mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-05-24 10:39:52 +00:00
1375 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
53683e4080 |
tracing ring buffer updates for v6.10:
- Add ring_buffer memory mappings The tracing ring buffer was created based on being mostly used with the splice system call. It is broken up into page ordered sub-buffers and the reader swaps a new sub-buffer with an existing sub-buffer that's part of the write buffer. It then has total access to the swapped out sub-buffer and can do copyless movements of the memory into other mediums (file system, network, etc). The buffer is great for passing around the ring buffer contents in the kernel, but is not so good for when the consumer is the user space task itself. A new interface is added that allows user space to memory map the ring buffer. It will get all the write sub-buffers as well as reader sub-buffer (that is not written to). It can send an ioctl to change which sub-buffer is the new reader sub-buffer. The ring buffer is read only to user space. It only needs to call the ioctl when it is finished with a sub-buffer and needs a new sub-buffer that the writer will not write over. A self test program was also created for testing and can be used as an example for the interface to user space. The libtracefs (external to the kernel) also has code that interacts with this, although it is disabled until the interface is in a official release. It can be enabled by compiling the library with a special flag. This was used for testing applications that perform better with the buffer being mapped. Memory mapped buffers have limitations. The main one is that it can not be used with the snapshot logic. If the buffer is mapped, snapshots will be disabled. If any logic is set to trigger snapshots on a buffer, that buffer will not be allowed to be mapped. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZkYzDRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qttNAQCj3I0OpeI1vms85ShIa7Eha2qes5uC Yml2fnapkmRSwAEAp5UTGxtDctycWOk9B9PA7/oJmLgATaQwRKoEeTUwfAA= =TyEB -----END PGP SIGNATURE----- Merge tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing ring buffer updates from Steven Rostedt: "Add ring_buffer memory mappings. The tracing ring buffer was created based on being mostly used with the splice system call. It is broken up into page ordered sub-buffers and the reader swaps a new sub-buffer with an existing sub-buffer that's part of the write buffer. It then has total access to the swapped out sub-buffer and can do copyless movements of the memory into other mediums (file system, network, etc). The buffer is great for passing around the ring buffer contents in the kernel, but is not so good for when the consumer is the user space task itself. A new interface is added that allows user space to memory map the ring buffer. It will get all the write sub-buffers as well as reader sub-buffer (that is not written to). It can send an ioctl to change which sub-buffer is the new reader sub-buffer. The ring buffer is read only to user space. It only needs to call the ioctl when it is finished with a sub-buffer and needs a new sub-buffer that the writer will not write over. A self test program was also created for testing and can be used as an example for the interface to user space. The libtracefs (external to the kernel) also has code that interacts with this, although it is disabled until the interface is in a official release. It can be enabled by compiling the library with a special flag. This was used for testing applications that perform better with the buffer being mapped. Memory mapped buffers have limitations. The main one is that it can not be used with the snapshot logic. If the buffer is mapped, snapshots will be disabled. If any logic is set to trigger snapshots on a buffer, that buffer will not be allowed to be mapped" * tag 'trace-ringbuffer-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: ring-buffer: Add cast to unsigned long addr passed to virt_to_page() ring-buffer: Have mmapped ring buffer keep track of missed events ring-buffer/selftest: Add ring-buffer mapping test Documentation: tracing: Add ring-buffer mapping tracing: Allow user-space mapping of the ring-buffer ring-buffer: Introducing ring-buffer mapping functions ring-buffer: Allocate sub-buffers with __GFP_COMP |
||
![]() |
cf9f0f7c4c |
tracing: Allow user-space mapping of the ring-buffer
Currently, user-space extracts data from the ring-buffer via splice, which is handy for storage or network sharing. However, due to splice limitations, it is imposible to do real-time analysis without a copy. A solution for that problem is to let the user-space map the ring-buffer directly. The mapping is exposed via the per-CPU file trace_pipe_raw. The first element of the mapping is the meta-page. It is followed by each subbuffer constituting the ring-buffer, ordered by their unique page ID: * Meta-page -- include/uapi/linux/trace_mmap.h for a description * Subbuf ID 0 * Subbuf ID 1 ... It is therefore easy to translate a subbuf ID into an offset in the mapping: reader_id = meta->reader->id; reader_offset = meta->meta_page_size + reader_id * meta->subbuf_size; When new data is available, the mapper must call a newly introduced ioctl: TRACE_MMAP_IOCTL_GET_READER. This will update the Meta-page reader ID to point to the next reader containing unread data. Mapping will prevent snapshot and buffer size modifications. Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-4-vdonnefort@google.com CC: <linux-mm@kvack.org> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
20fe4d07bd |
tracing/probes: support '%pD' type for print struct file's name
As like '%pd' type, this patch supports print type '%pD' for print file's name. For example "name=$arg1:%pD" casts the `$arg1` as (struct file*), dereferences the "file.f_path.dentry.d_name.name" field and stores it to "name" argument as a kernel string. Here is an example: [tracing]# echo 'p:testprobe vfs_read name=$arg1:%pD' > kprobe_event [tracing]# echo 1 > events/kprobes/testprobe/enable [tracing]# grep -q "1" events/kprobes/testprobe/enable [tracing]# echo 0 > events/kprobes/testprobe/enable [tracing]# grep "vfs_read" trace | grep "enable" grep-15108 [003] ..... 5228.328609: testprobe: (vfs_read+0x4/0xbb0) name="enable" Note that this expects the given argument (e.g. $arg1) is an address of struct file. User must ensure it. Link: https://lore.kernel.org/all/20240322064308.284457-3-yebin10@huawei.com/ [Masami: replaced "previous patch" with '%pd' type] Signed-off-by: Ye Bin <yebin10@huawei.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
