Commit graph

711 commits

Author SHA1 Message Date
Sean Christopherson
db215756ae KVM: x86: More precisely identify NMI from guest when handling PMI
Differentiate between IRQ and NMI for KVM's PMC overflow callback, which
was originally invoked in response to an NMI that arrived while the guest
was running, but was inadvertantly changed to fire on IRQs as well when
support for perf without PMU/NMI was added to KVM.  In practice, this
should be a nop as the PMC overflow callback shouldn't be reached, but
it's a cheap and easy fix that also better documents the situation.

Note, this also doesn't completely prevent false positives if perf
somehow ends up calling into KVM, e.g. an NMI can arrive in host after
KVM sets its flag.

Fixes: dd60d21706 ("KVM: x86: Fix perf timer mode IP reporting")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-12-seanjc@google.com
2021-11-17 14:49:09 +01:00
Sean Christopherson
f4b027c5c8 KVM: x86: Register Processor Trace interrupt hook iff PT enabled in guest
Override the Processor Trace (PT) interrupt handler for guest mode if and
only if PT is configured for host+guest mode, i.e. is being used
independently by both host and guest.  If PT is configured for system
mode, the host fully controls PT and must handle all events.

Fixes: 8479e04e7d ("KVM: x86: Inject PMI for KVM guest")
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reported-by: Artem Kashkanov <artem.kashkanov@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211111020738.2512932-4-seanjc@google.com
2021-11-17 14:49:06 +01:00
Paolo Bonzini
f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Vipin Sharma
796c83c58a KVM: Move INVPCID type check from vmx and svm to the common kvm_handle_invpcid()
Handle #GP on INVPCID due to an invalid type in the common switch
statement instead of relying on the callers (VMX and SVM) to manually
validate the type.

Unlike INVVPID and INVEPT, INVPCID is not explicitly documented to check
the type before reading the operand from memory, so deferring the
type validity check until after that point is architecturally allowed.

Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-3-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:24 -05:00
Vipin Sharma
329bd56ce5 KVM: VMX: Add a helper function to retrieve the GPR index for INVPCID, INVVPID, and INVEPT
handle_invept(), handle_invvpid(), handle_invpcid() read the same reg2
field in vmcs.VMX_INSTRUCTION_INFO to get the index of the GPR that
holds the invalidation type. Add a helper to retrieve reg2 from VMX
instruction info to consolidate and document the shift+mask magic.

Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-2-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:24 -05:00
Sean Christopherson
67f4b9969c KVM: nVMX: Handle dynamic MSR intercept toggling
Always check vmcs01's MSR bitmap when merging L0 and L1 bitmaps for L2,
and always update the relevant bits in vmcs02.  This fixes two distinct,
but intertwined bugs related to dynamic MSR bitmap modifications.

The first issue is that KVM fails to enable MSR interception in vmcs02
for the FS/GS base MSRs if L1 first runs L2 with interception disabled,
and later enables interception.

The second issue is that KVM fails to honor userspace MSR filtering when
preparing vmcs02.

Fix both issues simultaneous as fixing only one of the issues (doesn't
matter which) would create a mess that no one should have to bisect.
Fixing only the first bug would exacerbate the MSR filtering issue as
userspace would see inconsistent behavior depending on the whims of L1.
Fixing only the second bug (MSR filtering) effectively requires fixing
the first, as the nVMX code only knows how to transition vmcs02's
bitmap from 1->0.

Move the various accessor/mutators that are currently buried in vmx.c
into vmx.h so that they can be shared by the nested code.

Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Fixes: d69129b4e4 ("KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:23 -05:00
Sean Christopherson
7dfbc624eb KVM: nVMX: Query current VMCS when determining if MSR bitmaps are in use
Check the current VMCS controls to determine if an MSR write will be
intercepted due to MSR bitmaps being disabled.  In the nested VMX case,
KVM will disable MSR bitmaps in vmcs02 if they're disabled in vmcs12 or
if KVM can't map L1's bitmaps for whatever reason.

Note, the bad behavior is relatively benign in the current code base as
KVM sets all bits in vmcs02's MSR bitmap by default, clears bits if and
only if L0 KVM also disables interception of an MSR, and only uses the
buggy helper for MSR_IA32_SPEC_CTRL.  Because KVM explicitly tests WRMSR
before disabling interception of MSR_IA32_SPEC_CTRL, the flawed check
will only result in KVM reading MSR_IA32_SPEC_CTRL from hardware when it
isn't strictly necessary.

