linux/arch/mips/include/asm/mips-cps.h
Gregory CLEMENT c71085f2c0 MIPS: CPS: Improve mips_cps_first_online_in_cluster()
The initial implementation of this function goes through all the CPUs
in a cluster to determine if the current CPU is the only one
running. This process occurs every time the function is called.

However, during boot, we already perform this task, so let's take
advantage of this opportunity to create and fill a CPU bitmask that
can be easily and efficiently used later.

This patch modifies the function to allow providing the first
available online CPU when one already exists, which is necessary for
delay CPU calibration optimization.

Reviewed-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2025-07-16 18:34:49 +02:00

272 lines
7.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Copyright (C) 2017 Imagination Technologies
* Author: Paul Burton <paul.burton@mips.com>
*/
#ifndef __MIPS_ASM_MIPS_CPS_H__
#define __MIPS_ASM_MIPS_CPS_H__
#include <linux/bitfield.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/types.h>
extern unsigned long __cps_access_bad_size(void)
__compiletime_error("Bad size for CPS accessor");
#define CPS_ACCESSOR_A(unit, off, name) \
static inline void *addr_##unit##_##name(void) \
{ \
return mips_##unit##_base + (off); \
}
#define CPS_ACCESSOR_R(unit, sz, name) \
static inline uint##sz##_t read_##unit##_##name(void) \
{ \
uint64_t val64; \
\
switch (sz) { \
case 32: \
return __raw_readl(addr_##unit##_##name()); \
\
case 64: \
if (mips_cm_is64) \
return __raw_readq(addr_##unit##_##name()); \
\
val64 = __raw_readl(addr_##unit##_##name() + 4); \
val64 <<= 32; \
val64 |= __raw_readl(addr_##unit##_##name()); \
return val64; \
\
default: \
return __cps_access_bad_size(); \
} \
}
#define CPS_ACCESSOR_W(unit, sz, name) \
static inline void write_##unit##_##name(uint##sz##_t val) \
{ \
switch (sz) { \
case 32: \
__raw_writel(val, addr_##unit##_##name()); \
break; \
\
case 64: \
if (mips_cm_is64) { \
__raw_writeq(val, addr_##unit##_##name()); \
break; \
} \
\
__raw_writel((uint64_t)val >> 32, \
addr_##unit##_##name() + 4); \
__raw_writel(val, addr_##unit##_##name()); \
break; \
\
default: \
__cps_access_bad_size(); \
break; \
} \
}
#define CPS_ACCESSOR_M(unit, sz, name) \
static inline void change_##unit##_##name(uint##sz##_t mask, \
uint##sz##_t val) \
{ \
uint##sz##_t reg_val = read_##unit##_##name(); \
reg_val &= ~mask; \
reg_val |= val; \
write_##unit##_##name(reg_val); \
} \
\
static inline void set_##unit##_##name(uint##sz##_t val) \
{ \
change_##unit##_##name(val, val); \
} \
\
static inline void clear_##unit##_##name(uint##sz##_t val) \
{ \
change_##unit##_##name(val, 0); \
}
#define CPS_ACCESSOR_RO(unit, sz, off, name) \
CPS_ACCESSOR_A(unit, off, name) \
CPS_ACCESSOR_R(unit, sz, name)
#define CPS_ACCESSOR_WO(unit, sz, off, name) \
CPS_ACCESSOR_A(unit, off, name) \
CPS_ACCESSOR_W(unit, sz, name)
#define CPS_ACCESSOR_RW(unit, sz, off, name) \
CPS_ACCESSOR_A(unit, off, name) \
CPS_ACCESSOR_R(unit, sz, name) \
CPS_ACCESSOR_W(unit, sz, name) \
CPS_ACCESSOR_M(unit, sz, name)
#include <asm/mips-cm.h>
#include <asm/mips-cpc.h>
#include <asm/mips-gic.h>
/**
* mips_cps_numclusters - return the number of clusters present in the system
*
* Returns the number of clusters in the system.
*/
static inline unsigned int mips_cps_numclusters(void)
{
if (mips_cm_revision() < CM_REV_CM3_5)
return 1;
return FIELD_GET(CM_GCR_CONFIG_NUM_CLUSTERS, read_gcr_config());
}
/**
* mips_cps_cluster_config - return (GCR|CPC)_CONFIG from a cluster
* @cluster: the ID of the cluster whose config we want
*
* Read the value of GCR_CONFIG (or its CPC_CONFIG mirror) from a @cluster.
*
* Returns the value of GCR_CONFIG.
*/
static inline uint64_t mips_cps_cluster_config(unsigned int cluster)
{
uint64_t config;
if (mips_cm_revision() < CM_REV_CM3_5) {
/*
* Prior to CM 3.5 we don't have the notion of multiple
* clusters so we can trivially read the GCR_CONFIG register
* within this cluster.
*/
WARN_ON(cluster != 0);