d9b15224dd |
tracing/probes: support '%pd' type for print struct dentry's name
During fault locating, the file name needs to be printed based on the dentry address. The offset needs to be calculated each time, which is troublesome. Similar to printk, kprobe support print type '%pd' for print dentry's name. For example "name=$arg1:%pd" casts the `$arg1` as (struct dentry *), dereferences the "d_name.name" field and stores it to "name" argument as a kernel string. Here is an example: [tracing]# echo 'p:testprobe dput name=$arg1:%pd' > kprobe_events [tracing]# echo 1 > events/kprobes/testprobe/enable [tracing]# grep -q "1" events/kprobes/testprobe/enable [tracing]# echo 0 > events/kprobes/testprobe/enable [tracing]# cat trace | grep "enable" bash-14844 [002] ..... 16912.889543: testprobe: (dput+0x4/0x30) name="enable" grep-15389 [003] ..... 16922.834182: testprobe: (dput+0x4/0x30) name="enable" grep-15389 [003] ..... 16922.836103: testprobe: (dput+0x4/0x30) name="enable" bash-14844 [001] ..... 16931.820909: testprobe: (dput+0x4/0x30) name="enable" Note that this expects the given argument (e.g. $arg1) is an address of struct dentry. User must ensure it. Link: https://lore.kernel.org/all/20240322064308.284457-2-yebin10@huawei.com/ Signed-off-by: Ye Bin <yebin10@huawei.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
19f0423fd5 |
tracing: Support to dump instance traces by ftrace_dump_on_oops
Currently ftrace only dumps the global trace buffer on an OOPs. For debugging a production usecase, instance trace will be helpful to check specific problems since global trace buffer may be used for other purposes. This patch extend the ftrace_dump_on_oops parameter to dump a specific or multiple trace instances: - ftrace_dump_on_oops=0: as before -- don't dump - ftrace_dump_on_oops[=1]: as before -- dump the global trace buffer on all CPUs - ftrace_dump_on_oops=2 or =orig_cpu: as before -- dump the global trace buffer on CPU that triggered the oops - ftrace_dump_on_oops=<instance_name>: new behavior -- dump the tracing instance matching <instance_name> - ftrace_dump_on_oops[=2/orig_cpu],<instance1_name>[=2/orig_cpu], <instrance2_name>[=2/orig_cpu]: new behavior -- dump the global trace buffer and multiple instance buffer on all CPUs, or only dump on CPU that triggered the oops if =2 or =orig_cpu is given Also, the sysctl node can handle the input accordingly. Link: https://lore.kernel.org/linux-trace-kernel/20240223083126.1817731-1-quic_hyiwei@quicinc.com Cc: Ross Zwisler <zwisler@google.com> Cc: <mhiramat@kernel.org> Cc: <mark.rutland@arm.com> Cc: <mcgrof@kernel.org> Cc: <keescook@chromium.org> Cc: <j.granados@samsung.com> Cc: <mathieu.desnoyers@efficios.com> Cc: <corbet@lwn.net> Signed-off-by: Huang Yiwei <quic_hyiwei@quicinc.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
cca990c7b5 |
tracing: Fix snapshot counter going between two tracers that use it
Running the ftrace selftests caused the ring buffer mapping test to fail. Investigating, I found that the snapshot counter would be incremented every time a tracer that uses the snapshot is enabled even if the snapshot was used by the previous tracer. That is: # cd /sys/kernel/tracing # echo wakeup_rt > current_tracer # echo wakeup_dl > current_tracer # echo nop > current_tracer would leave the snapshot counter at 1 and not zero. That's because the enabling of wakeup_dl would increment the counter again but the setting the tracer to nop would only decrement it once. Do not arm the snapshot for a tracer if the previous tracer already had it armed. Link: https://lore.kernel.org/linux-trace-kernel/20240223013344.570525723@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Fixes: 16f7e48ffc53a ("tracing: Add snapshot refcount") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
ed89683763 |
tracing: Use init_utsname()->release
Instead of using UTS_RELEASE, use init_utsname()->release, which means that we don't need to rebuild the code just for the git head commit changing. Link: https://lore.kernel.org/linux-trace-kernel/20240222124639.65629-1-john.g.garry@oracle.com Signed-off-by: John Garry <john.g.garry@oracle.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
180e4e3909 |
tracing: Add snapshot refcount
When a ring-buffer is memory mapped by user-space, no trace or ring-buffer swap is possible. This means the snapshot feature is mutually exclusive with the memory mapping. Having a refcount on snapshot users will help to know if a mapping is possible or not. Instead of relying on the global trace_types_lock, a new spinlock is introduced to serialize accesses to trace_array->snapshot. This intends to allow access to that variable in a context where the mmap lock is already held. Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-4-vdonnefort@google.com Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2cc621fd2e |
tracing: Move saved_cmdline code into trace_sched_switch.c
The code that handles saved_cmdlines is split between the trace.c file and the trace_sched_switch.c. There's some history to this. The trace_sched_switch.c was originally created to handle the sched_switch tracer that was deprecated due to sched_switch trace event making it obsolete. But that file did not get deleted as it had some code to help with saved_cmdlines. But trace.c has grown tremendously since then. Just move all the saved_cmdlines code into trace_sched_switch.c as that's the only reason that file still exists, and trace.c has gotten too big. No functional changes. Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.497966629@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
e85d471c2b |
tracing: Move open coded processing of tgid_map into helper function
In preparation of moving the saved_cmdlines logic out of trace.c and into trace_sched_switch.c, replace the open coded manipulation of tgid_map in set_tracer_flag() into a helper function trace_alloc_tgid_map() so that it can be easily moved into trace_sched_switch.c without changing existing functions in trace.c. No functional changes. Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.338116216@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
0b18c852cc |
tracing: Have saved_cmdlines arrays all in one allocation
The saved_cmdlines have three arrays for mapping PIDs to COMMs:
- map_pid_to_cmdline[]
- map_cmdline_to_pid[]
- saved_cmdlines
The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.
Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.
Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.
Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes:
|
||
![]() |
63bd30f249 |
Tracing/ring-buffer fixes for 6.8 (to be applied in 6.9-rc):
- Do not update shortest_full in rb_watermark_hit() if the watermark is hit. The shortest_full field was being updated regardless if the task was going to wait or not. If the watermark is hit, then the task is not going to wait, so do not update the shortest_full field (used by the waker). - Update shortest_full field before setting the full_waiters_pending flag In the poll logic, the full_waiters_pending flag was being set before the shortest_full field was set. If the full_waiters_pending flag is set, writers will check the shortest_full field which has the least percentage of data that the ring buffer needs to be filled before waking up. The writer will check shortest_full if full_waiters_pending is set, and if the ring buffer percentage filled is greater than shortest full, then it will call the irq_work to wake up the waiters. The problem was that the poll logic set the full_waiters_pending flag before updating shortest_full, which when zero will always trigger the writer to call the irq_work to wake up the waiters. The irq_work will reset the shortest_full field back to zero as the woken waiters is suppose to reset it. - There's some optimized logic in the rb_watermark_hit() that is used in ring_buffer_wait(). Use that helper function in the poll logic as well. - Restructure ring_buffer_wait() to use wait_event_interruptible() The logic to wake up pending readers when the file descriptor is closed is racy. Restructure ring_buffer_wait() to allow callers to pass in conditions besides the ring buffer having enough data in it by using wait_event_interruptible(). - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its own conditions to exit the wait loop. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfH6MRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qtlwAP9ZoSIkvw2MVu7FclgAguaX2CaylGEw sv0wZaCy1kgAPgD8CFhezZcHrt/RwJibpMxVnUs+DDqYnGdJsHYLihlbWgg= =99FG -----END PGP SIGNATURE----- Merge tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Do not update shortest_full in rb_watermark_hit() if the watermark is hit. The shortest_full field was being updated regardless if the task was going to wait or not. If the watermark is hit, then the task is not going to wait, so do not update the shortest_full field (used by the waker). - Update shortest_full field before setting the full_waiters_pending flag In the poll logic, the full_waiters_pending flag was being set before the shortest_full field was set. If the full_waiters_pending flag is set, writers will check the shortest_full field which has the least percentage of data that the ring buffer needs to be filled before waking up. The writer will check shortest_full if full_waiters_pending is set, and if the ring buffer percentage filled is greater than shortest full, then it will call the irq_work to wake up the waiters. The problem was that the poll logic set the full_waiters_pending flag before updating shortest_full, which when zero will always trigger the writer to call the irq_work to wake up the waiters. The irq_work will reset the shortest_full field back to zero as the woken waiters is suppose to reset it. - There's some optimized logic in the rb_watermark_hit() that is used in ring_buffer_wait(). Use that helper function in the poll logic as well. - Restructure ring_buffer_wait() to use wait_event_interruptible() The logic to wake up pending readers when the file descriptor is closed is racy. Restructure ring_buffer_wait() to allow callers to pass in conditions besides the ring buffer having enough data in it by using wait_event_interruptible(). - Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its own conditions to exit the wait loop. * tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/ring-buffer: Fix wait_on_pipe() race ring-buffer: Use wait_event_interruptible() in ring_buffer_wait() ring-buffer: Reuse rb_watermark_hit() for the poll logic ring-buffer: Fix full_waiters_pending in poll ring-buffer: Do not set shortest_full when full target is hit |
||
![]() |
01732755ee |
Probes updates for v6.9:
- x96/kprobes: Use boolean for some function return instead of 0 and 1. - x86/kprobes: Prohibit probing on INT/UD. This prevents user to put kprobe on INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special purpose in the kernel. - x86/kprobes: Boost Grp instructions. Because a few percent of kernel instructions are Grp 2/3/4/5 and those are safe to be executed without ip register fixup, allow those to be boosted (direct execution on the trampoline buffer with a JMP). - tracing/probes: Add function argument access from return events (kretprobe and fprobe). This allows user to compare how a data structure field is changed after executing a function. With BTF, return event also accepts function argument access by name. This also includes below patches; . Fix a wrong comment (using "Kretprobe" in fprobe) . Cleanup a big probe argument parser function into three parts, type parser, post-processing function, and main parser. . Cleanup to set nr_args field when initializing trace_probe instead of counting up it while parsing. . Cleanup a redundant #else block from tracefs/README source code. . Update selftests to check entry argument access from return probes. . Documentation update about entry argument access from return probes. -----BEGIN PGP SIGNATURE----- iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmXwW4kbHG1hc2FtaS5o aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bH80H/3H6JENlDAjaSLi4vYrP Qyw/cOGIuGu8cDEzkkOaFMol3TY23M7tQZH1lFefvV92gebZ0ttXnrQhSsKeO5XT PCZ6Eoift5rwJCY967W4V6O0DrAkOGHlPtlKs47APJnTXwn8RcFTqWlQmhWg1AfD g/FCWV7cs3eewZgV9iQcLydOoLLgRMr3G3rtPYQbCXhPzze0WTu4dSOXxCTjFe04 riHQy7R+ut6Cur8njpoqZl6bCMkQqAylByXf6wK96HjcS0+ZI7Ivi8Ey3l2aAFen EeIViMU2Bl02XzBszj7Xq2cT/ebYAgDonFW3/5ZKD1YMO6F7wPoVH5OHrQ518Xuw hQ8= =O6l5 -----END PGP SIGNATURE----- Merge tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: "x86 kprobes: - Use boolean for some function return instead of 0 and 1 - Prohibit probing on INT/UD. This prevents user to put kprobe on INTn/INT1/INT3/INTO and UD0/UD1/UD2 because these are used for a special purpose in the kernel - Boost Grp instructions. Because a few percent of kernel instructions are Grp 2/3/4/5 and those are safe to be executed without ip register fixup, allow those to be boosted (direct execution on the trampoline buffer with a JMP) tracing: - Add function argument access from return events (kretprobe and fprobe). This allows user to compare how a data structure field is changed after executing a function. With BTF, return event also accepts function argument access by name. - Fix a wrong comment (using "Kretprobe" in fprobe) - Cleanup a big probe argument parser function into three parts, type parser, post-processing function, and main parser - Cleanup to set nr_args field when initializing trace_probe instead of counting up it while parsing - Cleanup a redundant #else block from tracefs/README source code - Update selftests to check entry argument access from return probes - Documentation update about entry argument access from return probes" * tag 'probes-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: Documentation: tracing: Add entry argument access at function exit selftests/ftrace: Add test cases for entry args at function exit tracing/probes: Support $argN in return probe (kprobe and fprobe) tracing: Remove redundant #else block for BTF args from README tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_init tracing/probes: Cleanup probe argument parser tracing/fprobe-event: cleanup: Fix a wrong comment in fprobe event x86/kprobes: Boost more instructions from grp2/3/4/5 x86/kprobes: Prohibit kprobing on INT and UD x86/kprobes: Refactor can_{probe,boost} return type to bool |
||
![]() |
2aa043a55b |
tracing/ring-buffer: Fix wait_on_pipe() race
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.
CPU 0 CPU 1
----- -----
wait_index++;
index = wait_index;
ring_buffer_wake_waiters();
wait_on_pipe()
ring_buffer_wait();
The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:
prepare_to_wait();
if (!condition)
schedule();
Where the missing condition check is the iter->wait_index update.
Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.
In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.
Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.
Have the wait_on_pipe() condition callback also check the closed field.
Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.
Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes:
|
||
![]() |
e5d7c19165 |
tracing: Use .flush() call to wake up readers
The .release() function does not get called until all readers of a file
descriptor are finished.
If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.
The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.
When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.