Tag the fix for stable in case a future fix wants to use
msr_write_intercepted(), in which case a buggy implementation in older
kernels could prove subtly problematic.

Fixes: d28b387fb7 ("KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:22 -05:00
Maxim Levitsky
cae72dcc3b KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.

Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.

Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
Linus Torvalds
d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Linus Torvalds
8cb1ae19bf x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
    allows to make the FPU exception fixups more robust as well.
 
  - Change the return code for signal frame related failures from explicit
    error codes to a boolean fail/success as that's all what the calling
    code evaluates.
 
  - A large refactoring of the FPU code to prepare for adding AMX support:
 
    - Distangle the public header maze and remove especially the misnomed
      kitchen sink internal.h which is despite it's name included all over
      the place.
 
    - Add a proper abstraction for the register buffer storage (struct
      fpstate) which allows to dynamically size the buffer at runtime by
      flipping the pointer to the buffer container from the default
      container which is embedded in task_struct::tread::fpu to a
      dynamically allocated container with a larger register buffer.
 
    - Convert the code over to the new fpstate mechanism.
 
    - Consolidate the KVM FPU handling by moving the FPU related code into
      the FPU core which removes the number of exports and avoids adding
      even more export when AMX has to be supported in KVM. This also
      removes duplicated code which was of course unnecessary different and
      incomplete in the KVM copy.
 
    - Simplify the KVM FPU buffer handling by utilizing the new fpstate
      container and just switching the buffer pointer from the user space
      buffer to the KVM guest buffer when entering vcpu_run() and flipping
      it back when leaving the function. This cuts the memory requirements
      of a vCPU for FPU buffers in half and avoids pointless memory copy
      operations.
 
      This also solves the so far unresolved problem of adding AMX support
      because the current FPU buffer handling of KVM inflicted a circular
      dependency between adding AMX support to the core and to KVM.  With
      the new scheme of switching fpstate AMX support can be added to the
      core code without affecting KVM.
 
    - Replace various variables with proper data structures so the extra
      information required for adding dynamically enabled FPU features (AMX)
      can be added in one place
 
  - Add AMX (Advanved Matrix eXtensions) support (finally):
 
     AMX is a large XSTATE component which is going to be available with
     Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
     which allows to trap the (first) use of an AMX related instruction,
     which has two benefits:
 
     1) It allows the kernel to control access to the feature
 
     2) It allows the kernel to dynamically allocate the large register
        state buffer instead of burdening every task with the the extra 8K
        or larger state storage.
 
     It would have been great to gain this kind of control already with
     AVX512.
 
     The support comes with the following infrastructure components:
 
     1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature
 
        Permission is granted per process, inherited on fork() and cleared
        on exec(). The permission policy of the kernel is restricted to
        sigaltstack size validation, but the syscall obviously allows
        further restrictions via seccomp etc.
 
     2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
        takes granted permissions and the potentially resulting larger
        signal frame into account. This mechanism can also be used to
        enforce factual sigaltstack validation independent of dynamic
        features to help with finding potential victims of the 2K
        sigaltstack size constant which is broken since AVX512 support was
        added.
 
     3) Exception handling for #NM traps to catch first use of a extended
        feature via a new cause MSR. If the exception was caused by the use
        of such a feature, the handler checks permission for that
        feature. If permission has not been granted, the handler sends a
        SIGILL like the #UD handler would do if the feature would have been
        disabled in XCR0. If permission has been granted, then a new fpstate
        which fits the larger buffer requirement is allocated.
 
        In the unlikely case that this allocation fails, the handler sends
        SIGSEGV to the task. That's not elegant, but unavoidable as the
        other discussed options of preallocation or full per task
        permissions come with their own set of horrors for kernel and/or
        userspace. So this is the lesser of the evils and SIGSEGV caused by
        unexpected memory allocation failures is not a fundamentally new
        concept either.
 
        When allocation succeeds, the fpstate properties are filled in to
        reflect the extended feature set and the resulting sizes, the
        fpu::fpstate pointer is updated accordingly and the trap is disarmed
        for this task permanently.
 
     4) Enumeration and size calculations
 
     5) Trap switching via MSR_XFD
 
        The XFD (eXtended Feature Disable) MSR is context switched with the
        same life time rules as the FPU register state itself. The mechanism
        is keyed off with a static key which is default disabled so !AMX
        equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
        is limited by comparing the tasks XFD value with a per CPU shadow
        variable to avoid redundant MSR writes. In case of switching from a
        AMX using task to a non AMX using task or vice versa, the extra MSR
        write is obviously inevitable.
 
