// SPDX-License-Identifier: GPL-2.0 /* * Data Access Monitor * * Author: SeongJae Park */ #define pr_fmt(fmt) "damon: " fmt #include #include #include #include static DEFINE_MUTEX(damon_lock); static int nr_running_ctxs; struct damon_ctx *damon_new_ctx(void) { struct damon_ctx *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; ctx->sample_interval = 5 * 1000; ctx->aggr_interval = 100 * 1000; ctx->primitive_update_interval = 60 * 1000 * 1000; ktime_get_coarse_ts64(&ctx->last_aggregation); ctx->last_primitive_update = ctx->last_aggregation; mutex_init(&ctx->kdamond_lock); ctx->target = NULL; return ctx; } void damon_destroy_ctx(struct damon_ctx *ctx) { if (ctx->primitive.cleanup) ctx->primitive.cleanup(ctx); kfree(ctx); } /** * damon_set_attrs() - Set attributes for the monitoring. * @ctx: monitoring context * @sample_int: time interval between samplings * @aggr_int: time interval between aggregations * @primitive_upd_int: time interval between monitoring primitive updates * * This function should not be called while the kdamond is running. * Every time interval is in micro-seconds. * * Return: 0 on success, negative error code otherwise. */ int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, unsigned long aggr_int, unsigned long primitive_upd_int) { ctx->sample_interval = sample_int; ctx->aggr_interval = aggr_int; ctx->primitive_update_interval = primitive_upd_int; return 0; } static bool damon_kdamond_running(struct damon_ctx *ctx) { bool running; mutex_lock(&ctx->kdamond_lock); running = ctx->kdamond != NULL; mutex_unlock(&ctx->kdamond_lock); return running; } static int kdamond_fn(void *data); /* * __damon_start() - Starts monitoring with given context. * @ctx: monitoring context * * This function should be called while damon_lock is hold. * * Return: 0 on success, negative error code otherwise. */ static int __damon_start(struct damon_ctx *ctx) { int err = -EBUSY; mutex_lock(&ctx->kdamond_lock); if (!ctx->kdamond) { err = 0; ctx->kdamond_stop = false; ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", nr_running_ctxs); if (IS_ERR(ctx->kdamond)) { err = PTR_ERR(ctx->kdamond); ctx->kdamond = 0; } } mutex_unlock(&ctx->kdamond_lock); return err; } /** * damon_start() - Starts the monitorings for a given group of contexts. * @ctxs: an array of the pointers for contexts to start monitoring * @nr_ctxs: size of @ctxs * * This function starts a group of monitoring threads for a group of monitoring * contexts. One thread per each context is created and run in parallel. The * caller should handle synchronization between the threads by itself. If a * group of threads that created by other 'damon_start()' call is currently * running, this function does nothing but returns -EBUSY. * * Return: 0 on success, negative error code otherwise. */ int damon_start(struct damon_ctx **ctxs, int nr_ctxs) { int i; int err = 0; mutex_lock(&damon_lock); if (nr_running_ctxs) { mutex_unlock(&damon_lock); return -EBUSY; } for (i = 0; i < nr_ctxs; i++) { err = __damon_start(ctxs[i]); if (err) break; nr_running_ctxs++; } mutex_unlock(&damon_lock); return err; } /* * __damon_stop() - Stops monitoring of given context. * @ctx: monitoring context * * Return: 0 on success, negative error code otherwise. */ static int __damon_stop(struct damon_ctx *ctx) { mutex_lock(&ctx->kdamond_lock); if (ctx->kdamond) { ctx->kdamond_stop = true; mutex_unlock(&ctx->kdamond_lock); while (damon_kdamond_running(ctx)) usleep_range(ctx->sample_interval, ctx->sample_interval * 2); return 0; } mutex_unlock(&ctx->kdamond_lock); return -EPERM; } /** * damon_stop() - Stops the monitorings for a given group of contexts. * @ctxs: an array