This is what the .flush() callback is for. Have the .flush() wake up the
readers.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes:
|
||
![]() |
095fe48912 |
tracing: Limit trace_marker writes to just 4K
Limit the max print event of trace_marker to just 4K string size. This must also be less than the amount that can be held by a trace_seq along with the text that is before the output (like the task name, PID, CPU, state, etc). As trace_seq is made to handle large events (some greater than 4K). Make the max size of a trace_marker write event be 4K which is guaranteed to fit in the trace_seq buffer. Link: https://lore.kernel.org/linux-trace-kernel/20240304223433.4ba47dff@gandalf.local.home Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
25f00e40ce |
tracing/probes: Support $argN in return probe (kprobe and fprobe)
Support accessing $argN in the return probe events. This will help users to record entry data in function return (exit) event for simplfing the function entry/exit information in one event, and record the result values (e.g. allocated object/initialized object) at function exit. For example, if we have a function `int init_foo(struct foo *obj, int param)` sometimes we want to check how `obj` is initialized. In such case, we can define a new return event like below; # echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events Thus it records the function parameter `param` and its result `obj->field1` (the dereference will be done in the function exit timing) value at once. This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF is enabled, we can trace both function parameters and the return value by following command. # echo 'f target_function%return $arg* $retval' >> dynamic_events Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
![]() |
c18f9eabee |
tracing: Remove redundant #else block for BTF args from README
Remove redundant #else block for BTF args from README message. This is a cleanup, so no change on the message. Link: https://lore.kernel.org/all/170952364558.229804.17285528811097152410.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2394ac4145 |
tracing: Inform kmemleak of saved_cmdlines allocation
The allocation of the struct saved_cmdlines_buffer structure changed from:
s = kmalloc(sizeof(*s), GFP_KERNEL);
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
to:
orig_size = sizeof(*s) + val * TASK_COMM_LEN;
order = get_order(orig_size);
size = 1 << (order + PAGE_SHIFT);
page = alloc_pages(GFP_KERNEL, order);
if (!page)
return NULL;
s = page_address(page);
memset(s, 0, sizeof(*s));
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.
Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:
unreferenced object 0xffff8881010c8000 (size 32760):
comm "swapper", pid 0, jiffies 4294667296
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace (crc ae6ec1b9):
[<ffffffff86722405>] kmemleak_alloc+0x45/0x80
[<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
[<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
[<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
[<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
[<ffffffff8864a174>] early_trace_init+0x14/0xa0
[<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
[<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
[<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
[<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b
Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes:
|
||
![]() |
a6eaa24f1c |
tracing: Use ring_buffer_record_is_set_on() in tracer_tracing_is_on()
tracer_tracing_is_on() checks whether record_disabled is not zero. This checks both the record_disabled counter and the RB_BUFFER_OFF flag. Reading the source it looks like this function should only check for the RB_BUFFER_OFF flag. Therefore use ring_buffer_record_is_set_on(). This fixes spurious fails in the 'test for function traceon/off triggers' test from the ftrace testsuite when the system is under load. Link: https://lore.kernel.org/linux-trace-kernel/20240205065340.2848065-1-svens@linux.ibm.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Tested-By: Mete Durlu <meted@linux.ibm.com> Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
44dc5c41b5 |
tracing: Fix wasted memory in saved_cmdlines logic
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes:
|
||
![]() |
a2ded784cd |
tracing updates for 6.8:
- Allow kernel trace instance creation to specify what events are created Inside the kernel, a subsystem may create a tracing instance that it can use to send events to user space. This sub-system may not care about the thousands of events that exist in eventfs. Allow the sub-system to specify what sub-systems of events it cares about, and only those events are exposed to this instance. - Allow the ring buffer to be broken up into bigger sub-buffers than just the architecture page size. A new tracefs file called "buffer_subbuf_size_kb" is created. The user can now specify a minimum size the sub-buffer may be in kilobytes. Note, that the implementation currently make the sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in kilobyte size, and the sub-buffer will be updated to the next size that it will can accommodate it. If the user writes in 10, it will change the size to be 4 pages on x86 (16K), as that is the next available size that can hold 10K pages. - Update the debug output when a corrupt time is detected in the ring buffer. If the ring buffer detects inconsistent timestamps, there's a debug config options that will dump the contents of the meta data of the sub-buffer that is used for debugging. Add some more information to this dump that helps with debugging. - Add more timestamp debugging checks (only triggers when the config is enabled) - Increase the trace_seq iterator to 2 page sizes. - Allow strings written into tracefs_marker to be larger. Up to just under 2 page sizes (based on what trace_seq can hold). - Increase the trace_maker_raw write to be as big as a sub-buffer can hold. - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been removed. - More selftests were added. - Some code clean ups as well. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZ8p3BQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6ql2GAQDZg/zlFEiJHyTfWbCIE8pA3T5xbzKo 26TNxIZAxJJZpQEAvGFU5Smy14pG6soEoVMp8B6ZOANbqU8VVamhOL+r+Qw= =0OYG -----END PGP SIGNATURE----- Merge tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Allow kernel trace instance creation to specify what events are created Inside the kernel, a subsystem may create a tracing instance that it can use to send events to user space. This sub-system may not care about the thousands of events that exist in eventfs. Allow the sub-system to specify what sub-systems of events it cares about, and only those events are exposed to this instance. - Allow the ring buffer to be broken up into bigger sub-buffers than just the architecture page size. A new tracefs file called "buffer_subbuf_size_kb" is created. The user can now specify a minimum size the sub-buffer may be in kilobytes. Note, that the implementation currently make the sub-buffer size a power of 2 pages (1, 2, 4, 8, 16, ...) but the user only writes in kilobyte size, and the sub-buffer will be updated to the next size that it will can accommodate it. If the user writes in 10, it will change the size to be 4 pages on x86 (16K), as that is the next available size that can hold 10K pages. - Update the debug output when a corrupt time is detected in the ring buffer. If the ring buffer detects inconsistent timestamps, there's a debug config options that will dump the contents of the meta data of the sub-buffer that is used for debugging. Add some more information to this dump that helps with debugging. - Add more timestamp debugging checks (only triggers when the config is enabled) - Increase the trace_seq iterator to 2 page sizes. - Allow strings written into tracefs_marker to be larger. Up to just under 2 page sizes (based on what trace_seq can hold). - Increase the trace_maker_raw write to be as big as a sub-buffer can hold. - Remove 32 bit time stamp logic, now that the rb_time_cmpxchg() has been removed. - More selftests were added. - Some code clean ups as well. * tag 'trace-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits) ring-buffer: Remove stale comment from ring_buffer_size() tracing histograms: Simplify parse_actions() function tracing/selftests: Remove exec permissions from trace_marker.tc test ring-buffer: Use subbuf_order for buffer page masking tracing: Update subbuffer with kilobytes not page order ringbuffer/selftest: Add basic selftest to test changing subbuf order ring-buffer: Add documentation on the buffer_subbuf_order file ring-buffer: Just update the subbuffers when changing their allocation order ring-buffer: Keep the same size when updating the order tracing: Stop the tracing while changing the ring buffer subbuf size tracing: Update snapshot order along with main buffer order ring-buffer: Make sure the spare sub buffer used for reads has same size ring-buffer: Do no swap cpu buffers if order is different ring-buffer: Clear pages on error in ring_buffer_subbuf_order_set() failure ring-buffer: Read and write to ring buffers with custom sub buffer size ring-buffer: Set new size of the ring buffer sub page ring-buffer: Add interface for configuring trace sub buffer size ring-buffer: Page size per ring buffer ring-buffer: Have ring_buffer_print_page_header() be able to access ring_buffer_iter ring-buffer: Check if absolute timestamp goes backwards ... |
||
![]() |
39a7dc23a1 |
tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.