        All other places which need to be aware of the variable feature sets
        and resulting variable sizes are not affected at all because they
        retrieve the information (feature set, sizes) unconditonally from
        the fpstate properties.
 
     6) Enable the new AMX states
 
   Note, this is relatively new code despite the fact that AMX support is in
   the works for more than a year now.
 
   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which has
   not been caught in review and testing right away was restricted to AMX
   enabled systems, which is completely irrelevant for anyone outside Intel
   and their early access program. There might be dragons lurking as usual,
   but so far the fine grained refactoring has held up and eventual yet
   undetected fallout is bisectable and should be easily addressable before
   the 5.16 release. Famous last words...
 
   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity to
   follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for inclusion
   into 5.16-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
 /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
 jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
 jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
 EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
 RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
 YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
 dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
 hcKvDmehQLrUvg==
 =x3WL
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:

 - Cleanup of extable fixup handling to be more robust, which in turn
   allows to make the FPU exception fixups more robust as well.

 - Change the return code for signal frame related failures from
   explicit error codes to a boolean fail/success as that's all what the
   calling code evaluates.

 - A large refactoring of the FPU code to prepare for adding AMX
   support:

      - Distangle the public header maze and remove especially the
        misnomed kitchen sink internal.h which is despite it's name
        included all over the place.

      - Add a proper abstraction for the register buffer storage (struct
        fpstate) which allows to dynamically size the buffer at runtime
        by flipping the pointer to the buffer container from the default
        container which is embedded in task_struct::tread::fpu to a
        dynamically allocated container with a larger register buffer.

      - Convert the code over to the new fpstate mechanism.

      - Consolidate the KVM FPU handling by moving the FPU related code
        into the FPU core which removes the number of exports and avoids
        adding even more export when AMX has to be supported in KVM.
        This also removes duplicated code which was of course
        unnecessary different and incomplete in the KVM copy.

      - Simplify the KVM FPU buffer handling by utilizing the new
        fpstate container and just switching the buffer pointer from the
        user space buffer to the KVM guest buffer when entering
        vcpu_run() and flipping it back when leaving the function. This
        cuts the memory requirements of a vCPU for FPU buffers in half
        and avoids pointless memory copy operations.

        This also solves the so far unresolved problem of adding AMX
        support because the current FPU buffer handling of KVM inflicted
        a circular dependency between adding AMX support to the core and
        to KVM. With the new scheme of switching fpstate AMX support can
        be added to the core code without affecting KVM.

      - Replace various variables with proper data structures so the
        extra information required for adding dynamically enabled FPU
        features (AMX) can be added in one place

 - Add AMX (Advanced Matrix eXtensions) support (finally):

   AMX is a large XSTATE component which is going to be available with
   Saphire Rapids XEON CPUs. The feature comes with an extra MSR
   (MSR_XFD) which allows to trap the (first) use of an AMX related
   instruction, which has two benefits:

    1) It allows the kernel to control access to the feature

    2) It allows the kernel to dynamically allocate the large register
       state buffer instead of burdening every task with the the extra
       8K or larger state storage.

   It would have been great to gain this kind of control already with
   AVX512.

   The support comes with the following infrastructure components:

    1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature

       Permission is granted per process, inherited on fork() and
       cleared on exec(). The permission policy of the kernel is
       restricted to sigaltstack size validation, but the syscall
       obviously allows further restrictions via seccomp etc.

    2) A stronger sigaltstack size validation for sys_sigaltstack(2)
       which takes granted permissions and the potentially resulting
       larger signal frame into account. This mechanism can also be used
       to enforce factual sigaltstack validation independent of dynamic
       features to help with finding potential victims of the 2K
       sigaltstack size constant which is broken since AVX512 support
       was added.

    3) Exception handling for #NM traps to catch first use of a extended
       feature via a new cause MSR. If the exception was caused by the
       use of such a feature, the handler checks permission for that
       feature. If permission has not been granted, the handler sends a
       SIGILL like the #UD handler would do if the feature would have
       been disabled in XCR0. If permission has been granted, then a new
       fpstate which fits the larger buffer requirement is allocated.

