linux/arch/arm64/mm/fault.c
Linus Torvalds beace86e61 Summary of significant series in this pull request:
- The 4 patch series "mm: ksm: prevent KSM from breaking merging of new
   VMAs" from Lorenzo Stoakes addresses an issue with KSM's
   PR_SET_MEMORY_MERGE mode: newly mapped VMAs were not eligible for
   merging with existing adjacent VMAs.
 
 - The 4 patch series "mm/damon: introduce DAMON_STAT for simple and
   practical access monitoring" from SeongJae Park adds a new kernel module
   which simplifies the setup and usage of DAMON in production
   environments.
 
 - The 6 patch series "stop passing a writeback_control to swap/shmem
   writeout" from Christoph Hellwig is a cleanup to the writeback code
   which removes a couple of pointers from struct writeback_control.
 
 - The 7 patch series "drivers/base/node.c: optimization and cleanups"
   from Donet Tom contains largely uncorrelated cleanups to the NUMA node
   setup and management code.
 
 - The 4 patch series "mm: userfaultfd: assorted fixes and cleanups" from
   Tal Zussman does some maintenance work on the userfaultfd code.
 
 - The 5 patch series "Readahead tweaks for larger folios" from Ryan
   Roberts implements some tuneups for pagecache readahead when it is
   reading into order>0 folios.
 
 - The 4 patch series "selftests/mm: Tweaks to the cow test" from Mark
   Brown provides some cleanups and consistency improvements to the
   selftests code.
 
 - The 4 patch series "Optimize mremap() for large folios" from Dev Jain
   does that.  A 37% reduction in execution time was measured in a
   memset+mremap+munmap microbenchmark.
 
 - The 5 patch series "Remove zero_user()" from Matthew Wilcox expunges
   zero_user() in favor of the more modern memzero_page().
 
 - The 3 patch series "mm/huge_memory: vmf_insert_folio_*() and
   vmf_insert_pfn_pud() fixes" from David Hildenbrand addresses some warts
   which David noticed in the huge page code.  These were not known to be
   causing any issues at this time.
 
 - The 3 patch series "mm/damon: use alloc_migrate_target() for
   DAMOS_MIGRATE_{HOT,COLD" from SeongJae Park provides some cleanup and
   consolidation work in DAMON.
 
 - The 3 patch series "use vm_flags_t consistently" from Lorenzo Stoakes
   uses vm_flags_t in places where we were inappropriately using other
   types.
 
 - The 3 patch series "mm/memfd: Reserve hugetlb folios before
   allocation" from Vivek Kasireddy increases the reliability of large page
   allocation in the memfd code.
 
 - The 14 patch series "mm: Remove pXX_devmap page table bit and pfn_t
   type" from Alistair Popple removes several now-unneeded PFN_* flags.
 
 - The 5 patch series "mm/damon: decouple sysfs from core" from SeongJae
   Park implememnts some cleanup and maintainability work in the DAMON
   sysfs layer.
 
 - The 5 patch series "madvise cleanup" from Lorenzo Stoakes does quite a
   lot of cleanup/maintenance work in the madvise() code.
 
 - The 4 patch series "madvise anon_name cleanups" from Vlastimil Babka
   provides additional cleanups on top or Lorenzo's effort.
 
 - The 11 patch series "Implement numa node notifier" from Oscar Salvador
   creates a standalone notifier for NUMA node memory state changes.
   Previously these were lumped under the more general memory on/offline
   notifier.
 
 - The 6 patch series "Make MIGRATE_ISOLATE a standalone bit" from Zi Yan
   cleans up the pageblock isolation code and fixes a potential issue which
   doesn't seem to cause any problems in practice.
 
 - The 5 patch series "selftests/damon: add python and drgn based DAMON
   sysfs functionality tests" from SeongJae Park adds additional drgn- and
   python-based DAMON selftests which are more comprehensive than the
   existing selftest suite.
 
 - The 5 patch series "Misc rework on hugetlb faulting path" from Oscar
   Salvador fixes a rather obscure deadlock in the hugetlb fault code and
   follows that fix with a series of cleanups.
 
 - The 3 patch series "cma: factor out allocation logic from
   __cma_declare_contiguous_nid" from Mike Rapoport rationalizes and cleans
   up the highmem-specific code in the CMA allocator.
 
 - The 28 patch series "mm/migration: rework movable_ops page migration
   (part 1)" from David Hildenbrand provides cleanups and
   future-preparedness to the migration code.
 
 - The 2 patch series "mm/damon: add trace events for auto-tuned
   monitoring intervals and DAMOS quota" from SeongJae Park adds some
   tracepoints to some DAMON auto-tuning code.
 
 - The 6 patch series "mm/damon: fix misc bugs in DAMON modules" from
   SeongJae Park does that.
 