That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.
This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.
But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.
Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.
Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes:
|
||
![]() |
2f84b39f48 |
tracing: Update subbuffer with kilobytes not page order
Using page order for deciding what the size of the ring buffer sub buffers are is exposing a bit too much of the implementation. Although the sub buffers are only allocated in orders of pages, allow the user to specify the minimum size of each sub-buffer via kilobytes like they can with the buffer size itself. If the user specifies 3 via: echo 3 > buffer_subbuf_size_kb Then the sub-buffer size will round up to 4kb (on a 4kb page size system). If they specify: echo 6 > buffer_subbuf_size_kb The sub-buffer size will become 8kb. and so on. Link: https://lore.kernel.org/linux-trace-kernel/20231219185631.809766769@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
fa4b54af5b |
tracing: Stop the tracing while changing the ring buffer subbuf size
Because the main buffer and the snapshot buffer need to be the same for
some tracers, otherwise it will fail and disable all tracing, the tracers
need to be stopped while updating the sub buffer sizes so that the tracers
see the main and snapshot buffers with the same sub buffer size.
Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.353222794@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Fixes:
|
||
![]() |
aa067682ad |
tracing: Update snapshot order along with main buffer order
When updating the order of the sub buffers for the main buffer, make sure that if the snapshot buffer exists, that it gets its order updated as well. Link: https://lore.kernel.org/linux-trace-kernel/20231219185630.054668186@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
4e958db34f |
ring-buffer: Make sure the spare sub buffer used for reads has same size
Now that the ring buffer specifies the size of its sub buffers, they all need to be the same size. When doing a read, a swap is done with a spare page. Make sure they are the same size before doing the swap, otherwise the read will fail. Link: https://lore.kernel.org/linux-trace-kernel/20231219185629.763664788@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
bce761d757 |
ring-buffer: Read and write to ring buffers with custom sub buffer size
As the size of the ring sub buffer page can be changed dynamically, the logic that reads and writes to the buffer should be fixed to take that into account. Some internal ring buffer APIs are changed: ring_buffer_alloc_read_page() ring_buffer_free_read_page() ring_buffer_read_page() A new API is introduced: ring_buffer_read_page_data() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-6-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.875145995@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> [ Fixed kerneldoc on data_page parameter in ring_buffer_free_read_page() ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
2808e31ec1 |
ring-buffer: Add interface for configuring trace sub buffer size
The trace ring buffer sub page size can be configured, per trace instance. A new ftrace file "buffer_subbuf_order" is added to get and set the size of the ring buffer sub page for current trace instance. The size must be an order of system page size, that's why the new interface works with system page order, instead of absolute page size: 0 means the ring buffer sub page is equal to 1 system page and so forth: 0 - 1 system page 1 - 2 system pages 2 - 4 system pages ... The ring buffer sub page size is limited between 1 and 128 system pages. The default value is 1 system page. New ring buffer APIs are introduced: ring_buffer_subbuf_order_set() ring_buffer_subbuf_order_get() ring_buffer_subbuf_size_get() Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-4-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.298324722@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
139f840021 |
ring-buffer: Page size per ring buffer
Currently the size of one sub buffer page is global for all buffers and it is hard coded to one system page. In order to introduce configurable ring buffer sub page size, the internal logic should be refactored to work with sub page size per ring buffer. Link: https://lore.kernel.org/linux-trace-devel/20211213094825.61876-3-tz.stoyanov@gmail.com Link: https://lore.kernel.org/linux-trace-kernel/20231219185628.009147038@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
76ca20c748 |
tracing: Increase size of trace_marker_raw to max ring buffer entry
There's no reason to give an arbitrary limit to the size of a raw trace marker. Just let it be as big as the size that is allowed by the ring buffer itself. And there's also no reason to artificially break up the write to TRACE_BUF_SIZE, as that's not even used. Link: https://lore.kernel.org/linux-trace-kernel/20231213104218.2efc70c1@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
9482341d9b |
tracing: Have trace_marker break up by lines by size of trace_seq
If a trace_marker write is bigger than what trace_seq can hold, then it will print "LINE TOO BIG" message and not what was written. Instead, check if the write is bigger than the trace_seq and break it up by that size. Ideally, we could make the trace_seq dynamic that could hold this. But that's for another time. Link: https://lore.kernel.org/linux-trace-kernel/20231212190422.1eaf224f@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
40fc60e36c |
trace_seq: Increase the buffer size to almost two pages
Now that trace_marker can hold more than 1KB string, and can write as much as the ring buffer can hold, the trace_seq is not big enough to hold writes: ~# a="1234567890" ~# cnt=4080 ~# s="" ~# while [ $cnt -gt 10 ]; do ~# s="${s}${a}" ~# cnt=$((cnt-10)) ~# done ~# echo $s > trace_marker ~# cat trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-860 [002] ..... 105.543465: tracing_mark_write[LINE TOO BIG] <...>-860 [002] ..... 105.543496: tracing_mark_write: 789012345678901234567890 By increasing the trace_seq buffer to almost two pages, it can now print out the first line. This also subtracts the rest of the trace_seq fields from the buffer, so that the entire trace_seq is now PAGE_SIZE aligned. Link: https://lore.kernel.org/linux-trace-kernel/20231209175220.19867af4@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
8ec90be7f1 |
tracing: Allow for max buffer data size trace_marker writes
Allow a trace write to be as big as the ring buffer tracing data will allow. Currently, it only allows writes of 1KB in size, but there's no reason that it cannot allow what the ring buffer can hold. Link: https://lore.kernel.org/linux-trace-kernel/20231212131901.5f501e72@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d23569979c |
tracing: Allow creating instances with specified system events
A trace instance may only need to enable specific events. As the eventfs directory of an instance currently creates all events which adds overhead, allow internal instances to be created with just the events in systems that they care about. This currently only deals with systems and not individual events, but this should bring down the overhead of creating instances for specific use cases quite bit. The trace_array_get_by_name() now has another parameter "systems". This parameter is a const string pointer of a comma/space separated list of event systems that should be created by the trace_array. (Note if the trace_array already exists, this parameter is ignored). The list of systems is saved and if a module is loaded, its events will not be added unless the system for those events also match the systems string. Link: https://lore.kernel.org/linux-trace-kernel/20231213093701.03fddec0@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Arun Easi <aeasi@marvell.com> Cc: Daniel Wagner <dwagner@suse.de> Tested-by: Dmytro Maluka <dmaluka@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
1cc111b9cd |
tracing: Fix uaf issue when open the hist or hist_debug file
