// SPDX-License-Identifier: GPL-2.0-only /* * APEI Error INJection support * * EINJ provides a hardware error injection mechanism, this is useful * for debugging and testing of other APEI and RAS features. * * For more information about EINJ, please refer to ACPI Specification * version 4.0, section 17.5. * * Copyright 2009-2010 Intel Corp. * Author: Huang Ying */ #include #include #include #include #include #include #include #include #include #include #include #include "apei-internal.h" #undef pr_fmt #define pr_fmt(fmt) "EINJ: " fmt #define SLEEP_UNIT_MIN 1000 /* 1ms */ #define SLEEP_UNIT_MAX 5000 /* 5ms */ /* Firmware should respond within 1 seconds */ #define FIRMWARE_TIMEOUT (1 * USEC_PER_SEC) #define COMPONENT_LEN 16 #define ACPI65_EINJV2_SUPP BIT(30) #define ACPI5_VENDOR_BIT BIT(31) #define MEM_ERROR_MASK (ACPI_EINJ_MEMORY_CORRECTABLE | \ ACPI_EINJ_MEMORY_UNCORRECTABLE | \ ACPI_EINJ_MEMORY_FATAL) #define CXL_ERROR_MASK (ACPI_EINJ_CXL_CACHE_CORRECTABLE | \ ACPI_EINJ_CXL_CACHE_UNCORRECTABLE | \ ACPI_EINJ_CXL_CACHE_FATAL | \ ACPI_EINJ_CXL_MEM_CORRECTABLE | \ ACPI_EINJ_CXL_MEM_UNCORRECTABLE | \ ACPI_EINJ_CXL_MEM_FATAL) /* * ACPI version 5 provides a SET_ERROR_TYPE_WITH_ADDRESS action. */ static int acpi5; struct syndrome_array { union { u8 acpi_id[COMPONENT_LEN]; u8 device_id[COMPONENT_LEN]; u8 pcie_sbdf[COMPONENT_LEN]; u8 vendor_id[COMPONENT_LEN]; } comp_id; union { u8 proc_synd[COMPONENT_LEN]; u8 mem_synd[COMPONENT_LEN]; u8 pcie_synd[COMPONENT_LEN]; u8 vendor_synd[COMPONENT_LEN]; } comp_synd; }; struct einjv2_extension_struct { u32 length; u16 revision; u16 component_arr_count; struct syndrome_array component_arr[] __counted_by(component_arr_count); }; struct set_error_type_with_address { u32 type; u32 vendor_extension; u32 flags; u32 apicid; u64 memory_address; u64 memory_address_range; u32 pcie_sbdf; struct einjv2_extension_struct einjv2_struct; }; enum { SETWA_FLAGS_APICID = 1, SETWA_FLAGS_MEM = 2, SETWA_FLAGS_PCIE_SBDF = 4, SETWA_FLAGS_EINJV2 = 8, }; /* * Vendor extensions for platform specific operations */ struct vendor_error_type_extension { u32 length; u32 pcie_sbdf; u16 vendor_id; u16 device_id; u8 rev_id; u8 reserved[3]; }; static u32 notrigger; static u32 vendor_flags; static struct debugfs_blob_wrapper vendor_blob; static struct debugfs_blob_wrapper vendor_errors; static char vendor_dev[64]; static u32 max_nr_components; static u32 available_error_type; static u32 available_error_type_v2; static struct syndrome_array *syndrome_data; /* * Some BIOSes allow parameters to the SET_ERROR_TYPE entries in the * EINJ table through an unpublished extension. Use with caution as * most will ignore the parameter and make their own choice of address * for error injection. This extension is used only if * param_extension module parameter is specified. */ struct einj_parameter { u64 type; u64 reserved1; u64 reserved2; u64 param1; u64 param2; }; #define EINJ_OP_BUSY 0x1 #define EINJ_STATUS_SUCCESS 0x0 #define EINJ_STATUS_FAIL 0x1 #define EINJ_STATUS_INVAL 0x2 #define EINJ_TAB_ENTRY(tab) \ ((struct acpi_whea_header *)((char *)(tab) + \ sizeof(struct acpi_table_einj))) static bool param_extension; module_param(param_extension, bool, 0); static struct acpi_table_einj *einj_tab; static struct apei_resources einj_resources; static struct apei_exec_ins_type einj_ins_type[] = { [ACPI_EINJ_READ_REGISTER] = { .flags = APEI_EXEC_INS_ACCESS_REGISTER, .run = apei_exec_read_register, }, [ACPI_EINJ_READ_REGISTER_VALUE] = { .flags = APEI_EXEC_INS_ACCESS_REGISTER, .run = apei_exec_read_register_value, }, [ACPI_EINJ_WRITE_REGISTER] = { .flags = APEI_EXEC_INS_ACCESS_REGISTER, .run = apei_exec_write_register, }, [ACPI_EINJ_WRITE_REGISTER_VALUE] = { .flags = APEI_EXEC_INS_ACCESS_REGISTER, .run = apei_exec_write_register_value, }, [ACPI_EINJ_NOOP] = { .flags = 0, .run = apei_exec_noop, }, }; /* * Prevent EINJ interpreter to run simultaneously, because the * corresponding firmware implementation may not work properly when * invoked simultaneously. */ static DEFINE_MUTEX(einj_mutex); /* * Exported APIs use this flag to exit early if einj_probe() failed. */ bool einj_initialized __ro_after_init; static void __iomem *einj_param; static u32 v5param_size; static bool is_v2; static void einj_exec_ctx_init(struct apei_exec_context *ctx) { apei_exec_ctx_init(ctx, einj_ins_type, ARRAY_SIZE(einj_ins_type), EINJ_TAB_ENTRY(einj_tab), einj_tab->entries); } static int __einj_get_available_error_type(u32 *type, int einj_action) { struct apei_exec_context ctx; int rc; einj_exec_ctx_init(&ctx); rc = apei_exec_run(&ctx, einj_action); if (rc) return rc; *type = apei_exec_ctx_get_output(&ctx); return 0; } /* Get error injection capabilities of the platform */ int einj_get_available_error_type(u32 *type, int einj_action) { int rc; mutex_lock(&einj_mutex); rc = __einj_get_available_error_type(type, einj_action); mutex_unlock(&einj_mutex); return rc; } static int einj_get_available_error_types(u32 *type1, u32 *type2) { int rc; rc = einj_get_available_error_type(type1, ACPI_EINJ_GET_ERROR_TYPE); if (rc) return rc; if (*type1 & ACPI65_EINJV2_SUPP) { rc = einj_get_available_error_type(type2, ACPI_EINJV2_GET_ERROR_TYPE); if (rc) return rc; } return 0; } static int einj_timedout(u64 *t) { if ((s64)*t < SLEEP_UNIT_MIN) { pr_warn(FW_WARN "Firmware does not respond in time\n"); return 1; } *t -= SLEEP_UNIT_MIN; usleep_range(SLEEP_UNIT_MIN, SLEEP_UNIT_MAX); return 0; } static void get_oem_vendor_struct(u64 paddr, int offset, struct vendor_error_type_extension *v) { unsigned long vendor_size; u64 target_pa = paddr + offset + sizeof(struct vendor_error_type_extension); vendor_size = v->length - sizeof(struct vendor_error_type_extension); if (vendor_size) vendor_errors.data = acpi_os_map_memory(target_pa, vendor_size); if (vendor_errors.data) vendor_errors.size = vendor_size; } static void check_vendor_extension(u64 paddr, struct set_error_type_with_address *v5param) { int offset = v5param->vendor_extension; struct vendor_error_type_extension v; struct vendor_error_type_extension __iomem *p; u32 sbdf; if (!offset) return; p = acpi_os_map_iomem(paddr + offset, sizeof(*p)); if (!p) return; memcpy_fromio(&v, p, sizeof(v)); get_oem_vendor_struct(paddr, offset, &v); sbdf = v.pcie_sbdf; sprintf(vendor_dev, "%x:%x:%x.%x vendor_id=%x device_id=%x rev_id=%x\n", sbdf >> 24, (sbdf >> 16) & 0xff, (sbdf >> 11) & 0x1f, (sbdf >> 8) & 0x7, v.vendor_id, v.device_id, v.rev_id); acpi_os_unmap_iomem(p, sizeof(v)); } static void __iomem *einj_get_parameter_address(void) { int i; u64 pa_v4 = 0, pa_v5 = 0; struct acpi_whea_header *entry; entry = EINJ_TAB_ENTRY(einj_tab); for (i = 0; i < einj_tab->entries; i++) { if (entry->action == ACPI_EINJ_SET_ERROR_TYPE && entry->instruction == ACPI_EINJ_WRITE_REGISTER && entry->register_region.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) pa_v4 = get_unaligned(&entry->register_region.address); if (entry->action == ACPI_EINJ_SET_ERROR_TYPE_WITH_ADDRESS && entry->instruction == ACPI_EINJ_WRITE_REGISTER && entry->register_region.