 - The 6 patch series "mm/damon: misc cleanups" from SeongJae Park also
   does what it claims.
 
 - The 4 patch series "mm: folio_pte_batch() improvements" from David
   Hildenbrand cleans up the large folio PTE batching code.
 
 - The 13 patch series "mm/damon/vaddr: Allow interleaving in
   migrate_{hot,cold} actions" from SeongJae Park facilitates dynamic
   alteration of DAMON's inter-node allocation policy.
 
 - The 3 patch series "Remove unmap_and_put_page()" from Vishal Moola
   provides a couple of page->folio conversions.
 
 - The 4 patch series "mm: per-node proactive reclaim" from Davidlohr
   Bueso implements a per-node control of proactive reclaim - beyond the
   current memcg-based implementation.
 
 - The 14 patch series "mm/damon: remove damon_callback" from SeongJae
   Park replaces the damon_callback interface with a more general and
   powerful damon_call()+damos_walk() interface.
 
 - The 10 patch series "mm/mremap: permit mremap() move of multiple VMAs"
   from Lorenzo Stoakes implements a number of mremap cleanups (of course)
   in preparation for adding new mremap() functionality: newly permit the
   remapping of multiple VMAs when the user is specifying MREMAP_FIXED.  It
   still excludes some specialized situations where this cannot be
   performed reliably.
 
 - The 3 patch series "drop hugetlb_free_pgd_range()" from Anthony Yznaga
   switches some sparc hugetlb code over to the generic version and removes
   the thus-unneeded hugetlb_free_pgd_range().
 
 - The 4 patch series "mm/damon/sysfs: support periodic and automated
   stats update" from SeongJae Park augments the present
   userspace-requested update of DAMON sysfs monitoring files.  Automatic
   update is now provided, along with a tunable to control the update
   interval.
 
 - The 4 patch series "Some randome fixes and cleanups to swapfile" from
   Kemeng Shi does what is claims.
 
 - The 4 patch series "mm: introduce snapshot_page" from Luiz Capitulino
   and David Hildenbrand provides (and uses) a means by which debug-style
   functions can grab a copy of a pageframe and inspect it locklessly
   without tripping over the races inherent in operating on the live
   pageframe directly.
 
 - The 6 patch series "use per-vma locks for /proc/pid/maps reads" from
   Suren Baghdasaryan addresses the large contention issues which can be
   triggered by reads from that procfs file.  Latencies are reduced by more
   than half in some situations.  The series also introduces several new
   selftests for the /proc/pid/maps interface.
 
 - The 6 patch series "__folio_split() clean up" from Zi Yan cleans up
   __folio_split()!
 
 - The 7 patch series "Optimize mprotect() for large folios" from Dev
   Jain provides some quite large (>3x) speedups to mprotect() when dealing
   with large folios.
 
 - The 2 patch series "selftests/mm: reuse FORCE_READ to replace "asm
   volatile("" : "+r" (XXX));" and some cleanup" from wang lian does some
   cleanup work in the selftests code.
 
 - The 3 patch series "tools/testing: expand mremap testing" from Lorenzo
   Stoakes extends the mremap() selftest in several ways, including adding
   more checking of Lorenzo's recently added "permit mremap() move of
   multiple VMAs" feature.
 
 - The 22 patch series "selftests/damon/sysfs.py: test all parameters"
   from SeongJae Park extends the DAMON sysfs interface selftest so that it
   tests all possible user-requested parameters.  Rather than the present
   minimal subset.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaIqcCgAKCRDdBJ7gKXxA
 jkVBAQCCn9DR1QP0CRk961ot0cKzOgioSc0aA03DPb2KXRt2kQEAzDAz0ARurFhL
 8BzbvI0c+4tntHLXvIlrC33n9KWAOQM=
 =XsFy
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-07-30-15-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "As usual, many cleanups. The below blurbiage describes 42 patchsets.
  21 of those are partially or fully cleanup work. "cleans up",
  "cleanup", "maintainability", "rationalizes", etc.

  I never knew the MM code was so dirty.

  "mm: ksm: prevent KSM from breaking merging of new VMAs" (Lorenzo Stoakes)
     addresses an issue with KSM's PR_SET_MEMORY_MERGE mode: newly
     mapped VMAs were not eligible for merging with existing adjacent
     VMAs.

  "mm/damon: introduce DAMON_STAT for simple and practical access monitoring" (SeongJae Park)
     adds a new kernel module which simplifies the setup and usage of
     DAMON in production environments.

  "stop passing a writeback_control to swap/shmem writeout" (Christoph Hellwig)
     is a cleanup to the writeback code which removes a couple of
     pointers from struct writeback_control.

  "drivers/base/node.c: optimization and cleanups" (Donet Tom)
     contains largely uncorrelated cleanups to the NUMA node setup and
     management code.