KASAN report following issue. The root cause is when opening 'hist' file of an instance and accessing 'trace_event_file' in hist_show(), but 'trace_event_file' has been freed due to the instance being removed. 'hist_debug' file has the same problem. To fix it, call tracing_{open,release}_file_tr() in file_operations callback to have the ref count and avoid 'trace_event_file' being freed. BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278 Read of size 8 at addr ffff242541e336b8 by task head/190 CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x98/0xf8 show_stack+0x1c/0x30 dump_stack_lvl+0x44/0x58 print_report+0xf0/0x5a0 kasan_report+0x80/0xc0 __asan_report_load8_noabort+0x1c/0x28 hist_show+0x11e0/0x1278 seq_read_iter+0x344/0xd78 seq_read+0x128/0x1c0 vfs_read+0x198/0x6c8 ksys_read+0xf4/0x1e0 __arm64_sys_read+0x70/0xa8 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Allocated by task 188: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_alloc_info+0x20/0x30 __kasan_slab_alloc+0x6c/0x80 kmem_cache_alloc+0x15c/0x4a8 trace_create_new_event+0x84/0x348 __trace_add_new_event+0x18/0x88 event_trace_add_tracer+0xc4/0x1a0 trace_array_create_dir+0x6c/0x100 trace_array_create+0x2e8/0x568 instance_mkdir+0x48/0x80 tracefs_syscall_mkdir+0x90/0xe8 vfs_mkdir+0x3c4/0x610 do_mkdirat+0x144/0x200 __arm64_sys_mkdirat+0x8c/0xc0 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Freed by task 191: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_free_info+0x34/0x58 __kasan_slab_free+0xe4/0x158 kmem_cache_free+0x19c/0x508 event_file_put+0xa0/0x120 remove_event_file_dir+0x180/0x320 event_trace_del_tracer+0xb0/0x180 __remove_instance+0x224/0x508 instance_rmdir+0x44/0x78 tracefs_syscall_rmdir+0xbc/0x140 vfs_rmdir+0x1cc/0x4c8 do_rmdir+0x220/0x2b8 __arm64_sys_unlinkat+0xc0/0x100 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d06aff1cb1 |
tracing: Update snapshot buffer on resize if it is allocated
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.
Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.
When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.
Also fix typo in comment just above the code change.
Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes:
|
||
![]() |
b55b0a0d7c |
tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
If a large event was added to the ring buffer that is larger than what the trace_seq can handle, it just drops the output: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-859 [001] ..... 141.118951: tracing_mark_write <...>-859 [001] ..... 141.148201: tracing_mark_write: 78901234 Instead, catch this case and add some context: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-852 [001] ..... 121.550551: tracing_mark_write[LINE TOO BIG] <...>-852 [001] ..... 121.550581: tracing_mark_write: 78901234 This now emulates the same output as trace_pipe. Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
c0591b1ccc |
tracing: Fix a possible race when disabling buffered events
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().
The following race is currently possible:
* Function trace_buffered_event_disable() is called on CPU 0. It
increments trace_buffered_event_cnt on each CPU and waits via
synchronize_rcu() for each user of trace_buffered_event to complete.
* After synchronize_rcu() is finished, function
trace_buffered_event_disable() has the exclusive access to
trace_buffered_event. All counters trace_buffered_event_cnt are at 1
and all pointers trace_buffered_event are still valid.
* At this point, on a different CPU 1, the execution reaches
trace_event_buffer_lock_reserve(). The function calls
preempt_disable_notrace() and only now enters an RCU read-side
critical section. The function proceeds and reads a still valid
pointer from trace_buffered_event[CPU1] into the local variable
"entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
which happens later.
* Function trace_buffered_event_disable() continues. It frees
trace_buffered_event[CPU1] and decrements
trace_buffered_event_cnt[CPU1] back to 0.
* Function trace_event_buffer_lock_reserve() continues. It reads and
increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
believe that it can use the "entry" that it already obtained but the
pointer is now invalid and any access results in a use-after-free.
Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes:
|
||
![]() |
34209fe83e |
tracing: Fix a warning when allocating buffered events fails
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.
The situation can occur as follows:
* The counter trace_buffered_event_ref is at 0.
* The soft mode gets enabled for some event and
trace_buffered_event_enable() is called. The function increments
trace_buffered_event_ref to 1 and starts allocating event pages.
* The allocation fails for some page and trace_buffered_event_disable()
is called for cleanup.
* Function trace_buffered_event_disable() decrements
trace_buffered_event_ref back to 0, recognizes that it was the last
use of buffered events and frees all allocated pages.
* The control goes back to trace_buffered_event_enable() which returns.
The caller of trace_buffered_event_enable() has no information that
the function actually failed.
* Some time later, the soft mode is disabled for the same event.
Function trace_buffered_event_disable() is called. It warns on
"WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.
Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com
Fixes:
|
||
![]() |
7fed14f7ac |
tracing: Fix incomplete locking when disabling buffered events
The following warning appears when using buffered events: [ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420 [...] [ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a [ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017 [ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420 [ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff [ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202 [ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000 [ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400 [ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000 [ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 [ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008 [ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000 [ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0 [ 203.781862] Call Trace: [ 203.781870] <TASK> [ 203.851949] trace_event_buffer_commit+0x1ea/0x250 [ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0 [ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0 [ 203.851990] do_syscall_64+0x3a/0xe0 [ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 203.852090] RIP: 0033:0x7f4cd870fa77 [ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48 [ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089 [ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77 [ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0 [ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0 [ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40 [ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0 [ 204.049256] </TASK> For instance, it can be triggered by running these two commands in parallel: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger; done $ stress-ng --sysinfo $(nproc) The warning indicates that the current ring_buffer_per_cpu is not in the committing state. It happens because the active ring_buffer_event doesn't actually come from the ring_buffer_per_cpu but is allocated from trace_buffered_event. The bug is in function trace_buffered_event_disable() where the following normally happens: * The code invokes disable_trace_buffered_event() via smp_call_function_many() and follows it by synchronize_rcu(). This increments the per-CPU variable trace_buffered_event_cnt on each target CPU and grants trace_buffered_event_disable() the exclusive access to the per-CPU variable trace_buffered_event. * Maintenance is performed on trace_buffered_event, all per-CPU event buffers get freed. * The code invokes enable_trace_buffered_event() via smp_call_function_many(). This decrements trace_buffered_event_cnt and releases the access to trace_buffered_event. A problem is that smp_call_function_many() runs a given function on all target CPUs except on the current one. The following can then occur: * Task X executing trace_buffered_event_disable() runs on CPU 0. * The control reaches synchronize_rcu() and the task gets rescheduled on another CPU 1. * The RCU synchronization finishes. At this point, trace_buffered_event_disable() has the exclusive access to all trace_buffered_event variables except trace_buffered_event[CPU0] because trace_buffered_event_cnt[CPU0] is never incremented and if the buffer is currently unused, remains set to 0. * A different task Y is scheduled on CPU 0 and hits a trace event. The code in trace_event_buffer_lock_reserve() sees that trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the buffer provided by trace_buffered_event[CPU0]. * Task X continues its execution in trace_buffered_event_disable(). The code incorrectly frees the event buffer pointed by trace_buffered_event[CPU0] and resets the variable to NULL. * Task Y writes event data to the now freed buffer and later detects the created inconsistency. The issue is observable since commit |
||
![]() |
b538bf7d0e |
tracing: Disable snapshot buffer when stopping instance tracers
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.
Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.
Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
d78ab79270 |
tracing: Stop current tracer when resizing buffer
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.
Simply stop the running tracer before resizing the buffers and enable it
again when finished.
Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
7be76461f3 |
tracing: Always update snapshot buffer size
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.
Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:
# cd /sys/kernel/tracing
# echo 1500 > buffer_size_kb
# mkdir instances/foo
# echo irqsoff > instances/foo/current_tracer
# echo 1000 > instances/foo/buffer_size_kb
Produces:
WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320
Which is:
ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);
if (ret == -EBUSY) {
[..]
}
WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here
That's because ring_buffer_swap_cpu() has:
int ret = -EINVAL;
[..]
/* At least make sure the two buffers are somewhat the same */
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
goto out;
[..]
out:
return ret;
}
Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.
Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes:
|
||
![]() |
bb32500fb9 |
tracing: Have trace_event_file have ref counters
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.
Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes:
|
||
![]() |
dcc4e5728e |
seq_buf: Introduce DECLARE_SEQ_BUF and seq_buf_str()
Solve two ergonomic issues with struct seq_buf; 1) Too much boilerplate is required to initialize: struct seq_buf s; char buf[32]; seq_buf_init(s, buf, sizeof(buf)); Instead, we can build this directly on the stack. Provide DECLARE_SEQ_BUF() macro to do this: DECLARE_SEQ_BUF(s, 32); 2) %NUL termination is fragile and requires 2 steps to get a valid C String (and is a layering violation exposing the "internals" of seq_buf): seq_buf_terminate(s); do_something(s->buffer); Instead, we can just return s->buffer directly after terminating it in the refactored seq_buf_terminate(), now known as seq_buf_str(): do_something(seq_buf_str(s)); Link: https://lore.kernel.org/linux-trace-kernel/20231027155634.make.260-kees@kernel.org Link: https://lore.kernel.org/linux-trace-kernel/20231026194033.it.702-kees@kernel.org/ Cc: Yosry Ahmed <yosryahmed@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Justin Stitt <justinstitt@google.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Petr Mladek <pmladek@suse.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Yun Zhou <yun.zhou@windriver.com> Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
d0ed46b603 |
tracing: Move readpos from seq_buf to trace_seq
To make seq_buf more lightweight as a string buf, move the readpos member from seq_buf to its container, trace_seq. That puts the responsibility of maintaining the readpos entirely in the tracing code. If some future users want to package up the readpos with a seq_buf, we can define a new struct then. Link: https://lore.kernel.org/linux-trace-kernel/20231020033545.2587554-2-willy@infradead.org Cc: Kees Cook <keescook@chromium.org> Cc: Justin Stitt <justinstitt@google.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Petr Mladek <pmladek@suse.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
5790b1fb3d |
eventfs: Remove eventfs_file and just use eventfs_inode
Instead of having a descriptor for every file represented in the eventfs directory, only have the directory itself represented. Change the API to send in a list of entries that represent all the files in the directory (but not other directories). The entry list contains a name and a callback function that will be used to create the files when they are accessed. struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent, const struct eventfs_entry *entries, int size, void *data); is used for the top level eventfs directory, and returns an eventfs_inode that will be used by: struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent, const struct eventfs_entry *entries, int size, void *data); where both of the above take an array of struct eventfs_entry entries for every file that is in the directory. The entries are defined by: typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data, const struct file_operations **fops); struct eventfs_entry { const char *name; eventfs_callback callback; }; Where the name is the name of the file and the callback gets called when the file is being created. The callback passes in the name (in case the same callback is used for multiple files), a pointer to the mode, data and fops. The data will be pointing to the data that was passed in eventfs_create_dir() or eventfs_create_events_dir() but may be overridden to point to something else, as it will be used to point to the inode->i_private that is created. The information passed back from the callback is used to create the dentry/inode. If the callback fills the data and the file should be created, it must return a positive number. On zero or negative, the file is ignored. This logic may also be used as a prototype to convert entire pseudo file systems into just-in-time allocation. The "show_events_dentry" file has been updated to show the directories, and any files they have. With just the eventfs_file allocations: Before after deltas for meminfo (in kB): MemFree: -14360 MemAvailable: -14260 Buffers: 40 Cached: 24 Active: 44 Inactive: 48 Inactive(anon): 28 Active(file): 44 Inactive(file): 20 Dirty: -4 AnonPages: 28 Mapped: 4 KReclaimable: 132 Slab: 1604 SReclaimable: 132 SUnreclaim: 1472 Committed_AS: 12 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] ext4_inode_cache 27 [* 1184 = 31968 ] extent_status 102 [* 40 = 4080 ] tracefs_inode_cache 144 [* 656 = 94464 ] buffer_head 39 [* 104 = 4056 ] shmem_inode_cache 49 [* 800 = 39200 ] filp -53 [* 256 = -13568 ] dentry 251 [* 192 = 48192 ] lsm_file_cache 277 [* 32 = 8864 ] vm_area_struct -14 [* 184 = -2576 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k 35 [* 1024 = 35840 ] kmalloc-256 49 [* 256 = 12544 ] kmalloc-192 -28 [* 192 = -5376 ] kmalloc-128 -30 [* 128 = -3840 ] kmalloc-96 10581 [* 96 = 1015776 ] kmalloc-64 3056 [* 64 = 195584 ] kmalloc-32 1291 [* 32 = 41312 ] kmalloc-16 2310 [* 16 = 36960 ] kmalloc-8 9216 [* 8 = 73728 ] Free memory dropped by 14,360 kB Available memory dropped by 14,260 kB Total slab additions in size: 1,771,032 bytes With this change: Before after deltas for meminfo (in kB): MemFree: -12084 MemAvailable: -11976 Buffers: 32 Cached: 32 Active: 72 Inactive: 168 Inactive(anon): 176 Active(file): 72 Inactive(file): -8 Dirty: 24 AnonPages: 196 Mapped: 8 KReclaimable: 148 Slab: 836 SReclaimable: 148 SUnreclaim: 688 Committed_AS: 324 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] tracefs_inode_cache 144 [* 656 = 94464 ] shmem_inode_cache -23 [* 800 = -18400 ] filp -92 [* 256 = -23552 ] dentry 179 [* 192 = 34368 ] lsm_file_cache -3 [* 32 = -96 ] vm_area_struct -13 [* 184 = -2392 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k -49 [* 1024 = -50176 ] kmalloc-256 -27 [* 256 = -6912 ] kmalloc-128 1864 [* 128 = 238592 ] kmalloc-64 4685 [* 64 = 299840 ] kmalloc-32 -72 [* 32 = -2304 ] kmalloc-16 256 [* 16 = 4096 ] total = 721352 Free memory dropped by 12,084 kB Available memory dropped by 11,976 kB Total slab additions in size: 721,352 bytes That's over 2 MB in savings per instance for free and available memory, and over 1 MB in savings per instance of slab memory. Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ajay Kaher <akaher@vmware.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