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) pa_v5 = get_unaligned(&entry->register_region.address); entry++; } if (pa_v5) { struct set_error_type_with_address v5param; struct set_error_type_with_address __iomem *p; v5param_size = sizeof(v5param); p = acpi_os_map_iomem(pa_v5, sizeof(*p)); if (p) { int offset, len; memcpy_fromio(&v5param, p, v5param_size); acpi5 = 1; check_vendor_extension(pa_v5, &v5param); if (available_error_type & ACPI65_EINJV2_SUPP) { len = v5param.einjv2_struct.length; offset = offsetof(struct einjv2_extension_struct, component_arr); max_nr_components = (len - offset) / sizeof(v5param.einjv2_struct.component_arr[0]); /* * The first call to acpi_os_map_iomem above does not include the * component array, instead it is used to read and calculate maximum * number of components supported by the system. Below, the mapping * is expanded to include the component array. */ acpi_os_unmap_iomem(p, v5param_size); offset = offsetof(struct set_error_type_with_address, einjv2_struct); v5param_size = offset + struct_size(&v5param.einjv2_struct, component_arr, max_nr_components); p = acpi_os_map_iomem(pa_v5, v5param_size); } return p; } } if (param_extension && pa_v4) { struct einj_parameter v4param; struct einj_parameter __iomem *p; p = acpi_os_map_iomem(pa_v4, sizeof(*p)); if (!p) return NULL; memcpy_fromio(&v4param, p, sizeof(v4param)); if (v4param.reserved1 || v4param.reserved2) { acpi_os_unmap_iomem(p, sizeof(v4param)); return NULL; } return p; } return NULL; } /* do sanity check to trigger table */ static int einj_check_trigger_header(struct acpi_einj_trigger *trigger_tab) { if (trigger_tab->header_size != sizeof(struct acpi_einj_trigger)) return -EINVAL; if (trigger_tab->table_size > PAGE_SIZE || trigger_tab->table_size < trigger_tab->header_size) return -EINVAL; if (trigger_tab->entry_count != (trigger_tab->table_size - trigger_tab->header_size) / sizeof(struct acpi_einj_entry)) return -EINVAL; return 0; } static struct acpi_generic_address *einj_get_trigger_parameter_region( struct acpi_einj_trigger *trigger_tab, u64 param1, u64 param2) { int i; struct acpi_whea_header *entry; entry = (struct acpi_whea_header *) ((char *)trigger_tab + sizeof(struct acpi_einj_trigger)); for (i = 0; i < trigger_tab->entry_count; i++) { if (entry->action == ACPI_EINJ_TRIGGER_ERROR && entry->instruction <= ACPI_EINJ_WRITE_REGISTER_VALUE && entry->register_region.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && (entry->register_region.address & param2) == (param1 & param2)) return &entry->register_region; entry++; } return NULL; } /* Execute instructions in trigger error action table */ static int __einj_error_trigger(u64 trigger_paddr, u32 type, u64 param1, u64 param2) { struct acpi_einj_trigger trigger_tab; struct acpi_einj_trigger *full_trigger_tab; struct apei_exec_context trigger_ctx; struct apei_resources trigger_resources; struct acpi_whea_header *trigger_entry; struct resource *r; u32 table_size; int rc = -EIO; struct acpi_generic_address *trigger_param_region = NULL; struct acpi_einj_trigger __iomem *p = NULL; r = request_mem_region(trigger_paddr, sizeof(trigger_tab), "APEI EINJ Trigger Table"); if (!r) { pr_err("Can not request [mem %#010llx-%#010llx] for Trigger table\n", (unsigned long long)trigger_paddr, (unsigned long long)trigger_paddr + sizeof(trigger_tab) - 1); goto out; } p = ioremap_cache(trigger_paddr, sizeof(*p)); if (!p) { pr_err("Failed to map trigger table!\n"); goto out_rel_header; } memcpy_fromio(&trigger_tab, p, sizeof(trigger_tab)); rc = einj_check_trigger_header(&trigger_tab); if (rc) { pr_warn(FW_BUG "Invalid trigger error action table.