  "mm: userfaultfd: assorted fixes and cleanups" (Tal Zussman)
     does some maintenance work on the userfaultfd code.

  "Readahead tweaks for larger folios" (Ryan Roberts)
     implements some tuneups for pagecache readahead when it is reading
     into order>0 folios.

  "selftests/mm: Tweaks to the cow test" (Mark Brown)
     provides some cleanups and consistency improvements to the
     selftests code.

  "Optimize mremap() for large folios" (Dev Jain)
     does that. A 37% reduction in execution time was measured in a
     memset+mremap+munmap microbenchmark.

  "Remove zero_user()" (Matthew Wilcox)
     expunges zero_user() in favor of the more modern memzero_page().

  "mm/huge_memory: vmf_insert_folio_*() and vmf_insert_pfn_pud() fixes" (David Hildenbrand)
     addresses some warts which David noticed in the huge page code.
     These were not known to be causing any issues at this time.

  "mm/damon: use alloc_migrate_target() for DAMOS_MIGRATE_{HOT,COLD" (SeongJae Park)
     provides some cleanup and consolidation work in DAMON.

  "use vm_flags_t consistently" (Lorenzo Stoakes)
     uses vm_flags_t in places where we were inappropriately using other
     types.

  "mm/memfd: Reserve hugetlb folios before allocation" (Vivek Kasireddy)
     increases the reliability of large page allocation in the memfd
     code.

  "mm: Remove pXX_devmap page table bit and pfn_t type" (Alistair Popple)
     removes several now-unneeded PFN_* flags.

  "mm/damon: decouple sysfs from core" (SeongJae Park)
     implememnts some cleanup and maintainability work in the DAMON
     sysfs layer.

  "madvise cleanup" (Lorenzo Stoakes)
     does quite a lot of cleanup/maintenance work in the madvise() code.

  "madvise anon_name cleanups" (Vlastimil Babka)
     provides additional cleanups on top or Lorenzo's effort.

  "Implement numa node notifier" (Oscar Salvador)
     creates a standalone notifier for NUMA node memory state changes.
     Previously these were lumped under the more general memory
     on/offline notifier.

  "Make MIGRATE_ISOLATE a standalone bit" (Zi Yan)
     cleans up the pageblock isolation code and fixes a potential issue
     which doesn't seem to cause any problems in practice.

  "selftests/damon: add python and drgn based DAMON sysfs functionality tests" (SeongJae Park)
     adds additional drgn- and python-based DAMON selftests which are
     more comprehensive than the existing selftest suite.

  "Misc rework on hugetlb faulting path" (Oscar Salvador)
     fixes a rather obscure deadlock in the hugetlb fault code and
     follows that fix with a series of cleanups.

  "cma: factor out allocation logic from __cma_declare_contiguous_nid" (Mike Rapoport)
     rationalizes and cleans up the highmem-specific code in the CMA
     allocator.

  "mm/migration: rework movable_ops page migration (part 1)" (David Hildenbrand)
     provides cleanups and future-preparedness to the migration code.

  "mm/damon: add trace events for auto-tuned monitoring intervals and DAMOS quota" (SeongJae Park)
     adds some tracepoints to some DAMON auto-tuning code.

  "mm/damon: fix misc bugs in DAMON modules" (SeongJae Park)
     does that.

  "mm/damon: misc cleanups" (SeongJae Park)
     also does what it claims.

  "mm: folio_pte_batch() improvements" (David Hildenbrand)
     cleans up the large folio PTE batching code.

  "mm/damon/vaddr: Allow interleaving in migrate_{hot,cold} actions" (SeongJae Park)
     facilitates dynamic alteration of DAMON's inter-node allocation
     policy.

  "Remove unmap_and_put_page()" (Vishal Moola)
     provides a couple of page->folio conversions.

  "mm: per-node proactive reclaim" (Davidlohr Bueso)
     implements a per-node control of proactive reclaim - beyond the
     current memcg-based implementation.

  "mm/damon: remove damon_callback" (SeongJae Park)
     replaces the damon_callback interface with a more general and
     powerful damon_call()+damos_walk() interface.

  "mm/mremap: permit mremap() move of multiple VMAs" (Lorenzo Stoakes)
     implements a number of mremap cleanups (of course) in preparation
     for adding new mremap() functionality: newly permit the remapping
     of multiple VMAs when the user is specifying MREMAP_FIXED. It still
     excludes some specialized situations where this cannot be performed
     reliably.

  "drop hugetlb_free_pgd_range()" (Anthony Yznaga)
     switches some sparc hugetlb code over to the generic version and
     removes the thus-unneeded hugetlb_free_pgd_range().

  "mm/damon/sysfs: support periodic and automated stats update" (SeongJae Park)
     augments the present userspace-requested update of DAMON sysfs
     monitoring files. Automatic update is now provided, along with a
     tunable to control the update interval.