of the pointers for contexts to stop monitoring * @nr_ctxs: size of @ctxs * * Return: 0 on success, negative error code otherwise. */ int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) { int i, err = 0; for (i = 0; i < nr_ctxs; i++) { /* nr_running_ctxs is decremented in kdamond_fn */ err = __damon_stop(ctxs[i]); if (err) return err; } return err; } /* * damon_check_reset_time_interval() - Check if a time interval is elapsed. * @baseline: the time to check whether the interval has elapsed since * @interval: the time interval (microseconds) * * See whether the given time interval has passed since the given baseline * time. If so, it also updates the baseline to current time for next check. * * Return: true if the time interval has passed, or false otherwise. */ static bool damon_check_reset_time_interval(struct timespec64 *baseline, unsigned long interval) { struct timespec64 now; ktime_get_coarse_ts64(&now); if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < interval * 1000) return false; *baseline = now; return true; } /* * Check whether it is time to flush the aggregated information */ static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) { return damon_check_reset_time_interval(&ctx->last_aggregation, ctx->aggr_interval); } /* * Check whether it is time to check and apply the target monitoring regions * * Returns true if it is. */ static bool kdamond_need_update_primitive(struct damon_ctx *ctx) { return damon_check_reset_time_interval(&ctx->last_primitive_update, ctx->primitive_update_interval); } /* * Check whether current monitoring should be stopped * * The monitoring is stopped when either the user requested to stop, or all * monitoring targets are invalid. * * Returns true if need to stop current monitoring. */ static bool kdamond_need_stop(struct damon_ctx *ctx) { bool stop; mutex_lock(&ctx->kdamond_lock); stop = ctx->kdamond_stop; mutex_unlock(&ctx->kdamond_lock); if (stop) return true; if (!ctx->primitive.target_valid) return false; return !ctx->primitive.target_valid(ctx->target); } static void set_kdamond_stop(struct damon_ctx *ctx) { mutex_lock(&ctx->kdamond_lock); ctx->kdamond_stop = true; mutex_unlock(&ctx->kdamond_lock); } /* * The monitoring daemon that runs as a kernel thread */ static int kdamond_fn(void *data) { struct damon_ctx *ctx = (struct damon_ctx *)data; mutex_lock(&ctx->kdamond_lock); pr_info("kdamond (%d) starts\n", ctx->kdamond->pid); mutex_unlock(&ctx->kdamond_lock); if (ctx->primitive.init) ctx->primitive.init(ctx); if (ctx->callback.before_start && ctx->callback.before_start(ctx)) set_kdamond_stop(ctx); while (!kdamond_need_stop(ctx)) { if (ctx->primitive.prepare_access_checks) ctx->primitive.prepare_access_checks(ctx); if (ctx->callback.after_sampling && ctx->callback.after_sampling(ctx)) set_kdamond_stop(ctx); usleep_range(ctx->sample_interval, ctx->sample_interval + 1); if (ctx->primitive.check_accesses) ctx->primitive.check_accesses(ctx); if (kdamond_aggregate_interval_passed(ctx)) { if (ctx->callback.after_aggregation && ctx->callback.after_aggregation(ctx)) set_kdamond_stop(ctx); if (ctx->primitive.reset_aggregated) ctx->primitive.reset_aggregated(ctx); } if (kdamond_need_update_primitive(ctx)) { if (ctx->primitive.update) ctx->primitive.update(ctx); } } if (ctx->callback.before_terminate && ctx->callback.before_terminate(ctx)) set_kdamond_stop(ctx); if (ctx->primitive.cleanup) ctx->primitive.cleanup(ctx); pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid); mutex_lock(&ctx->kdamond_lock); ctx->kdamond = NULL; mutex_unlock(&ctx->kdamond_lock); mutex_lock(&damon_lock); nr_running_ctxs--; mutex_unlock(&damon_lock); do_exit(0); }