\n"); goto out_rel_header; } /* No action structures in the TRIGGER_ERROR table, nothing to do */ if (!trigger_tab.entry_count) goto out_rel_header; rc = -EIO; table_size = trigger_tab.table_size; full_trigger_tab = kmalloc(table_size, GFP_KERNEL); if (!full_trigger_tab) goto out_rel_header; r = request_mem_region(trigger_paddr + sizeof(trigger_tab), table_size - sizeof(trigger_tab), "APEI EINJ Trigger Table"); if (!r) { pr_err("Can not request [mem %#010llx-%#010llx] for Trigger Table Entry\n", (unsigned long long)trigger_paddr + sizeof(trigger_tab), (unsigned long long)trigger_paddr + table_size - 1); goto out_free_trigger_tab; } iounmap(p); p = ioremap_cache(trigger_paddr, table_size); if (!p) { pr_err("Failed to map trigger table!\n"); goto out_rel_entry; } memcpy_fromio(full_trigger_tab, p, table_size); trigger_entry = (struct acpi_whea_header *) ((char *)full_trigger_tab + sizeof(struct acpi_einj_trigger)); apei_resources_init(&trigger_resources); apei_exec_ctx_init(&trigger_ctx, einj_ins_type, ARRAY_SIZE(einj_ins_type), trigger_entry, trigger_tab.entry_count); rc = apei_exec_collect_resources(&trigger_ctx, &trigger_resources); if (rc) goto out_fini; rc = apei_resources_sub(&trigger_resources, &einj_resources); if (rc) goto out_fini; /* * Some firmware will access target address specified in * param1 to trigger the error when injecting memory error. * This will cause resource conflict with regular memory. So * remove it from trigger table resources. */ if ((param_extension || acpi5) && (type & MEM_ERROR_MASK) && param2) { struct apei_resources addr_resources; apei_resources_init(&addr_resources); trigger_param_region = einj_get_trigger_parameter_region( full_trigger_tab, param1, param2); if (trigger_param_region) { rc = apei_resources_add(&addr_resources, trigger_param_region->address, trigger_param_region->bit_width/8, true); if (rc) goto out_fini; rc = apei_resources_sub(&trigger_resources, &addr_resources); } apei_resources_fini(&addr_resources); if (rc) goto out_fini; } rc = apei_resources_request(&trigger_resources, "APEI EINJ Trigger"); if (rc) goto out_fini; rc = apei_exec_pre_map_gars(&trigger_ctx); if (rc) goto out_release; rc = apei_exec_run(&trigger_ctx, ACPI_EINJ_TRIGGER_ERROR); apei_exec_post_unmap_gars(&trigger_ctx); out_release: apei_resources_release(&trigger_resources); out_fini: apei_resources_fini(&trigger_resources); out_rel_entry: release_mem_region(trigger_paddr + sizeof(trigger_tab), table_size - sizeof(trigger_tab)); out_free_trigger_tab: kfree(full_trigger_tab); out_rel_header: release_mem_region(trigger_paddr, sizeof(trigger_tab)); out: if (p) iounmap(p); return rc; } static bool is_end_of_list(u8 *val) { for (int i = 0; i < COMPONENT_LEN; ++i) { if (val[i] != 0xFF) return false; } return true; } static int __einj_error_inject(u32 type, u32 flags, u64 param1, u64 param2, u64 param3, u64 param4) { struct apei_exec_context ctx; u64 val, trigger_paddr, timeout = FIRMWARE_TIMEOUT; int i, rc; einj_exec_ctx_init(&ctx); rc = apei_exec_run_optional(&ctx, ACPI_EINJ_BEGIN_OPERATION); if (rc) return rc; apei_exec_ctx_set_input(&ctx, type); if (acpi5) { struct set_error_type_with_address *v5param; v5param = kmalloc(v5param_size, GFP_KERNEL); memcpy_fromio(v5param, einj_param, v5param_size); v5param->type = type; if (type & ACPI5_VENDOR_BIT) { switch (vendor_flags) { case SETWA_FLAGS_APICID: v5param->apicid = param1; break; case SETWA_FLAGS_MEM: v5param->memory_address = param1; v5param->memory_address_range = param2; break; case SETWA_FLAGS_PCIE_SBDF: v5param->pcie_sbdf = param1; break; } v5param->flags = vendor_flags; } else if (flags) { v5param->flags = flags; v5param->memory_address = param1; v5param->memory_address_range = param2; if (is_v2) { for (i = 0; i < max_nr_components; i++) { if (is_end_of_list(syndrome_data[i].comp_id.acpi_id)) break; v5param->einjv2_struct.component_arr[i].comp_id = syndrome_data[i].comp_id; v5param->einjv2_struct.component_arr[i].comp_synd = syndrome_data[i].comp_synd; } v5param->einjv2_struct.component_arr_count = i; } else { v5param->apicid = param3; v5param->pcie_sbdf = param4; } } else { switch (type) { case ACPI_EINJ_PROCESSOR_CORRECTABLE: case ACPI_EINJ_PROCESSOR_UNCORRECTABLE: case ACPI_EINJ_PROCESSOR_FATAL: v5param->apicid = param1; v5param->flags = SETWA_FLAGS_APICID; break; case ACPI_EINJ_MEMORY_CORRECTABLE: case ACPI_EINJ_MEMORY_UNCORRECTABLE: case ACPI_EINJ_MEMORY_FATAL: v5param->memory_address = param1; v5param->memory_address_range = param2; v5param->flags = SETWA_FLAGS_MEM; break; case ACPI_EINJ_PCIX_CORRECTABLE: case ACPI_EINJ_PCIX_UNCORRECTABLE: case ACPI_EINJ_PCIX_FATAL: v5param->pcie_sbdf = param1; v5param->flags = SETWA_FLAGS_PCIE_SBDF; break; } } memcpy_toio(einj_param, v5param, v5param_size); kfree(v5param); } else { rc = apei_exec_run(&ctx, ACPI_EINJ_SET_ERROR_TYPE); if (rc) return rc; if (einj_param) { struct einj_parameter v4param; memcpy_fromio(&v4param, einj_param, sizeof(v4param)); v4param.param1 = param1; v4param.param2 = param2; memcpy_toio(einj_param, &v4param, sizeof(v4param)); } } rc = apei_exec_run(&ctx, ACPI_EINJ_EXECUTE_OPERATION); if (rc) return rc; for (;;) { rc = apei_exec_run(&ctx, ACPI_EINJ_CHECK_BUSY_STATUS); if (rc) return rc; val = apei_exec_ctx_get_output(&ctx); if (!(val & EINJ_OP_BUSY)) break; if (einj_timedout(&timeout)) return -EIO; } rc = apei_exec_run(&ctx, ACPI_EINJ_GET_COMMAND_STATUS); if (rc) return rc; val = apei_exec_ctx_get_output(&ctx); if (val == EINJ_STATUS_FAIL) return -EBUSY; else if (val == EINJ_STATUS_INVAL) return -EINVAL; /* * The error is injected into the platform successfully, then it needs * to trigger the error. */ rc = apei_exec_run(&ctx, ACPI_EINJ_GET_TRIGGER_TABLE); if (rc) return rc; trigger_paddr = apei_exec_ctx_get_output(&ctx); if (notrigger == 0) { rc = __einj_error_trigger(trigger_paddr, type, param1, param2); if (rc) return rc; } rc = apei_exec_run_optional(&ctx, ACPI_EINJ_END_OPERATION); return rc; } /* Inject the specified hardware error */ int einj_error_inject(u32 type, u32 flags, u64 param1, u64 param2, u64 param3, u64 param4) { int rc; u64 base_addr, size; /* If user manually set "flags", make sure it is legal */ if (flags && (flags & ~(SETWA_FLAGS_APICID | SETWA_FLAGS_MEM | SETWA_FLAGS_PCIE_SBDF | SETWA_FLAGS_EINJV2))) return -EINVAL; /* check if type is a valid EINJv2 error type */ if (is_v2) { if (!(type & available_error_type_v2)) return -EINVAL; } /* * We need extra sanity checks for memory errors. * Other types leap directly to injection. */ /* ensure param1/param2 existed */ if (!(param_extension || acpi5)) goto inject; /* ensure injection is memory related */ if (type & ACPI5_VENDOR_BIT) { if (vendor_flags != SETWA_FLAGS_MEM) goto inject; } else if (!(type & MEM_ERROR_MASK) && !(flags & SETWA_FLAGS_MEM)) { goto inject; } /* * Injections targeting a CXL 1.0/1.1 port have to be injected * via the einj_cxl_rch_error_inject() path as that does the proper * validation of the given RCRB base (MMIO) address. */ if (einj_is_cxl_error_type(type) && (flags & SETWA_FLAGS_MEM)) return -EINVAL; /* * Disallow crazy address masks that give BIOS leeway to pick * injection address almost anywhere. Insist on page or * better granularity and that target address is normal RAM or * NVDIMM. */ base_addr = param1 & param2; size = ~param2 + 1; if (((param2 & PAGE_MASK) != PAGE_MASK) || ((region_intersects(base_addr, size, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE) != REGION_INTERSECTS) && (region_intersects(base_addr, size, IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY) != REGION_INTERSECTS) && (region_intersects(base_addr, size, IORESOURCE_MEM, IORES_DESC_SOFT_RESERVED) != REGION_INTERSECTS) && !arch_is_platform_page(base_addr))) return -EINVAL; if (is_zero_pfn(base_addr >> PAGE_SHIFT)) return -EADDRINUSE; inject: mutex_lock(&einj_mutex); rc = __einj_error_inject(type, flags, param1, param2, param3, param4); mutex_unlock(&einj_mutex); return rc; } int einj_cxl_rch_error_inject(u32 type, u32 flags, u64 param1, u64 param2, u64 param3, u64 param4) { int rc; if (!