  "Some randome fixes and cleanups to swapfile" (Kemeng Shi)
     does what is claims.

  "mm: introduce snapshot_page" (Luiz Capitulino and David Hildenbrand)
     provides (and uses) a means by which debug-style functions can grab
     a copy of a pageframe and inspect it locklessly without tripping
     over the races inherent in operating on the live pageframe
     directly.

  "use per-vma locks for /proc/pid/maps reads" (Suren Baghdasaryan)
     addresses the large contention issues which can be triggered by
     reads from that procfs file. Latencies are reduced by more than
     half in some situations. The series also introduces several new
     selftests for the /proc/pid/maps interface.

  "__folio_split() clean up" (Zi Yan)
     cleans up __folio_split()!

  "Optimize mprotect() for large folios" (Dev Jain)
     provides some quite large (>3x) speedups to mprotect() when dealing
     with large folios.

  "selftests/mm: reuse FORCE_READ to replace "asm volatile("" : "+r" (XXX));" and some cleanup" (wang lian)
     does some cleanup work in the selftests code.

  "tools/testing: expand mremap testing" (Lorenzo Stoakes)
     extends the mremap() selftest in several ways, including adding
     more checking of Lorenzo's recently added "permit mremap() move of
     multiple VMAs" feature.

  "selftests/damon/sysfs.py: test all parameters" (SeongJae Park)
     extends the DAMON sysfs interface selftest so that it tests all
     possible user-requested parameters. Rather than the present minimal
     subset"

* tag 'mm-stable-2025-07-30-15-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (370 commits)
  MAINTAINERS: add missing headers to mempory policy & migration section
  MAINTAINERS: add missing file to cgroup section
  MAINTAINERS: add MM MISC section, add missing files to MISC and CORE
  MAINTAINERS: add missing zsmalloc file
  MAINTAINERS: add missing files to page alloc section
  MAINTAINERS: add missing shrinker files
  MAINTAINERS: move memremap.[ch] to hotplug section
  MAINTAINERS: add missing mm_slot.h file THP section
  MAINTAINERS: add missing interval_tree.c to memory mapping section
  MAINTAINERS: add missing percpu-internal.h file to per-cpu section
  mm/page_alloc: remove trace_mm_alloc_contig_migrate_range_info()
  selftests/damon: introduce _common.sh to host shared function
  selftests/damon/sysfs.py: test runtime reduction of DAMON parameters
  selftests/damon/sysfs.py: test non-default parameters runtime commit
  selftests/damon/sysfs.py: generalize DAMON context commit assertion
  selftests/damon/sysfs.py: generalize monitoring attributes commit assertion
  selftests/damon/sysfs.py: generalize DAMOS schemes commit assertion
  selftests/damon/sysfs.py: test DAMOS filters commitment
  selftests/damon/sysfs.py: generalize DAMOS scheme commit assertion
  selftests/damon/sysfs.py: test DAMOS destinations commitment
  ...
2025-07-31 14:57:54 -07:00

