size;
of_node_get(dn);
if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
pr_err("Buffer (%d) too small for memory node: %pOF\n",
NODE_PATH_LEN, dn);
return -EOVERFLOW;
}
kexec_dprintk("Memory node path: %s\n", path);
/* Now that we know the path, find its offset in kdump kernel's fdt */
node = fdt_path_offset(fdt, path);
if (node < 0) {
pr_err("Malformed device tree: error reading %s\n", path);
ret = -EINVAL;
goto out;
}
um_info->idx = 0;
if (!check_realloc_usable_mem(um_info, 2)) {
ret = -ENOMEM;
goto out;
}
/*
* "reg" property represents sequence of (addr,size) tuples
* each representing a memory range.
*/
for (i = 0; ; i++) {
ret = of_property_read_reg(dn, i, &base, &size);
if (ret)
break;
ret = add_usable_mem(um_info, base, base + size - 1);
if (ret)
goto out;
}
// No reg or empty reg? Skip this node.
if (i == 0)
goto out;
/*
* No kdump kernel usable memory found in this memory node.
* Write (0,0) tuple in linux,usable-memory property for
* this region to be ignored.
*/
if (um_info->idx == 0) {
um_info->buf[0] = 0;
um_info->buf[1] = 0;
um_info->idx = 2;
}
ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
(um_info->idx * sizeof(u64)));
out:
of_node_put(dn);
return ret;
}
/**
* update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
* and linux,drconf-usable-memory DT properties as
* appropriate to restrict its memory usage.
* @fdt: Flattened device tree for the kdump kernel.
* @usable_mem: Usable memory ranges for kdump kernel.
*
* Returns 0 on success, negative errno on error.
*/
static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
{
struct umem_info um_info;
struct device_node *dn;
int node, ret = 0;
if (!usable_mem) {
pr_err("Usable memory ranges for kdump kernel not found\n");
return -ENOENT;
}
node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
if (node == -FDT_ERR_NOTFOUND)
kexec_dprintk("No dynamic reconfiguration memory found\n");
else if (node < 0) {
pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
return -EINVAL;
}
um_info.buf = NULL;
um_info.size = 0;
um_info.max_entries = 0;
um_info.idx = 0;
/* Memory ranges to look up */
um_info.ranges = &(usable_mem->ranges[0]);
um_info.nr_ranges = usable_mem->nr_ranges;
dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
if (dn) {
ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
of_node_put(dn);
if (ret) {
pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
goto out;
}
ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
um_info.buf, (um_info.idx * sizeof(u64)));
if (ret) {
pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
fdt_strerror(ret));
goto out;
}
}
/*
* Walk through each memory node and set linux,usable-memory property
* for the corresponding node in kdump kernel's fdt.
*/
for_each_node_by_type(dn, "memory") {
ret = add_usable_mem_property(fdt, dn, &um_info);
if (ret) {
pr_err("Failed to set linux,usable-memory property for %s node",
dn->full_name);
of_node_put(dn);
goto out;
}
}
out:
kfree(um_info.buf);
return ret;
}
/**
* load_backup_segment - Locate a memory hole to place the backup region.
* @image: Kexec image.
* @kbuf: Buffer contents and memory parameters.
*
* Returns 0 on success, negative errno on error.
*/
static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
{
void *buf;
int ret;
/*
* Setup a source buffer for backup segment.
*
* A source buffer has no meaning for backup region as data will
* be copied from backup source, after crash, in the purgatory.
* But as load segment code doesn't recognize such segments,
* setup a dummy source buffer to keep it happy for now.
*/
buf = vzalloc(BACKUP_SRC_SIZE);
if (!buf)
return -ENOMEM;
kbuf->buffer = buf;
kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
kbuf->top_down = false;
ret = kexec_add_buffer(kbuf);
if (ret) {
vfree(buf);
return ret;
}
image->arch.backup_buf = buf;
image->arch.backup_start = kbuf->mem;
return 0;
}
/**
* update_backup_region_phdr - Update backup region's offset for the core to
* export the region appropriately.
* @image: Kexec image.
* @ehdr: ELF core header.
*
* Assumes an exclusive program header is setup for the backup region
* in the ELF headers
*
* Returns nothing.