(einj_is_cxl_error_type(type) && (flags & SETWA_FLAGS_MEM))) return -EINVAL; mutex_lock(&einj_mutex); rc = __einj_error_inject(type, flags, param1, param2, param3, param4); mutex_unlock(&einj_mutex); return rc; } static u32 error_type; static u32 error_flags; static u64 error_param1; static u64 error_param2; static u64 error_param3; static u64 error_param4; static struct dentry *einj_debug_dir; static char einj_buf[32]; static bool einj_v2_enabled; static struct { u32 mask; const char *str; } const einj_error_type_string[] = { { BIT(0), "Processor Correctable" }, { BIT(1), "Processor Uncorrectable non-fatal" }, { BIT(2), "Processor Uncorrectable fatal" }, { BIT(3), "Memory Correctable" }, { BIT(4), "Memory Uncorrectable non-fatal" }, { BIT(5), "Memory Uncorrectable fatal" }, { BIT(6), "PCI Express Correctable" }, { BIT(7), "PCI Express Uncorrectable non-fatal" }, { BIT(8), "PCI Express Uncorrectable fatal" }, { BIT(9), "Platform Correctable" }, { BIT(10), "Platform Uncorrectable non-fatal" }, { BIT(11), "Platform Uncorrectable fatal"}, { BIT(31), "Vendor Defined Error Types" }, }; static struct { u32 mask; const char *str; } const einjv2_error_type_string[] = { { BIT(0), "EINJV2 Processor Error" }, { BIT(1), "EINJV2 Memory Error" }, { BIT(2), "EINJV2 PCI Express Error" }, }; static int available_error_type_show(struct seq_file *m, void *v) { for (int pos = 0; pos < ARRAY_SIZE(einj_error_type_string); pos++) if (available_error_type & einj_error_type_string[pos].mask) seq_printf(m, "0x%08x\t%s\n", einj_error_type_string[pos].mask, einj_error_type_string[pos].str); if ((available_error_type & ACPI65_EINJV2_SUPP) && einj_v2_enabled) { for (int pos = 0; pos < ARRAY_SIZE(einjv2_error_type_string); pos++) { if (available_error_type_v2 & einjv2_error_type_string[pos].mask) seq_printf(m, "V2_0x%08x\t%s\n", einjv2_error_type_string[pos].mask, einjv2_error_type_string[pos].str); } } return 0; } DEFINE_SHOW_ATTRIBUTE(available_error_type); static ssize_t error_type_get(struct file *file, char __user *buf, size_t count, loff_t *ppos) { return simple_read_from_buffer(buf, count, ppos, einj_buf, strlen(einj_buf)); } bool einj_is_cxl_error_type(u64 type) { return (type & CXL_ERROR_MASK) && (!(type & ACPI5_VENDOR_BIT)); } int einj_validate_error_type(u64 type) { u32 tval, vendor; /* Only low 32 bits for error type are valid */ if (type & GENMASK_ULL(63, 32)) return -EINVAL; /* * Vendor defined types have 0x80000000 bit set, and * are not enumerated by ACPI_EINJ_GET_ERROR_TYPE */ vendor = type & ACPI5_VENDOR_BIT; tval = type & GENMASK(30, 0); /* Only one error type can be specified */ if (tval & (tval - 1)) return -EINVAL; if (!vendor) if (!