976 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995-2004 Russell King
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/bitfield.h>
#include <linux/extable.h>
#include <linux/kfence.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/highmem.h>
#include <linux/perf_event.h>
#include <linux/pkeys.h>
#include <linux/preempt.h>
#include <linux/hugetlb.h>
#include <asm/acpi.h>
#include <asm/bug.h>
#include <asm/cmpxchg.h>
#include <asm/cpufeature.h>
#include <asm/efi.h>
#include <asm/exception.h>
#include <asm/daifflags.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kprobes.h>
#include <asm/mte.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
#include <asm/tlbflush.h>
#include <asm/traps.h>
struct fault_info {
int (*fn)(unsigned long far, unsigned long esr,
struct pt_regs *regs);
int sig;
int code;
const char *name;
};
static const struct fault_info fault_info[];
static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
{
return fault_info + (esr & ESR_ELx_FSC);
}
static void data_abort_decode(unsigned long esr)
{
unsigned long iss2 = ESR_ELx_ISS2(esr);
pr_alert("Data abort info:\n");
if (esr & ESR_ELx_ISV) {
pr_alert(" Access size = %u byte(s)\n",
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
pr_alert(" SSE = %lu, SRT = %lu\n",
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
pr_alert(" SF = %lu, AR = %lu\n",
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
} else {
pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
esr & ESR_ELx_ISS_MASK, iss2);
}
pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
(iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
(iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
(iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
(iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
(iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
(iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
}
static void mem_abort_decode(unsigned long esr)
{
pr_alert("Mem abort info:\n");
pr_alert(" ESR = 0x%016lx\n", esr);
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
ESR_ELx_EC(esr), esr_get_class_string(esr),
(esr & ESR_ELx_IL) ? 32 : 16);
pr_alert(" SET = %lu, FnV = %lu\n",
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
pr_alert(" EA = %lu, S1PTW = %lu\n",
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
esr_to_fault_info(esr)->name);
if (esr_is_data_abort(esr))
data_abort_decode(esr);
}
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
{
/* Either init_pg_dir or swapper_pg_dir */
if (mm == &init_mm)
return __pa_symbol(mm->pgd);
return (unsigned long)virt_to_phys(mm->pgd);
}
/*
* Dump out the page tables associated with 'addr' in the currently active mm.
*/
static void show_pte(unsigned long addr)
{
struct mm_struct *mm;
pgd_t *pgdp;
pgd_t pgd;
if (is_ttbr0_addr(addr)) {
/* TTBR0 */
mm = current->active_mm;
if (mm == &init_mm) {
pr_alert("[%016lx] user address but active_mm is swapper\n",
addr);
return;
}
} else if (is_ttbr1_addr(addr)) {
/* TTBR1 */
mm = &init_mm;
} else {
pr_alert("[%016lx] address between user and kernel address ranges\n",
addr);
return;
}
pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
vabits_actual, mm_to_pgd_phys(mm));
pgdp = pgd_offset(mm, addr);
pgd = READ_ONCE(*pgdp);
pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
do {
p4d_t *p4dp, p4d;
pud_t *pudp, pud;
pmd_t *pmdp, pmd;
pte_t *ptep, pte;
if (pgd_none(pgd) || pgd_bad(pgd))
break;
p4dp = p4d_offset(pgdp, addr);
p4d = READ_ONCE(*p4dp);
pr_cont(", p4d=%016llx", p4d_val(p4d));
if (p4d_none(p4d) || p4d_bad(p4d))
break;
pudp = pud_offset(p4dp, addr);
pud = READ_ONCE(*pudp);
pr_cont(", pud=%016llx", pud_val(pud));
if (pud_none(pud) || pud_bad(pud))
break;
pmdp = pmd_offset(pudp, addr);
pmd = READ_ONCE(*pmdp);
pr_cont(", pmd=%016llx", pmd_val(pmd));
if (pmd_none(pmd) || pmd_bad(pmd))
break;
ptep = pte_offset_map(pmdp, addr);
if (!ptep)
break;
pte = __ptep_get(ptep);
pr_cont(", pte=%016llx", pte_val(pte));
pte_unmap(ptep);
} while(0);
pr_cont("\n");
}
/*
* This function sets the access flags (dirty, accessed), as well as write
* permission, and only to a more permissive setting.
*
* It needs to cope with hardware update of the accessed/dirty state by other
* agents in the system and can safely skip the __sync_icache_dcache() call as,
* like __set_ptes(), the PTE is never changed from no-exec to exec here.
*
* Returns whether or not the PTE actually changed.
*/
int __ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty)
{
pteval_t old_pteval, pteval;
pte_t pte = __ptep_get(ptep);
if (pte_same(pte, entry))
return 0;
/* only preserve the access flags and write permission */
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
/*
* Setting the flags must be done atomically to avoid racing with the
* hardware update of the access/dirty state. The PTE_RDONLY bit must
* be set to the most permissive (lowest value) of *ptep and entry
* (calculated as: a & b == ~(~a | ~b)).
*/
pte_val(entry) ^= PTE_RDONLY;
pteval = pte_val(pte);
do {
old_pteval = pteval;
pteval ^= PTE_RDONLY;
pteval |= pte_val(entry);
pteval ^= PTE_RDONLY;
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
} while (pteval != old_pteval);
/* Invalidate a stale read-only entry */
if (dirty)
flush_tlb_page(vma, address);
return 1;
}
static bool is_el1_instruction_abort(unsigned long esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}
