linux/arch/arm64/crypto/ghash-ce-glue.c
Herbert Xu 9a7c987fb9 crypto: arm64/ghash - Use API partial block handling
Use the Crypto API partial block handling.

Also remove the unnecessary SIMD fallback path.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2025-04-23 11:33:47 +08:00

546 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
*
* Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
*/
#include <asm/neon.h>
#include <crypto/aes.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/ghash.h>
#include <crypto/gf128mul.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/cpufeature.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/unaligned.h>
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("ghash");
#define RFC4106_NONCE_SIZE 4
struct ghash_key {
be128 k;
u64 h[][2];
};
struct arm_ghash_desc_ctx {
u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
};
struct gcm_aes_ctx {
struct crypto_aes_ctx aes_key;
u8 nonce[RFC4106_NONCE_SIZE];
struct ghash_key ghash_key;
};
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
u64 const h[][2], const char *head);
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
u64 const h[][2], const char *head);
asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
u64 const h[][2], u64 dg[], u8 ctr[],
u32 const rk[], int rounds, u8 tag[]);
asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
u64 const h[][2], u64 dg[], u8 ctr[],
u32 const rk[], int rounds, const u8 l[],
const u8 tag[], u64 authsize);
static int ghash_init(struct shash_desc *desc)
{
struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
*ctx = (struct arm_ghash_desc_ctx){};
return 0;
}
static __always_inline
void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
struct ghash_key *key, const char *head,
void (*simd_update)(int blocks, u64 dg[],
const char *src,
u64 const h[][2],
const char *head))
{
kernel_neon_begin();
simd_update(blocks, dg, src, key->h, head);
kernel_neon_end();
}
/* avoid hogging the CPU for too long */
#define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
static int ghash_update(struct shash_desc *desc, const u8 *src,
unsigned int len)
{
struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
int blocks;
blocks = len / GHASH_BLOCK_SIZE;
len -= blocks * GHASH_BLOCK_SIZE;
do {
int chunk = min(blocks, MAX_BLOCKS);
ghash_do_simd_update(chunk, ctx->digest, src, key, NULL,
pmull_ghash_update_p8);
blocks -= chunk;
src += chunk * GHASH_BLOCK_SIZE;
} while (unlikely(blocks > 0));
return len;
}
static int ghash_export(struct shash_desc *desc, void *out)
{
struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
u8 *dst = out;
put_unaligned_be64(ctx->digest[1], dst);
put_unaligned_be64(ctx->digest[0], dst + 8);
return 0;
}
static int ghash_import(struct shash_desc *desc, const void *in)
{
struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
const u8 *src = in;
ctx->digest[1] = get_unaligned_be64(src);
ctx->digest[0] = get_unaligned_be64(src + 8);
return 0;
}
static int ghash_finup(struct shash_desc *desc, const u8 *src,
unsigned int len, u8 *dst)
{
struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
if (len) {
u8 buf[GHASH_BLOCK_SIZE] = {};
memcpy(buf, src, len);
ghash_do_simd_update(1, ctx->digest, src, key, NULL,
pmull_ghash_update_p8);
memzero_explicit(buf, sizeof(buf));
}
return ghash_export(desc, dst);
}
static void ghash_reflect(u64 h[], const be128 *k)
{
u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
h[0] = (be64_to_cpu(k->b) << 1) | carry;
h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
if (carry)
h[1] ^= 0xc200000000000000UL;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *inkey, unsigned int keylen)
{
struct ghash_key *key = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE)
return -EINVAL;
/* needed for the fallback */
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
ghash_reflect(key->h[0], &key->k);