       In the unlikely case that this allocation fails, the handler
       sends SIGSEGV to the task. That's not elegant, but unavoidable as
       the other discussed options of preallocation or full per task
       permissions come with their own set of horrors for kernel and/or
       userspace. So this is the lesser of the evils and SIGSEGV caused
       by unexpected memory allocation failures is not a fundamentally
       new concept either.

       When allocation succeeds, the fpstate properties are filled in to
       reflect the extended feature set and the resulting sizes, the
       fpu::fpstate pointer is updated accordingly and the trap is
       disarmed for this task permanently.

    4) Enumeration and size calculations

    5) Trap switching via MSR_XFD

       The XFD (eXtended Feature Disable) MSR is context switched with
       the same life time rules as the FPU register state itself. The
       mechanism is keyed off with a static key which is default
       disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
       CPUs the overhead is limited by comparing the tasks XFD value
       with a per CPU shadow variable to avoid redundant MSR writes. In
       case of switching from a AMX using task to a non AMX using task
       or vice versa, the extra MSR write is obviously inevitable.

       All other places which need to be aware of the variable feature
       sets and resulting variable sizes are not affected at all because
       they retrieve the information (feature set, sizes) unconditonally
       from the fpstate properties.

    6) Enable the new AMX states

   Note, this is relatively new code despite the fact that AMX support
   is in the works for more than a year now.

   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which
   has not been caught in review and testing right away was restricted
   to AMX enabled systems, which is completely irrelevant for anyone
   outside Intel and their early access program. There might be dragons
   lurking as usual, but so far the fine grained refactoring has held up
   and eventual yet undetected fallout is bisectable and should be
   easily addressable before the 5.16 release. Famous last words...

   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity
   to follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for
   inclusion into 5.16-rc1

* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
  Documentation/x86: Add documentation for using dynamic XSTATE features
  x86/fpu: Include vmalloc.h for vzalloc()
  selftests/x86/amx: Add context switch test
  selftests/x86/amx: Add test cases for AMX state management
  x86/fpu/amx: Enable the AMX feature in 64-bit mode
  x86/fpu: Add XFD handling for dynamic states
  x86/fpu: Calculate the default sizes independently
  x86/fpu/amx: Define AMX state components and have it used for boot-time checks
  x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
  x86/fpu/xstate: Add fpstate_realloc()/free()
  x86/fpu/xstate: Add XFD #NM handler
  x86/fpu: Update XFD state where required
  x86/fpu: Add sanity checks for XFD
  x86/fpu: Add XFD state to fpstate
  x86/msr-index: Add MSRs for XFD
  x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
  x86/fpu: Reset permission and fpstate on exec()
  x86/fpu: Prepare fpu_clone() for dynamically enabled features
  x86/fpu/signal: Prepare for variable sigframe length
  x86/signal: Use fpu::__state_user_size for sigalt stack validation
  ...
2021-11-01 14:03:56 -07:00
David Edmondson
e615e35589 KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
Should instruction emulation fail, include the VM exit reason, etc. in
the emulation_failure data passed to userspace, in order that the VMM
can report it as a debugging aid when describing the failure.

Suggested-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 06:48:24 -04:00
David Edmondson
0a62a0319a KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.

Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 06:48:24 -04:00
Sean Christopherson
ec5a4919fa KVM: VMX: Unregister posted interrupt wakeup handler on hardware unsetup
Unregister KVM's posted interrupt wakeup handler during unsetup so that a
spurious interrupt that arrives after kvm_intel.ko is unloaded doesn't
call into freed memory.

Fixes: bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 12:46:37 -04:00
Sean Christopherson
9dadfc4a61 KVM: x86: Add vendor name to kvm_x86_ops, use it for error messages
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.

Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.

Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.

Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
Xiaoyao Li
e099f3eb0e KVM: VMX: RTIT_CTL_BRANCH_EN has no dependency on other CPUID bit
Per Intel SDM, RTIT_CTL_BRANCH_EN bit has no dependency on any CPUID
leaf 0x14.

Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-5-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:27 -04:00
Xiaoyao Li
f4d3a902a5 KVM: VMX: Rename pt_desc.addr_range to pt_desc.num_address_ranges
To better self explain the meaning of this field and match the
PT_CAP_num_address_ranges constatn.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-4-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:27 -04:00
Xiaoyao Li
ba51d62723 KVM: VMX: Use precomputed vmx->pt_desc.addr_range
The number of valid PT ADDR MSRs for the guest is precomputed in
vmx->pt_desc.addr_range. Use it instead of calculating again.

Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:26 -04:00
Xiaoyao Li
2e6e0d683b KVM: VMX: Restore host's MSR_IA32_RTIT_CTL when it's not zero
A minor optimization to WRMSR MSR_IA32_RTIT_CTL when necessary.

Opportunistically refine the comment to call out that KVM requires
VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-2-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:26 -04:00
Paolo Bonzini
3a25dfa67f KVM: nVMX: promptly process interrupts delivered while in guest mode
Since commit c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with
more precise fix") there is no longer the certainty that check_nested_events()
tries to inject an external interrupt vmexit to L1 on every call to vcpu_enter_guest.
Therefore, even in that case we need to set KVM_REQ_EVENT.  This ensures
that inject_pending_event() is called, and from there kvm_check_nested_events().

Fixes: c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with more precise fix")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-21 03:35:42 -04:00
Thomas Gleixner
b56d2795b2 x86/fpu: Replace the includes of fpu/internal.h
Now that the file is empty, fixup all references with the proper includes
and delete the former kitchen sink.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.001197214@linutronix.de
2021-10-20 15:27:29 +02:00
Hao Xiang
d61863c66f KVM: VMX: Remove redundant handling of bus lock vmexit
Hardware may or may not set exit_reason.bus_lock_detected on BUS_LOCK
VM-Exits. Dealing with KVM_RUN_X86_BUS_LOCK in handle_bus_lock_vmexit
could be redundant when exit_reason.basic is EXIT_REASON_BUS_LOCK.

We can remove redundant handling of bus lock vmexit. Unconditionally Set
exit_reason.bus_lock_detected in handle_bus_lock_vmexit(), and deal with
KVM_RUN_X86_BUS_LOCK only in vmx_handle_exit().

Signed-off-by: Hao Xiang <hao.xiang@linux.alibaba.com>
Message-Id: <1634299161-30101-1-git-send-email-hao.xiang@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:07:19 -04:00
Maxim Levitsky
5228eb96a4 KVM: x86: nSVM: implement nested TSC scaling
This was tested by booting a nested guest with TSC=1Ghz,
observing the clocks, and doing about 100 cycles of migration.

Note that qemu patch is needed to support migration because
of a new MSR that needs to be placed in the migration state.

The patch will be sent to the qemu mailing list soon.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Sean Christopherson
06692e4b80 KVM: VMX: Move RESET emulation to vmx_vcpu_reset()
Move vCPU RESET emulation, including initializating of select VMCS state,
to vmx_vcpu_reset().  Drop the open coded "vCPU load" sequence, as
->vcpu_reset() is invoked while the vCPU is properly loaded (which is
kind of the point of ->vcpu_reset()...).  Hopefully KVM will someday
expose a dedicated RESET ioctl(), and in the meantime separating "create"
from "RESET" is a nice cleanup.

Deferring VMCS initialization is effectively a nop as it's impossible to
safely access the VMCS between the current call site and its new home, as
both the vCPU and the pCPU are put immediately after init_vmcs(), i.e.
the VMCS isn't guaranteed to be loaded.

Note, task preemption is not a problem as vmx_sched_in() _can't_ touch
the VMCS as ->sched_in() is invoked before the vCPU, and thus VMCS, is
reloaded.  I.e. the preemption path also can't consume VMCS state.

Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:07 -04:00
Sean Christopherson
d06567353e KVM: VMX: Drop explicit zeroing of MSR guest values at vCPU creation
Don't zero out user return and nested MSRs during vCPU creation, and
instead rely on vcpu_vmx being zero-allocated.  Explicitly zeroing MSRs
is not wrong, and is in fact necessary if KVM ever emulates vCPU RESET
outside of vCPU creation, but zeroing only a subset of MSRs is confusing.

Poking directly into KVM's backing is also undesirable in that it doesn't
scale and is error prone.  Ideally KVM would have a common RESET path for
all MSRs, e.g. by expanding kvm_set_msr(), which would obviate the need
for this out-of-bad code (to support standalone RESET).

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:07 -04:00
Sean Christopherson
ff8828c84f KVM: x86: Do not mark all registers as avail/dirty during RESET/INIT
Do not blindly mark all registers as available+dirty at RESET/INIT, and
instead rely on writes to registers to go through the proper mutators or
to explicitly mark registers as dirty.  INIT in particular does not blindly
overwrite all registers, e.g. select bits in CR0 are preserved across INIT,
thus marking registers available+dirty without first reading the register
from hardware is incorrect.