static bool is_el1_data_abort(unsigned long esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
}
static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
return false;
if (esr_fsc_is_permission_fault(esr))
return true;
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
return esr_fsc_is_translation_fault(esr) &&
(regs->pstate & PSR_PAN_BIT);
return false;
}
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
unsigned long esr,
struct pt_regs *regs)
{
unsigned long flags;
u64 par, dfsc;
if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
return false;
local_irq_save(flags);
asm volatile("at s1e1r, %0" :: "r" (addr));
isb();
par = read_sysreg_par();
local_irq_restore(flags);
/*
* If we now have a valid translation, treat the translation fault as
* spurious.
*/
if (!(par & SYS_PAR_EL1_F))
return true;
/*
* If we got a different type of fault from the AT instruction,
* treat the translation fault as spurious.
*/
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
return !esr_fsc_is_translation_fault(dfsc);
}
static void die_kernel_fault(const char *msg, unsigned long addr,
unsigned long esr, struct pt_regs *regs)
{
bust_spinlocks(1);
pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
addr);
kasan_non_canonical_hook(addr);
mem_abort_decode(esr);
show_pte(addr);
die("Oops", regs, esr);
bust_spinlocks(0);
make_task_dead(SIGKILL);
}
#ifdef CONFIG_KASAN_HW_TAGS
static void report_tag_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
/*
* SAS bits aren't set for all faults reported in EL1, so we can't
* find out access size.
*/
bool is_write = !!(esr & ESR_ELx_WNR);
kasan_report((void *)addr, 0, is_write, regs->pc);
}
#else
/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
static inline void report_tag_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs) { }
#endif
static void do_tag_recovery(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
report_tag_fault(addr, esr, regs);
/*
* Disable MTE Tag Checking on the local CPU for the current EL.
* It will be done lazily on the other CPUs when they will hit a
* tag fault.
*/
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
isb();
}
static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
{
unsigned long fsc = esr & ESR_ELx_FSC;
if (!is_el1_data_abort(esr))
return false;
if (fsc == ESR_ELx_FSC_MTE)
return true;
return false;
}
static void __do_kernel_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
const char *msg;
/*
* Are we prepared to handle this kernel fault?
* We are almost certainly not prepared to handle instruction faults.
*/
if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr))
return;
if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
"Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
return;
if (is_el1_mte_sync_tag_check_fault(esr)) {
do_tag_recovery(addr, esr, regs);
return;
}
if (is_el1_permission_fault(addr, esr, regs)) {
if (esr & ESR_ELx_WNR)
msg = "write to read-only memory";
else if (is_el1_instruction_abort(esr))
msg = "execute from non-executable memory";
else
msg = "read from unreadable memory";
} else if (addr < PAGE_SIZE) {
msg = "NULL pointer dereference";
} else {
if (esr_fsc_is_translation_fault(esr) &&
kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
return;
msg = "paging request";
}
if (efi_runtime_fixup_exception(regs, msg))
return;
die_kernel_fault(msg, addr, esr, regs);
}
static void set_thread_esr(unsigned long address, unsigned long esr)
{
current->thread.fault_address = address;
/*
* If the faulting address is in the kernel, we must sanitize the ESR.
* From userspace's point of view, kernel-only mappings don't exist
* at all, so we report them as level 0 translation faults.
* (This is not quite the way that "no mapping there at all" behaves:
* an alignment fault not caused by the memory type would take
* precedence over translation fault for a real access to empty
* space. Unfortunately we can't easily distinguish "alignment fault
* not caused by memory type" from "alignment fault caused by memory
* type", so we ignore this wrinkle and just return the translation
* fault.)
*/
if (!is_ttbr0_addr(current->thread.fault_address)) {
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_LOW:
/*
* These bits provide only information about the
* faulting instruction, which userspace knows already.
* We explicitly clear bits which are architecturally
* RES0 in case they are given meanings in future.
* We always report the ESR as if the fault was taken
* to EL1 and so ISV and the bits in ISS[23:14] are
* clear. (In fact it always will be a fault to EL1.)
*/
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
ESR_ELx_CM | ESR_ELx_WNR;
esr |= ESR_ELx_FSC_FAULT;
break;
case ESR_ELx_EC_IABT_LOW:
/*
* Claim a level 0 translation fault.
* All other bits are architecturally RES0 for faults
* reported with that DFSC value, so we clear them.
*/
esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
esr |= ESR_ELx_FSC_FAULT;
break;
default:
/*
* This should never happen (entry.S only brings us
* into this code for insn and data aborts from a lower
* exception level). Fail safe by not providing an ESR
* context record at all.
*/
WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
esr = 0;
break;
}
}
current->thread.fault_code = esr;
}
static void do_bad_area(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
unsigned long addr = untagged_addr(far);
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (user_mode(regs)) {