*/
static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
{
Elf64_Phdr *phdr;
unsigned int i;
phdr = (Elf64_Phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; i++) {
if (phdr->p_paddr == BACKUP_SRC_START) {
phdr->p_offset = image->arch.backup_start;
kexec_dprintk("Backup region offset updated to 0x%lx\n",
image->arch.backup_start);
return;
}
}
}
static unsigned int kdump_extra_elfcorehdr_size(struct crash_mem *cmem)
{
#if defined(CONFIG_CRASH_HOTPLUG) && defined(CONFIG_MEMORY_HOTPLUG)
unsigned int extra_sz = 0;
if (CONFIG_CRASH_MAX_MEMORY_RANGES > (unsigned int)PN_XNUM)
pr_warn("Number of Phdrs %u exceeds max\n", CONFIG_CRASH_MAX_MEMORY_RANGES);
else if (cmem->nr_ranges >= CONFIG_CRASH_MAX_MEMORY_RANGES)
pr_warn("Configured crash mem ranges may not be enough\n");
else
extra_sz = (CONFIG_CRASH_MAX_MEMORY_RANGES - cmem->nr_ranges) * sizeof(Elf64_Phdr);
return extra_sz;
#endif
return 0;
}
/**
* load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
* segment needed to load kdump kernel.
* @image: Kexec image.
* @kbuf: Buffer contents and memory parameters.
*
* Returns 0 on success, negative errno on error.
*/
static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
{
struct crash_mem *cmem = NULL;
unsigned long headers_sz;
void *headers = NULL;
int ret;
ret = get_crash_memory_ranges(&cmem);
if (ret)
goto out;
/* Setup elfcorehdr segment */
ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
if (ret) {
pr_err("Failed to prepare elf headers for the core\n");
goto out;
}
/* Fix the offset for backup region in the ELF header */
update_backup_region_phdr(image, headers);
kbuf->buffer = headers;
kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf->bufsz = headers_sz;
kbuf->memsz = headers_sz + kdump_extra_elfcorehdr_size(cmem);
kbuf->top_down = false;
ret = kexec_add_buffer(kbuf);
if (ret) {
vfree(headers);
goto out;
}
image->elf_load_addr = kbuf->mem;
image->elf_headers_sz = headers_sz;
image->elf_headers = headers;
out:
kfree(cmem);
return ret;
}
/**
* load_crashdump_segments_ppc64 - Initialize the additional segements needed
* to load kdump kernel.
* @image: Kexec image.
* @kbuf: Buffer contents and memory parameters.
*
* Returns 0 on success, negative errno on error.
*/
int load_crashdump_segments_ppc64(struct kimage *image,
struct kexec_buf *kbuf)
{
int ret;
/* Load backup segment - first 64K bytes of the crashing kernel */
ret = load_backup_segment(image, kbuf);
if (ret) {
pr_err("Failed to load backup segment\n");
return ret;
}
kexec_dprintk("Loaded the backup region at 0x%lx\n", kbuf->mem);
/* Load elfcorehdr segment - to export crashing kernel's vmcore */
ret = load_elfcorehdr_segment(image, kbuf);
if (ret) {
pr_err("Failed to load elfcorehdr segment\n");
return ret;
}
kexec_dprintk("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
return 0;
}
#endif
/**
* setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
* variables and call setup_purgatory() to initialize
* common global variable.
* @image: kexec image.
* @slave_code: Slave code for the purgatory.
* @fdt: Flattened device tree for the next kernel.
* @kernel_load_addr: Address where the kernel is loaded.
* @fdt_load_addr: Address where the flattened device tree is loaded.
*
* Returns 0 on success, negative errno on error.
*/
int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
const void *fdt, unsigned long kernel_load_addr,
unsigned long fdt_load_addr)
{
struct device_node *dn = NULL;
int ret;
ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
fdt_load_addr);
if (ret)
goto out;
if (image->type == KEXEC_TYPE_CRASH) {
u32 my_run_at_load = 1;
/*
* Tell relocatable kernel to run at load address
* via the word meant for that at 0x5c.