In practice this is a benign bug as KVM doesn't let the guest control CR0
bits that are preserved across INIT, and all other true registers are
explicitly written during the RESET/INIT flows.  The PDPTRs and EX_INFO
"registers" are not explicitly written, but accessing those values during
RESET/INIT is nonsensical and would be a KVM bug regardless of register
caching.

Fixes: 66f7b72e11 ("KVM: x86: Make register state after reset conform to specification")
[sean: !!! NOT FOR STABLE !!!]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:05 -04:00
Vitaly Kuznetsov
feb3162f9d KVM: nVMX: Reset vmxon_ptr upon VMXOFF emulation.
Currently, 'vmx->nested.vmxon_ptr' is not reset upon VMXOFF
emulation. This is not a problem per se as we never access
it when !vmx->nested.vmxon. But this should be done to avoid
any issue in the future.

Also, initialize the vmxon_ptr when vcpu is created.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-3-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:02 -04:00
Yu Zhang
64c785082c KVM: nVMX: Use INVALID_GPA for pointers used in nVMX.
Clean up nested.c and vmx.c by using INVALID_GPA instead of "-1ull",
to denote an invalid address in nested VMX. Affected addresses are
the ones of VMXON region, current VMCS, VMCS link pointer, virtual-
APIC page, ENCLS-exiting bitmap, and IO bitmap etc.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-2-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:02 -04:00
Zhenzhong Duan
5c49d1850d KVM: VMX: Fix a TSX_CTRL_CPUID_CLEAR field mask issue
When updating the host's mask for its MSR_IA32_TSX_CTRL user return entry,
clear the mask in the found uret MSR instead of vmx->guest_uret_msrs[i].
Modifying guest_uret_msrs directly is completely broken as 'i' does not
point at the MSR_IA32_TSX_CTRL entry.  In fact, it's guaranteed to be an
out-of-bounds accesses as is always set to kvm_nr_uret_msrs in a prior
loop. By sheer dumb luck, the fallout is limited to "only" failing to
preserve the host's TSX_CTRL_CPUID_CLEAR.  The out-of-bounds access is
benign as it's guaranteed to clear a bit in a guest MSR value, which are
always zero at vCPU creation on both x86-64 and i386.

Cc: stable@vger.kernel.org
Fixes: 8ea8b8d6f8 ("KVM: VMX: Use common x86's uret MSR list as the one true list")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210926015545.281083-1-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-27 11:25:40 -04:00
Maxim Levitsky
dbab610a5b KVM: x86: nVMX: re-evaluate emulation_required on nested VM exit
If L1 had invalid state on VM entry (can happen on SMM transactions
when we enter from real mode, straight to nested guest),

then after we load 'host' state from VMCS12, the state has to become
valid again, but since we load the segment registers with
__vmx_set_segment we weren't always updating emulation_required.

Update emulation_required explicitly at end of load_vmcs12_host_state.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:47:50 -04:00
Maxim Levitsky
c8607e4a08 KVM: x86: nVMX: don't fail nested VM entry on invalid guest state if !from_vmentry
It is possible that when non root mode is entered via special entry
(!from_vmentry), that is from SMM or from loading the nested state,
the L2 state could be invalid in regard to non unrestricted guest mode,
but later it can become valid.

(for example when RSM emulation restores segment registers from SMRAM)

Thus delay the check to VM entry, where we will check this and fail.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:47:50 -04:00
Maxim Levitsky
c42dec148b KVM: x86: VMX: synthesize invalid VM exit when emulating invalid guest state
Since no actual VM entry happened, the VM exit information is stale.
To avoid this, synthesize an invalid VM guest state VM exit.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:47:49 -04:00
Vitaly Kuznetsov
8d68bad6d8 KVM: nVMX: Filter out all unsupported controls when eVMCS was activated
Windows Server 2022 with Hyper-V role enabled failed to boot on KVM when
enlightened VMCS is advertised. Debugging revealed there are two exposed
secondary controls it is not happy with: SECONDARY_EXEC_ENABLE_VMFUNC and
SECONDARY_EXEC_SHADOW_VMCS. These controls are known to be unsupported,
as there are no corresponding fields in eVMCSv1 (see the comment above
EVMCS1_UNSUPPORTED_2NDEXEC definition).