return 0;
}
static struct shash_alg ghash_alg = {
.base.cra_name = "ghash",
.base.cra_driver_name = "ghash-neon",
.base.cra_priority = 150,
.base.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY,
.base.cra_blocksize = GHASH_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
.base.cra_module = THIS_MODULE,
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.finup = ghash_finup,
.setkey = ghash_setkey,
.export = ghash_export,
.import = ghash_import,
.descsize = sizeof(struct arm_ghash_desc_ctx),
.statesize = sizeof(struct ghash_desc_ctx),
};
static int num_rounds(struct crypto_aes_ctx *ctx)
{
/*
* # of rounds specified by AES:
* 128 bit key 10 rounds
* 192 bit key 12 rounds
* 256 bit key 14 rounds
* => n byte key => 6 + (n/4) rounds
*/
return 6 + ctx->key_length / 4;
}
static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
unsigned int keylen)
{
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
u8 key[GHASH_BLOCK_SIZE];
be128 h;
int ret;
ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
if (ret)
return -EINVAL;
aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
/* needed for the fallback */
memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
h = ctx->ghash_key.k;
gf128mul_lle(&h, &ctx->ghash_key.k);
ghash_reflect(ctx->ghash_key.h[1], &h);
gf128mul_lle(&h, &ctx->ghash_key.k);
ghash_reflect(ctx->ghash_key.h[2], &h);
gf128mul_lle(&h, &ctx->ghash_key.k);
ghash_reflect(ctx->ghash_key.h[3], &h);
return 0;
}
static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
int *buf_count, struct gcm_aes_ctx *ctx)
{
if (*buf_count > 0) {
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
memcpy(&buf[*buf_count], src, buf_added);
*buf_count += buf_added;
src += buf_added;
count -= buf_added;
}
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
int blocks = count / GHASH_BLOCK_SIZE;
ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
*buf_count ? buf : NULL,
pmull_ghash_update_p64);
src += blocks * GHASH_BLOCK_SIZE;
count %= GHASH_BLOCK_SIZE;
*buf_count = 0;
}
if (count > 0) {
memcpy(buf, src, count);
*buf_count = count;
}
}
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
u8 buf[GHASH_BLOCK_SIZE];
struct scatter_walk walk;
int buf_count = 0;
scatterwalk_start(&walk, req->src);
do {
unsigned int n;
n = scatterwalk_next(&walk, len);
gcm_update_mac(dg, walk.addr, n, buf, &buf_count, ctx);
scatterwalk_done_src(&walk, n);
len -= n;
} while (len);
if (buf_count) {
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
pmull_ghash_update_p64);
}
}
static int gcm_encrypt(struct aead_request *req, char *iv, int assoclen)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
int nrounds = num_rounds(&ctx->aes_key);
struct skcipher_walk walk;
u8 buf[AES_BLOCK_SIZE];
u64 dg[2] = {};
be128 lengths;
u8 *tag;
int err;
lengths.a = cpu_to_be64(assoclen * 8);
lengths.b = cpu_to_be64(req->cryptlen * 8);
if (assoclen)
gcm_calculate_auth_mac(req, dg, assoclen);
put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
err = skcipher_walk_aead_encrypt(&walk, req, false);
do {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
int nbytes = walk.nbytes;
tag = (u8 *)&lengths;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);
} else if (nbytes < walk.total) {
nbytes &= ~(AES_BLOCK_SIZE - 1);
tag = NULL;
}
kernel_neon_begin();
pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
dg, iv, ctx->aes_key.key_enc, nrounds,
tag);
kernel_neon_end();
if (unlikely(!nbytes))
break;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
memcpy(walk.dst.virt.addr,
buf + sizeof(buf) - nbytes, nbytes);
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
} while (walk.nbytes);
if (err)
return err;
/* copy authtag to end of dst */
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
crypto_aead_authsize(aead), 1);
return 0;
}
static int gcm_decrypt(struct aead_request *req, char *iv, int assoclen)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