(type & (available_error_type | available_error_type_v2))) return -EINVAL; return 0; } static ssize_t error_type_set(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int rc; u64 val; /* Leave the last character for the NUL terminator */ if (count > sizeof(einj_buf) - 1) return -EINVAL; memset(einj_buf, 0, sizeof(einj_buf)); if (copy_from_user(einj_buf, buf, count)) return -EFAULT; if (strncmp(einj_buf, "V2_", 3) == 0) { if (!sscanf(einj_buf, "V2_%llx", &val)) return -EINVAL; is_v2 = true; } else { if (!sscanf(einj_buf, "%llx", &val)) return -EINVAL; is_v2 = false; } rc = einj_validate_error_type(val); if (rc) return rc; error_type = val; return count; } static const struct file_operations error_type_fops = { .read = error_type_get, .write = error_type_set, }; static int error_inject_set(void *data, u64 val) { if (!error_type) return -EINVAL; if (is_v2) error_flags |= SETWA_FLAGS_EINJV2; else error_flags &= ~SETWA_FLAGS_EINJV2; return einj_error_inject(error_type, error_flags, error_param1, error_param2, error_param3, error_param4); } DEFINE_DEBUGFS_ATTRIBUTE(error_inject_fops, NULL, error_inject_set, "%llu\n"); static int einj_check_table(struct acpi_table_einj *einj_tab) { if ((einj_tab->header_length != (sizeof(struct acpi_table_einj) - sizeof(einj_tab->header))) && (einj_tab->header_length != sizeof(struct acpi_table_einj))) return -EINVAL; if (einj_tab->header.length < sizeof(struct acpi_table_einj)) return -EINVAL; if (einj_tab->entries != (einj_tab->header.length - sizeof(struct acpi_table_einj)) / sizeof(struct acpi_einj_entry)) return -EINVAL; return 0; } static ssize_t u128_read(struct file *f, char __user *buf, size_t count, loff_t *off) { char output[2 * COMPONENT_LEN + 1]; u8 *data = f->f_inode->i_private; int i; if (*off >= sizeof(output)) return 0; for (i = 0; i < COMPONENT_LEN; i++) sprintf(output + 2 * i, "%.02x", data[COMPONENT_LEN - i - 1]); output[2 * COMPONENT_LEN] = '\n'; return simple_read_from_buffer(buf, count, off, output, sizeof(output)); } static ssize_t u128_write(struct file *f, const char __user *buf, size_t count, loff_t *off) { char input[2 + 2 * COMPONENT_LEN + 2]; u8 *save = f->f_inode->i_private; u8 tmp[COMPONENT_LEN]; char byte[3] = {}; char *s, *e; ssize_t c; long val; int i; /* Require that user supply whole input line in one write(2) syscall */ if (*off) return -EINVAL; c = simple_write_to_buffer(input, sizeof(input), off, buf, count); if (c < 0) return c; if (c < 1 || input[c - 1] != '\n') return -EINVAL; /* Empty line means invalidate this entry */ if (c == 1) { memset(save, 0xff, COMPONENT_LEN); return c; } if (input[0] == '0' && (input[1] == 'x' || input[1] == 'X')) s = input + 2; else s = input; e = input + c - 1; for (i = 0; i < COMPONENT_LEN; i++) { byte[1] = *--e; byte[0] = e > s ? *--e : '0'; if (kstrtol(byte, 16, &val)) return -EINVAL; tmp[i] = val; if (e <= s) break; } while (++i < COMPONENT_LEN) tmp[i] = 0; memcpy(save, tmp, COMPONENT_LEN); return c; } static const struct file_operations u128_fops = { .read = u128_read, .write = u128_write, }; static bool setup_einjv2_component_files(void) { char name[32]; syndrome_data = kcalloc(max_nr_components, sizeof(syndrome_data[0]), GFP_KERNEL); if (!syndrome_data) return false; for (int i = 0; i < max_nr_components; i++) { sprintf(name, "component_id%d", i); debugfs_create_file(name, 0600, einj_debug_dir, &syndrome_data[i].comp_id, &u128_fops); sprintf(name, "component_syndrome%d", i); debugfs_create_file(name, 0600, einj_debug_dir, &syndrome_data[i].comp_synd, &u128_fops); } return true; } static int __init einj_probe(struct faux_device *fdev) { int rc; acpi_status status; struct apei_exec_context ctx; status = acpi_get_table(ACPI_SIG_EINJ, 0, (struct acpi_table_header **)&einj_tab); if (status == AE_NOT_FOUND) { pr_debug("EINJ table not found.\n"); return -ENODEV; } else if (ACPI_FAILURE(status)) { pr_err("Failed to get EINJ table: %s\n", acpi_format_exception(status)); return -EINVAL; } rc = einj_check_table(einj_tab); if (rc) { pr_warn(FW_BUG "Invalid EINJ table.