Previously, commit 31de3d2500 ("x86/kvm/hyper-v: move VMX controls
sanitization out of nested_enable_evmcs()") introduced the required
filtering mechanism for VMX MSRs but for some reason put only known
to be problematic (and not full EVMCS1_UNSUPPORTED_* lists) controls
there.

Note, Windows Server 2022 seems to have gained some sanity check for VMX
MSRs: it doesn't even try to launch a guest when there's something it
doesn't like, nested_evmcs_check_controls() mechanism can't catch the
problem.

Let's be bold this time and instead of playing whack-a-mole just filter out
all unsupported controls from VMX MSRs.

Fixes: 31de3d2500 ("x86/kvm/hyper-v: move VMX controls sanitization out of nested_enable_evmcs()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210907163530.110066-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:15 -04:00
Maxim Levitsky
81b4b56d4f KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
If we are emulating an invalid guest state, we don't have a correct
exit reason, and thus we shouldn't do anything in this function.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210826095750.1650467-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 95b5a48c4f ("KVM: VMX: Handle NMIs, #MCs and async #PFs in common irqs-disabled fn", 2019-06-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:00:27 -04:00
Wei Huang
746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Sean Christopherson
2fba4fc155 KVM: VMX: Hide VMCS control calculators in vmx.c
Now that nested VMX pulls KVM's desired VMCS controls from vmcs01 instead
of re-calculating on the fly, bury the helpers that do the calcluations
in vmx.c.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:15 -04:00
Sean Christopherson
b6247686b7 KVM: VMX: Drop caching of KVM's desired sec exec controls for vmcs01
Remove the secondary execution controls cache now that it's effectively
dead code; it is only read immediately after it is written.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:15 -04:00
Paolo Bonzini
1ccb6f983a KVM: VMX: Reset DR6 only when KVM_DEBUGREG_WONT_EXIT
The commit efdab99281 ("KVM: x86: fix escape of guest dr6 to the host")
fixed a bug by resetting DR6 unconditionally when the vcpu being scheduled out.

But writing to debug registers is slow, and it can be visible in perf results
sometimes, even if neither the host nor the guest activate breakpoints.

Since KVM_DEBUGREG_WONT_EXIT on Intel processors is the only case
where DR6 gets the guest value, and it never happens at all on SVM,
the register can be cleared in vmx.c right after reading it.

Reported-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:14 -04:00
Paolo Bonzini
375e28ffc0 KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT
Commit c77fb5fe6f ("KVM: x86: Allow the guest to run with dirty debug
registers") allows the guest accessing to DRs without exiting when
KVM_DEBUGREG_WONT_EXIT and we need to ensure that they are synchronized
on entry to the guest---including DR6 that was not synced before the commit.

But the commit sets the hardware DR6 not only when KVM_DEBUGREG_WONT_EXIT,
but also when KVM_DEBUGREG_BP_ENABLED.  The second case is unnecessary
and just leads to a more case which leaks stale DR6 to the host which has
to be resolved by unconditionally reseting DR6 in kvm_arch_vcpu_put().

Even if KVM_DEBUGREG_WONT_EXIT, however, setting the host DR6 only matters
on VMX because SVM always uses the DR6 value from the VMCB.  So move this
line to vmx.c and make it conditional on KVM_DEBUGREG_WONT_EXIT.

Reported-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:14 -04:00
Sean Christopherson
e54949408a KVM: VMX: Move RESET-only VMWRITE sequences to init_vmcs()
Move VMWRITE sequences in vmx_vcpu_reset() guarded by !init_event into
init_vmcs() to make it more obvious that they're, uh, initializing the
VMCS.

No meaningful functional change intended (though the order of VMWRITEs
and whatnot is different).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:59 -04:00
Sean Christopherson
7aa13fc3d8 KVM: VMX: Remove redundant write to set vCPU as active at RESET/INIT
Drop a call to vmx_clear_hlt() during vCPU INIT, the guest's activity
state is unconditionally set to "active" a few lines earlier in
vmx_vcpu_reset().

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:59 -04:00
Sean Christopherson
84ec8d2d53 KVM: VMX: Smush x2APIC MSR bitmap adjustments into single function
Consolidate all of the dynamic MSR bitmap adjustments into
vmx_update_msr_bitmap_x2apic(), and rename the mode tracker to reflect
that it is x2APIC specific.  If KVM gains more cases of dynamic MSR
pass-through, odds are very good that those new cases will be better off
with their own logic, e.g. see Intel PT MSRs and MSR_IA32_SPEC_CTRL.