*/
ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
&my_run_at_load,
sizeof(my_run_at_load),
false);
if (ret)
goto out;
}
/* Tell purgatory where to look for backup region */
ret = kexec_purgatory_get_set_symbol(image, "backup_start",
&image->arch.backup_start,
sizeof(image->arch.backup_start),
false);
if (ret)
goto out;
/* Setup OPAL base & entry values */
dn = of_find_node_by_path("/ibm,opal");
if (dn) {
u64 val;
ret = of_property_read_u64(dn, "opal-base-address", &val);
if (ret)
goto out;
ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
sizeof(val), false);
if (ret)
goto out;
ret = of_property_read_u64(dn, "opal-entry-address", &val);
if (ret)
goto out;
ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
sizeof(val), false);
}
out:
if (ret)
pr_err("Failed to setup purgatory symbols");
of_node_put(dn);
return ret;
}
/**
* cpu_node_size - Compute the size of a CPU node in the FDT.
* This should be done only once and the value is stored in
* a static variable.
* Returns the max size of a CPU node in the FDT.
*/
static unsigned int cpu_node_size(void)
{
static unsigned int size;
struct device_node *dn;
struct property *pp;
/*
* Don't compute it twice, we are assuming that the per CPU node size
* doesn't change during the system's life.
*/
if (size)
return size;
dn = of_find_node_by_type(NULL, "cpu");
if (WARN_ON_ONCE(!dn)) {
// Unlikely to happen
return 0;
}
/*
* We compute the sub node size for a CPU node, assuming it
* will be the same for all.
*/
size += strlen(dn->name) + 5;
for_each_property_of_node(dn, pp) {
size += strlen(pp->name);
size += pp->length;
}
of_node_put(dn);
return size;
}
static unsigned int kdump_extra_fdt_size_ppc64(struct kimage *image, unsigned int cpu_nodes)
{
unsigned int extra_size = 0;
u64 usm_entries;
#ifdef CONFIG_CRASH_HOTPLUG
unsigned int possible_cpu_nodes;
#endif
if (!IS_ENABLED(CONFIG_CRASH_DUMP) || image->type != KEXEC_TYPE_CRASH)
return 0;
/*
* For kdump kernel, account for linux,usable-memory and
* linux,drconf-usable-memory properties. Get an approximate on the
* number of usable memory entries and use for FDT size estimation.
*/
if (drmem_lmb_size()) {
usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
(2 * (resource_size(&crashk_res) / drmem_lmb_size())));
extra_size += (unsigned int)(usm_entries * sizeof(u64));
}
#ifdef CONFIG_CRASH_HOTPLUG
/*
* Make sure enough space is reserved to accommodate possible CPU nodes
* in the crash FDT. This allows packing possible CPU nodes which are
* not yet present in the system without regenerating the entire FDT.
*/
if (image->type == KEXEC_TYPE_CRASH) {
possible_cpu_nodes = num_possible_cpus() / threads_per_core;
if (possible_cpu_nodes > cpu_nodes)
extra_size += (possible_cpu_nodes - cpu_nodes) * cpu_node_size();
}
#endif
return extra_size;
}
/**
* kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
* setup FDT for kexec/kdump kernel.
* @image: kexec image being loaded.
*
* Returns the estimated extra size needed for kexec/kdump kernel FDT.
*/
unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image, struct crash_mem *rmem)
{
struct device_node *dn;
unsigned int cpu_nodes = 0, extra_size = 0;
// Budget some space for the password blob. There's already extra space
// for the key name
if (plpks_is_available())
extra_size += (unsigned int)plpks_get_passwordlen();
/* Get the number of CPU nodes in the current device tree */
for_each_node_by_type(dn, "cpu") {
cpu_nodes++;
}
/* Consider extra space for CPU nodes added since the boot time */
if (cpu_nodes > boot_cpu_node_count)
extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
/* Consider extra space for reserved memory ranges if any */
if (rmem->nr_ranges > 0)
extra_size += sizeof(struct fdt_reserve_entry) * rmem->nr_ranges;
return extra_size + kdump_extra_fdt_size_ppc64(image, cpu_nodes);
}
static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
const char *propname)
{
const void *prop, *fdtprop;
int len = 0, fdtlen = 0;
prop = of_get_property(dn, propname, &len);
fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
if (fdtprop && !prop)
return fdt_delprop(fdt, node_offset, propname);
else if (prop)
return fdt_setprop(fdt, node_offset, propname, prop, len);
else
return -FDT_ERR_NOTFOUND;
}
static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
{
struct device_node *dn;
int pci_offset, root_offset, ret = 0;
if (!firmware_has_feature(FW_FEATURE_LPAR))
return 0;
root_offset = fdt_path_offset(fdt, "/");
for_each_node_with_property(dn, dmapropname) {
pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
if (pci_offset < 0)
continue;
ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
if (ret < 0) {
of_node_put(dn);
break;
}
ret = copy_property(fdt, pci_offset, dn, dmapropname);
if (ret < 0) {
of_node_put(dn);
break;
}
}
return ret;
}
/**
* setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
* being loaded.