\n"); goto err_put_table; } rc = einj_get_available_error_types(&available_error_type, &available_error_type_v2); if (rc) goto err_put_table; rc = -ENOMEM; einj_debug_dir = debugfs_create_dir("einj", apei_get_debugfs_dir()); debugfs_create_file("available_error_type", S_IRUSR, einj_debug_dir, NULL, &available_error_type_fops); debugfs_create_file_unsafe("error_type", 0600, einj_debug_dir, NULL, &error_type_fops); debugfs_create_file_unsafe("error_inject", 0200, einj_debug_dir, NULL, &error_inject_fops); apei_resources_init(&einj_resources); einj_exec_ctx_init(&ctx); rc = apei_exec_collect_resources(&ctx, &einj_resources); if (rc) { pr_err("Error collecting EINJ resources.\n"); goto err_fini; } rc = apei_resources_request(&einj_resources, "APEI EINJ"); if (rc) { pr_err("Error requesting memory/port resources.\n"); goto err_fini; } rc = apei_exec_pre_map_gars(&ctx); if (rc) { pr_err("Error pre-mapping GARs.\n"); goto err_release; } einj_param = einj_get_parameter_address(); if ((param_extension || acpi5) && einj_param) { debugfs_create_x32("flags", S_IRUSR | S_IWUSR, einj_debug_dir, &error_flags); debugfs_create_x64("param1", S_IRUSR | S_IWUSR, einj_debug_dir, &error_param1); debugfs_create_x64("param2", S_IRUSR | S_IWUSR, einj_debug_dir, &error_param2); debugfs_create_x64("param3", S_IRUSR | S_IWUSR, einj_debug_dir, &error_param3); debugfs_create_x64("param4", S_IRUSR | S_IWUSR, einj_debug_dir, &error_param4); debugfs_create_x32("notrigger", S_IRUSR | S_IWUSR, einj_debug_dir, ¬rigger); if (available_error_type & ACPI65_EINJV2_SUPP) einj_v2_enabled = setup_einjv2_component_files(); } if (vendor_dev[0]) { vendor_blob.data = vendor_dev; vendor_blob.size = strlen(vendor_dev); debugfs_create_blob("vendor", S_IRUSR, einj_debug_dir, &vendor_blob); debugfs_create_x32("vendor_flags", S_IRUSR | S_IWUSR, einj_debug_dir, &vendor_flags); } if (vendor_errors.size) debugfs_create_blob("oem_error", 0600, einj_debug_dir, &vendor_errors); pr_info("Error INJection is initialized.\n"); return 0; err_release: apei_resources_release(&einj_resources); err_fini: apei_resources_fini(&einj_resources); debugfs_remove_recursive(einj_debug_dir); err_put_table: acpi_put_table((struct acpi_table_header *)einj_tab); return rc; } static void __exit einj_remove(struct faux_device *fdev) { struct apei_exec_context ctx; if (einj_param) { acpi_size size = (acpi5) ? v5param_size : sizeof(struct einj_parameter); acpi_os_unmap_iomem(einj_param, size); if (vendor_errors.size) acpi_os_unmap_memory(vendor_errors.data, vendor_errors.size); } einj_exec_ctx_init(&ctx); apei_exec_post_unmap_gars(&ctx); apei_resources_release(&einj_resources); apei_resources_fini(&einj_resources); debugfs_remove_recursive(einj_debug_dir); kfree(syndrome_data); acpi_put_table((struct acpi_table_header *)einj_tab); } static struct faux_device *einj_dev; /* * einj_remove() lives in .exit.text. For drivers registered via * platform_driver_probe() this is ok because they cannot get unbound at * runtime. So mark the driver struct with __refdata to prevent modpost * triggering a section mismatch warning. */ static struct faux_device_ops einj_device_ops __refdata = { .probe = einj_probe, .remove = __exit_p(einj_remove), }; static int __init einj_init(void) { if (acpi_disabled) { pr_debug("ACPI disabled.\n"); return -ENODEV; } einj_dev = faux_device_create("acpi-einj", NULL, &einj_device_ops); if (einj_dev) einj_initialized = true; return 0; } static void __exit einj_exit(void) { faux_device_destroy(einj_dev); } module_init(einj_init); module_exit(einj_exit); MODULE_AUTHOR("Huang Ying"); MODULE_DESCRIPTION("APEI Error INJection support"); MODULE_LICENSE("GPL");