Attempting to handle all updates in a common helper did more harm than
good, as KVM ended up collecting a large number of useless "updates".

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:58 -04:00
Sean Christopherson
e7c701dd7a KVM: VMX: Remove unnecessary initialization of msr_bitmap_mode
Don't bother initializing msr_bitmap_mode to 0, all of struct vcpu_vmx is
zero initialized.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:58 -04:00
Sean Christopherson
002f87a41e KVM: VMX: Don't redo x2APIC MSR bitmaps when userspace filter is changed
Drop an explicit call to update the x2APIC MSRs when the userspace MSR
filter is modified.  The x2APIC MSRs are deliberately exempt from
userspace filtering.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:58 -04:00
Sean Christopherson
284036c644 KVM: nVMX: Remove obsolete MSR bitmap refresh at nested transitions
Drop unnecessary MSR bitmap updates during nested transitions, as L1's
APIC_BASE MSR is not modified by the standard VM-Enter/VM-Exit flows,
and L2's MSR bitmap is managed separately.  In the unlikely event that L1
is pathological and loads APIC_BASE via the VM-Exit load list, KVM will
handle updating the bitmap in its normal WRMSR flows.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:58 -04:00
Sean Christopherson
9e4784e19d KVM: VMX: Remove obsolete MSR bitmap refresh at vCPU RESET/INIT
Remove an unnecessary MSR bitmap refresh during vCPU RESET/INIT.  In both
cases, the MSR bitmap already has the desired values and state.

At RESET, the vCPU is guaranteed to be running with x2APIC disabled, the
x2APIC MSRs are guaranteed to be intercepted due to the MSR bitmap being
initialized to all ones by alloc_loaded_vmcs(), and vmx->msr_bitmap_mode
is guaranteed to be zero, i.e. reflecting x2APIC disabled.

At INIT, the APIC_BASE MSR is not modified, thus there can't be any
change in x2APIC state.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:57 -04:00
Sean Christopherson
f39e805ee1 KVM: x86: Move setting of sregs during vCPU RESET/INIT to common x86
Move the setting of CR0, CR4, EFER, RFLAGS, and RIP from vendor code to
common x86.  VMX and SVM now have near-identical sequences, the only
difference being that VMX updates the exception bitmap.  Updating the
bitmap on SVM is unnecessary, but benign.  Unfortunately it can't be left
behind in VMX due to the need to update exception intercepts after the
control registers are set.

Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:57 -04:00
Sean Christopherson
c5c9f920f7 KVM: VMX: Don't _explicitly_ reconfigure user return MSRs on vCPU INIT
When emulating vCPU INIT, do not unconditionally refresh the list of user
return MSRs that need to be loaded into hardware when running the guest.
Unconditionally refreshing the list is confusing, as the vast majority of
MSRs are not modified on INIT.  The real motivation is to handle the case
where an INIT during long mode obviates the need to load the SYSCALL MSRs,
and that is handled as needed by vmx_set_efer().

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-36-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:57 -04:00
Sean Christopherson
432979b503 KVM: VMX: Refresh list of user return MSRs after setting guest CPUID
After a CPUID update, refresh the list of user return MSRs that are
loaded into hardware when running the vCPU.  This is necessary to handle
the oddball case where userspace exposes X86_FEATURE_RDTSCP to the guest
after the vCPU is running.

Fixes: 0023ef39dc ("kvm: vmx: Set IA32_TSC_AUX for legacy mode guests")
Fixes: 4e47c7a6d7 ("KVM: VMX: Add instruction rdtscp support for guest")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:56 -04:00
Sean Christopherson
400dd54b37 KVM: VMX: Skip pointless MSR bitmap update when setting EFER
Split setup_msrs() into vmx_setup_uret_msrs() and an open coded refresh
of the MSR bitmap, and skip the latter when refreshing the user return
MSRs during an EFER load.  Only the x2APIC MSRs are dynamically exposed
and hidden, and those are not affected by a change in EFER.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:56 -04:00
Sean Christopherson
816be9e9be KVM: nVMX: Don't evaluate "emulation required" on nested VM-Exit
Use the "internal" variants of setting segment registers when stuffing
state on nested VM-Exit in order to skip the "emulation required"
updates.  VM-Exit must always go to protected mode, and all segments are
mostly hardcoded (to valid values) on VM-Exit.  The bits of the segments
that aren't hardcoded are explicitly checked during VM-Enter, e.g. the
selector RPLs must all be zero.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:55 -04:00