unsigned int authsize = crypto_aead_authsize(aead);
int nrounds = num_rounds(&ctx->aes_key);
struct skcipher_walk walk;
u8 otag[AES_BLOCK_SIZE];
u8 buf[AES_BLOCK_SIZE];
u64 dg[2] = {};
be128 lengths;
u8 *tag;
int ret;
int err;
lengths.a = cpu_to_be64(assoclen * 8);
lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
if (assoclen)
gcm_calculate_auth_mac(req, dg, assoclen);
put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
scatterwalk_map_and_copy(otag, req->src,
req->assoclen + req->cryptlen - authsize,
authsize, 0);
err = skcipher_walk_aead_decrypt(&walk, req, false);
do {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
int nbytes = walk.nbytes;
tag = (u8 *)&lengths;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);
} else if (nbytes < walk.total) {
nbytes &= ~(AES_BLOCK_SIZE - 1);
tag = NULL;
}
kernel_neon_begin();
ret = pmull_gcm_decrypt(nbytes, dst, src, ctx->ghash_key.h,
dg, iv, ctx->aes_key.key_enc,
nrounds, tag, otag, authsize);
kernel_neon_end();
if (unlikely(!nbytes))
break;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
memcpy(walk.dst.virt.addr,
buf + sizeof(buf) - nbytes, nbytes);
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
} while (walk.nbytes);
if (err)
return err;
return ret ? -EBADMSG : 0;
}
static int gcm_aes_encrypt(struct aead_request *req)
{
u8 iv[AES_BLOCK_SIZE];
memcpy(iv, req->iv, GCM_AES_IV_SIZE);
return gcm_encrypt(req, iv, req->assoclen);
}
static int gcm_aes_decrypt(struct aead_request *req)
{
u8 iv[AES_BLOCK_SIZE];
memcpy(iv, req->iv, GCM_AES_IV_SIZE);
return gcm_decrypt(req, iv, req->assoclen);
}
static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
unsigned int keylen)
{
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
int err;
keylen -= RFC4106_NONCE_SIZE;
err = gcm_aes_setkey(tfm, inkey, keylen);
if (err)
return err;
memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
return crypto_rfc4106_check_authsize(authsize);
}
static int rfc4106_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
u8 iv[AES_BLOCK_SIZE];
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
return crypto_ipsec_check_assoclen(req->assoclen) ?:
gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
}
static int rfc4106_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
u8 iv[AES_BLOCK_SIZE];
memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
return crypto_ipsec_check_assoclen(req->assoclen) ?:
gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
}
static struct aead_alg gcm_aes_algs[] = {{
.ivsize = GCM_AES_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = gcm_aes_setkey,
.setauthsize = gcm_aes_setauthsize,
.encrypt = gcm_aes_encrypt,
.decrypt = gcm_aes_decrypt,
.base.cra_name = "gcm(aes)",
.base.cra_driver_name = "gcm-aes-ce",
.base.cra_priority = 300,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx) +
4 * sizeof(u64[2]),
.base.cra_module = THIS_MODULE,
}, {
.ivsize = GCM_RFC4106_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = rfc4106_encrypt,
.decrypt = rfc4106_decrypt,
.base.cra_name = "rfc4106(gcm(aes))",
.base.cra_driver_name = "rfc4106-gcm-aes-ce",
.base.cra_priority = 300,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx) +
4 * sizeof(u64[2]),
.base.cra_module = THIS_MODULE,
}};
static int __init ghash_ce_mod_init(void)
{
if (!cpu_have_named_feature(ASIMD))
return -ENODEV;
if (cpu_have_named_feature(PMULL))
return crypto_register_aeads(gcm_aes_algs,
ARRAY_SIZE(gcm_aes_algs));
return crypto_register_shash(&ghash_alg);
}
static void __exit ghash_ce_mod_exit(void)
{
if (cpu_have_named_feature(PMULL))
crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs));
else
crypto_unregister_shash(&ghash_alg);
}
static const struct cpu_feature __maybe_unused ghash_cpu_feature[] = {
{ cpu_feature(PMULL) }, { }
};
MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);