* @image: kexec image being loaded.
* @fdt: Flattened device tree for the next kernel.
* @rmem: Reserved memory ranges.
*
* Returns 0 on success, negative errno on error.
*/
int setup_new_fdt_ppc64(const struct kimage *image, void *fdt, struct crash_mem *rmem)
{
struct crash_mem *umem = NULL;
int i, nr_ranges, ret;
#ifdef CONFIG_CRASH_DUMP
/*
* Restrict memory usage for kdump kernel by setting up
* usable memory ranges and memory reserve map.
*/
if (image->type == KEXEC_TYPE_CRASH) {
ret = get_usable_memory_ranges(&umem);
if (ret)
goto out;
ret = update_usable_mem_fdt(fdt, umem);
if (ret) {
pr_err("Error setting up usable-memory property for kdump kernel\n");
goto out;
}
/*
* Ensure we don't touch crashed kernel's memory except the
* first 64K of RAM, which will be backed up.
*/
ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
crashk_res.start - BACKUP_SRC_SIZE);
if (ret) {
pr_err("Error reserving crash memory: %s\n",
fdt_strerror(ret));
goto out;
}
/* Ensure backup region is not used by kdump/capture kernel */
ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
BACKUP_SRC_SIZE);
if (ret) {
pr_err("Error reserving memory for backup: %s\n",
fdt_strerror(ret));
goto out;
}
}
#endif
/* Update cpus nodes information to account hotplug CPUs. */
ret = update_cpus_node(fdt);
if (ret < 0)
goto out;
ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
if (ret < 0)
goto out;
ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
if (ret < 0)
goto out;
/* Update memory reserve map */
nr_ranges = rmem ? rmem->nr_ranges : 0;
for (i = 0; i < nr_ranges; i++) {
u64 base, size;
base = rmem->ranges[i].start;
size = rmem->ranges[i].end - base + 1;
ret = fdt_add_mem_rsv(fdt, base, size);
if (ret) {
pr_err("Error updating memory reserve map: %s\n",
fdt_strerror(ret));
goto out;
}
}
// If we have PLPKS active, we need to provide the password to the new kernel
if (plpks_is_available())
ret = plpks_populate_fdt(fdt);
out:
kfree(umem);
return ret;
}
/**
* arch_kexec_kernel_image_probe - Does additional handling needed to setup
* kexec segments.
* @image: kexec image being loaded.
* @buf: Buffer pointing to elf data.
* @buf_len: Length of the buffer.
*
* Returns 0 on success, negative errno on error.
*/
int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len)
{
int ret;
/* Get exclude memory ranges needed for setting up kexec segments */
ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
if (ret) {
pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
return ret;
}
return kexec_image_probe_default(image, buf, buf_len);
}
/**
* arch_kimage_file_post_load_cleanup - Frees up all the allocations done
* while loading the image.
* @image: kexec image being loaded.
*
* Returns 0 on success, negative errno on error.
*/
int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
kfree(image->arch.exclude_ranges);
image->arch.exclude_ranges = NULL;
vfree(image->arch.backup_buf);
image->arch.backup_buf = NULL;
vfree(image->elf_headers);
image->elf_headers = NULL;
image->elf_headers_sz = 0;
kvfree(image->arch.fdt);
image->arch.fdt = NULL;
return kexec_image_post_load_cleanup_default(image);
}