const struct fault_info *inf = esr_to_fault_info(esr);
set_thread_esr(addr, esr);
arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
} else {
__do_kernel_fault(addr, esr, regs);
}
}
static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags)
{
if (!system_supports_poe())
return false;
/*
* We do not check whether an Overlay fault has occurred because we
* cannot make a decision based solely on its value:
*
* - If Overlay is set, a fault did occur due to POE, but it may be
* spurious in those cases where we update POR_EL0 without ISB (e.g.
* on context-switch). We would then need to manually check POR_EL0
* against vma_pkey(vma), which is exactly what
* arch_vma_access_permitted() does.
*
* - If Overlay is not set, we may still need to report a pkey fault.
* This is the case if an access was made within a mapping but with no
* page mapped, and POR_EL0 forbids the access (according to
* vma_pkey()). Such access will result in a SIGSEGV regardless
* because core code checks arch_vma_access_permitted(), but in order
* to report the correct error code - SEGV_PKUERR - we must handle
* that case here.
*/
return !arch_vma_access_permitted(vma,
mm_flags & FAULT_FLAG_WRITE,
mm_flags & FAULT_FLAG_INSTRUCTION,
false);
}
static bool is_gcs_fault(unsigned long esr)
{
if (!esr_is_data_abort(esr))
return false;
return ESR_ELx_ISS2(esr) & ESR_ELx_GCS;
}
static bool is_el0_instruction_abort(unsigned long esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}
/*
* Note: not valid for EL1 DC IVAC, but we never use that such that it
* should fault. EL0 cannot issue DC IVAC (undef).
*/
static bool is_write_abort(unsigned long esr)
{
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
}
static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr)
{
if (!system_supports_gcs())
return false;
if (unlikely(is_gcs_fault(esr))) {
/* GCS accesses must be performed on a GCS page */
if (!(vma->vm_flags & VM_SHADOW_STACK))
return true;
} else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) {
/* Only GCS operations can write to a GCS page */
return esr_is_data_abort(esr) && is_write_abort(esr);
}
return false;
}
static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
const struct fault_info *inf;
struct mm_struct *mm = current->mm;
vm_fault_t fault;
vm_flags_t vm_flags;
unsigned int mm_flags = FAULT_FLAG_DEFAULT;
unsigned long addr = untagged_addr(far);
struct vm_area_struct *vma;
int si_code;
int pkey = -1;
if (kprobe_page_fault(regs, esr))
return 0;
/*
* If we're in an interrupt or have no user context, we must not take
* the fault.
*/
if (faulthandler_disabled() || !mm)
goto no_context;
if (user_mode(regs))
mm_flags |= FAULT_FLAG_USER;
/*
* vm_flags tells us what bits we must have in vma->vm_flags
* for the fault to be benign, __do_page_fault() would check
* vma->vm_flags & vm_flags and returns an error if the
* intersection is empty
*/
if (is_el0_instruction_abort(esr)) {
/* It was exec fault */
vm_flags = VM_EXEC;
mm_flags |= FAULT_FLAG_INSTRUCTION;
} else if (is_gcs_fault(esr)) {
/*
* The GCS permission on a page implies both read and
* write so always handle any GCS fault as a write fault,
* we need to trigger CoW even for GCS reads.
*/
vm_flags = VM_WRITE;
mm_flags |= FAULT_FLAG_WRITE;
} else if (is_write_abort(esr)) {
/* It was write fault */
vm_flags = VM_WRITE;
mm_flags |= FAULT_FLAG_WRITE;
} else {
/* It was read fault */
vm_flags = VM_READ;
/* Write implies read */
vm_flags |= VM_WRITE;
/* If EPAN is absent then exec implies read */
if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
vm_flags |= VM_EXEC;
}
if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
if (is_el1_instruction_abort(esr))
die_kernel_fault("execution of user memory",
addr, esr, regs);
if (!insn_may_access_user(regs->pc, esr))
die_kernel_fault("access to user memory outside uaccess routines",
addr, esr, regs);
}
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
if (!(mm_flags & FAULT_FLAG_USER))
goto lock_mmap;
vma = lock_vma_under_rcu(mm, addr);
if (!vma)
goto lock_mmap;
if (is_invalid_gcs_access(vma, esr)) {
vma_end_read(vma);
fault = 0;
si_code = SEGV_ACCERR;
goto bad_area;
}
if (!(vma->vm_flags & vm_flags)) {
vma_end_read(vma);
fault = 0;
si_code = SEGV_ACCERR;
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
goto bad_area;
}
if (fault_from_pkey(vma, mm_flags)) {
pkey = vma_pkey(vma);
vma_end_read(vma);
fault = 0;
si_code = SEGV_PKUERR;
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
goto bad_area;
}
fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
vma_end_read(vma);
if (!(fault & VM_FAULT_RETRY)) {
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
goto done;
}
count_vm_vma_lock_event(VMA_LOCK_RETRY);
if (fault & VM_FAULT_MAJOR)
mm_flags |= FAULT_FLAG_TRIED;
/* Quick path to respond to signals */
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return 0;
}
lock_mmap:
retry:
vma = lock_mm_and_find_vma(mm, addr, regs);
if (unlikely(!vma)) {
fault = 0;
si_code = SEGV_MAPERR;
goto bad_area;
}
if (!(vma->vm_flags & vm_flags)) {
mmap_read_unlock(mm);
fault = 0;
si_code = SEGV_ACCERR;
goto bad_area;
}
if (fault_from_pkey(vma, mm_flags)) {
pkey = vma_pkey(vma);
mmap_read_unlock(mm);
fault = 0;
si_code = SEGV_PKUERR;
goto bad_area;
}
fault = handle_mm_fault(vma, addr, mm_flags, regs);
/* Quick path to respond to signals */
if (fault_signal_pending(fault, regs)) {
if (!user_mode(regs))
goto no_context;