config = read_gcr_config();
} else {
/*
* From CM 3.5 onwards we read the CPC_CONFIG mirror of
* GCR_CONFIG via the redirect region, since the CPC is always
* powered up allowing us not to need to power up the CM.
*/
mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
config = read_cpc_redir_config();
mips_cm_unlock_other();
}
return config;
}
/**
* mips_cps_numcores - return the number of cores present in a cluster
* @cluster: the ID of the cluster whose core count we want
*
* Returns the value of the PCORES field of the GCR_CONFIG register plus 1, or
* zero if no Coherence Manager is present.
*/
static inline unsigned int mips_cps_numcores(unsigned int cluster)
{
if (!mips_cm_present())
return 0;
/* Add one before masking to handle 0xff indicating no cores */
return FIELD_GET(CM_GCR_CONFIG_PCORES,
mips_cps_cluster_config(cluster) + 1);
}
/**
* mips_cps_numiocu - return the number of IOCUs present in a cluster
* @cluster: the ID of the cluster whose IOCU count we want
*
* Returns the value of the NUMIOCU field of the GCR_CONFIG register, or zero
* if no Coherence Manager is present.
*/
static inline unsigned int mips_cps_numiocu(unsigned int cluster)
{
if (!mips_cm_present())
return 0;
return FIELD_GET(CM_GCR_CONFIG_NUMIOCU,
mips_cps_cluster_config(cluster));
}
/**
* mips_cps_numvps - return the number of VPs (threads) supported by a core
* @cluster: the ID of the cluster containing the core we want to examine
* @core: the ID of the core whose VP count we want
*
* Returns the number of Virtual Processors (VPs, ie. hardware threads) that
* are supported by the given @core in the given @cluster. If the core or the
* kernel do not support hardware mutlti-threading this returns 1.
*/
static inline unsigned int mips_cps_numvps(unsigned int cluster, unsigned int core)
{
unsigned int cfg;
if (!mips_cm_present())
return 1;
if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
&& (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
return 1;
mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
if (mips_cm_revision() < CM_REV_CM3_5) {
/*
* Prior to CM 3.5 we can only have one cluster & don't have
* CPC_Cx_CONFIG, so we read GCR_Cx_CONFIG.
*/
cfg = read_gcr_co_config();
} else {
/*
* From CM 3.5 onwards we read CPC_Cx_CONFIG because the CPC is
* always powered, which allows us to not worry about powering
* up the cluster's CM here.
*/
cfg = read_cpc_co_config();
}
mips_cm_unlock_other();
return FIELD_GET(CM_GCR_Cx_CONFIG_PVPE, cfg + 1);
}
/**
* mips_cps_multicluster_cpus() - Detect whether CPUs are in multiple clusters
*
* Determine whether the system includes CPUs in multiple clusters - ie.
* whether we can treat the system as single or multi-cluster as far as CPUs
* are concerned. Note that this is slightly different to simply checking
* whether multiple clusters are present - it is possible for there to be
* clusters which contain no CPUs, which this function will effectively ignore.
*
* Returns true if CPUs are spread across multiple clusters, else false.
*/
static inline bool mips_cps_multicluster_cpus(void)
{
unsigned int first_cl, last_cl;
/*
* CPUs are numbered sequentially by cluster - ie. CPUs 0..X will be in
* cluster 0, CPUs X+1..Y in cluster 1, CPUs Y+1..Z in cluster 2 etc.
*
* Thus we can detect multiple clusters trivially by checking whether
* the first & last CPUs belong to the same cluster.
*/
first_cl = cpu_cluster(&boot_cpu_data);
last_cl = cpu_cluster(&cpu_data[nr_cpu_ids - 1]);
return first_cl != last_cl;
}
/**
* mips_cps_first_online_in_cluster() - Detect if CPU is first online in cluster
* @first_cpu: The first other online CPU in cluster, or nr_cpu_ids if
* the function returns true.
*
* Determine whether the local CPU is the first to be brought online in its
* cluster - that is, whether there are any other online CPUs in the local
* cluster.
*
* Returns true if this CPU is first online, else false.
*/
extern unsigned int mips_cps_first_online_in_cluster(int *first_cpu);
#endif /* __MIPS_ASM_MIPS_CPS_H__ */