return 0;
}
/* The fault is fully completed (including releasing mmap lock) */
if (fault & VM_FAULT_COMPLETED)
return 0;
if (fault & VM_FAULT_RETRY) {
mm_flags |= FAULT_FLAG_TRIED;
goto retry;
}
mmap_read_unlock(mm);
done:
/* Handle the "normal" (no error) case first. */
if (likely(!(fault & VM_FAULT_ERROR)))
return 0;
si_code = SEGV_MAPERR;
bad_area:
/*
* If we are in kernel mode at this point, we have no context to
* handle this fault with.
*/
if (!user_mode(regs))
goto no_context;
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, call the OOM killer, and return to
* userspace (which will retry the fault, or kill us if we got
* oom-killed).
*/
pagefault_out_of_memory();
return 0;
}
inf = esr_to_fault_info(esr);
set_thread_esr(addr, esr);
if (fault & VM_FAULT_SIGBUS) {
/*
* We had some memory, but were unable to successfully fix up
* this page fault.
*/
arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
unsigned int lsb;
lsb = PAGE_SHIFT;
if (fault & VM_FAULT_HWPOISON_LARGE)
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
} else {
/*
* The pkey value that we return to userspace can be different
* from the pkey that caused the fault.
*
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
* 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page
* 3. T1 : faults...
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
* 5. T1 : enters fault handler, takes mmap_lock, etc...
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
* faulted on a pte with its pkey=4.
*/
/* Something tried to access memory that out of memory map */
if (si_code == SEGV_PKUERR)
arm64_force_sig_fault_pkey(far, inf->name, pkey);
else
arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
}
return 0;
no_context:
__do_kernel_fault(addr, esr, regs);
return 0;
}
static int __kprobes do_translation_fault(unsigned long far,
unsigned long esr,
struct pt_regs *regs)
{
unsigned long addr = untagged_addr(far);
if (is_ttbr0_addr(addr))
return do_page_fault(far, esr, regs);
do_bad_area(far, esr, regs);
return 0;
}
static int do_alignment_fault(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
compat_user_mode(regs))
return do_compat_alignment_fixup(far, regs);
do_bad_area(far, esr, regs);
return 0;
}
static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
{
return 1; /* "fault" */
}
static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
{
const struct fault_info *inf;
unsigned long siaddr;
inf = esr_to_fault_info(esr);
if (user_mode(regs) && apei_claim_sea(regs) == 0) {
/*
* APEI claimed this as a firmware-first notification.
* Some processing deferred to task_work before ret_to_user().
*/
return 0;
}
if (esr & ESR_ELx_FnV) {
siaddr = 0;
} else {
/*
* The architecture specifies that the tag bits of FAR_EL1 are
* UNKNOWN for synchronous external aborts. Mask them out now
* so that userspace doesn't see them.
*/
siaddr = untagged_addr(far);
}
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
return 0;
}
static int do_tag_check_fault(unsigned long far, unsigned long esr,
struct pt_regs *regs)
{
/*
* The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
* for tag check faults. Set them to corresponding bits in the untagged
* address if ARM64_MTE_FAR isn't supported.
* Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN.
*/
if (!cpus_have_cap(ARM64_MTE_FAR))
far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
do_bad_area(far, esr, regs);
return 0;
}
static const struct fault_info fault_info[] = {
{ do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
{ do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
{ do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
{ do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
{ do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
{ do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
{ do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
{ do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
{ do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
{ do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
};
void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
{
const struct fault_info *inf = esr_to_fault_info(esr);
unsigned long addr = untagged_addr(far);
if (!inf->fn(far, esr, regs))
return;
if (!user_mode(regs))
die_kernel_fault(inf->name, addr, esr, regs);
/*
* At this point we have an unrecognized fault type whose tag bits may
* have been defined as UNKNOWN. Therefore we only expose the untagged
* address to the signal handler.
*/
arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
}
NOKPROBE_SYMBOL(do_mem_abort);
void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
{
arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
addr, esr);
}
NOKPROBE_SYMBOL(do_sp_pc_abort);
/*
* Used during anonymous page fault handling.
*/
struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
unsigned long vaddr)
{
gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
/*
* If the page is mapped with PROT_MTE, initialise the tags at the
* point of allocation and page zeroing as this is usually faster than
* separate DC ZVA and STGM.
*/
if (vma->vm_flags & VM_MTE)
flags |= __GFP_ZEROTAGS;
return vma_alloc_folio(flags, 0, vma, vaddr);
}
void tag_clear_highpage(struct page *page)
{
/* Newly allocated page, shouldn't have been tagged yet */
WARN_ON_ONCE(!try_page_mte_tagging(page));
mte_zero_clear_page_tags(page_address(page));
set_page_mte_tagged(page);
}