a1f157c7a3 |
tracing: Expand all ring buffers individually
The ring buffer of global_trace is set to the minimum size in order to save memory on boot up and then it will be expand when some trace feature enabled. However currently operations under an instance can also cause global_trace ring buffer being expanded, and the expanded memory would be wasted if global_trace then not being used. See following case, we enable 'sched_switch' event in instance 'A', then ring buffer of global_trace is unexpectedly expanded to be 1410KB, also the '(expanded: 1408)' from 'buffer_size_kb' of instance is confusing. # cd /sys/kernel/tracing # mkdir instances/A # cat buffer_size_kb 7 (expanded: 1408) # cat instances/A/buffer_size_kb 1410 (expanded: 1408) # echo sched:sched_switch > instances/A/set_event # cat buffer_size_kb 1410 # cat instances/A/buffer_size_kb 1410 To fix it, we can: - Make 'ring_buffer_expanded' as a member of 'struct trace_array'; - Make 'ring_buffer_expanded' of instance is defaultly true, global_trace is defaultly false; - In order not to expose 'global_trace' outside of file 'kernel/trace/trace.c', introduce trace_set_ring_buffer_expanded() to set 'ring_buffer_expanded' as 'true'; - Pass the expected trace_array to tracing_update_buffers(). Link: https://lore.kernel.org/linux-trace-kernel/20230906091837.3998020-1-zhengyejian1@huawei.com Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
99214f6778 |
Tracing fixes for 6.6:
- Add missing LOCKDOWN checks for eventfs callers When LOCKDOWN is active for tracing, it causes inconsistent state when some functions succeed and others fail. - Use dput() to free the top level eventfs descriptor There was a race between accesses and freeing it. - Fix a long standing bug that eventfs exposed due to changing timings by dynamically creating files. That is, If a event file is opened for an instance, there's nothing preventing the instance from being removed which will make accessing the files cause use-after-free bugs. - Fix a ring buffer race that happens when iterating over the ring buffer while writers are active. Check to make sure not to read the event meta data if it's beyond the end of the ring buffer sub buffer. - Fix the print trigger that disappeared because the test to create it was looking for the event dir field being filled, but now it has the "ef" field filled for the eventfs structure. - Remove the unused "dir" field from the event structure. - Fix the order of the trace_dynamic_info as it had it backwards for the offset and len fields for which one was for which endianess. - Fix NULL pointer dereference with eventfs_remove_rec() If an allocation fails in one of the eventfs_add_*() functions, the caller of it in event_subsystem_dir() or event_create_dir() assigns the result to the structure. But it's assigning the ERR_PTR and not NULL. This was passed to eventfs_remove_rec() which expects either a good pointer or a NULL, not ERR_PTR. The fix is to not assign the ERR_PTR to the structure, but to keep it NULL on error. - Fix list_for_each_rcu() to use list_for_each_srcu() in dcache_dir_open_wrapper(). One iteration of the code used RCU but because it had to call sleepable code, it had to be changed to use SRCU, but one of the iterations was missed. - Fix synthetic event print function to use "as_u64" instead of passing in a pointer to the union. To fix big/little endian issues, the u64 that represented several types was turned into a union to define the types properly. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZQCvoBQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qtgrAP9MiYiCMU+90oJ+61DFchbs3y7BNidP s3lLRDUMJ935NQD/SSAm54PqWb+YXMpD7m9+3781l6xqwfabBMXNaEl+FwA= =tlZu -----END PGP SIGNATURE----- Merge tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Add missing LOCKDOWN checks for eventfs callers When LOCKDOWN is active for tracing, it causes inconsistent state when some functions succeed and others fail. - Use dput() to free the top level eventfs descriptor There was a race between accesses and freeing it. - Fix a long standing bug that eventfs exposed due to changing timings by dynamically creating files. That is, If a event file is opened for an instance, there's nothing preventing the instance from being removed which will make accessing the files cause use-after-free bugs. - Fix a ring buffer race that happens when iterating over the ring buffer while writers are active. Check to make sure not to read the event meta data if it's beyond the end of the ring buffer sub buffer. - Fix the print trigger that disappeared because the test to create it was looking for the event dir field being filled, but now it has the "ef" field filled for the eventfs structure. - Remove the unused "dir" field from the event structure. - Fix the order of the trace_dynamic_info as it had it backwards for the offset and len fields for which one was for which endianess. - Fix NULL pointer dereference with eventfs_remove_rec() If an allocation fails in one of the eventfs_add_*() functions, the caller of it in event_subsystem_dir() or event_create_dir() assigns the result to the structure. But it's assigning the ERR_PTR and not NULL. This was passed to eventfs_remove_rec() which expects either a good pointer or a NULL, not ERR_PTR. The fix is to not assign the ERR_PTR to the structure, but to keep it NULL on error. - Fix list_for_each_rcu() to use list_for_each_srcu() in dcache_dir_open_wrapper(). One iteration of the code used RCU but because it had to call sleepable code, it had to be changed to use SRCU, but one of the iterations was missed. - Fix synthetic event print function to use "as_u64" instead of passing in a pointer to the union. To fix big/little endian issues, the u64 that represented several types was turned into a union to define the types properly. * tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: eventfs: Fix the NULL pointer dereference bug in eventfs_remove_rec() tracefs/eventfs: Use list_for_each_srcu() in dcache_dir_open_wrapper() tracing/synthetic: Print out u64 values properly tracing/synthetic: Fix order of struct trace_dynamic_info selftests/ftrace: Fix dependencies for some of the synthetic event tests tracing: Remove unused trace_event_file dir field tracing: Use the new eventfs descriptor for print trigger ring-buffer: Do not attempt to read past "commit" tracefs/eventfs: Free top level files on removal ring-buffer: Avoid softlockup in ring_buffer_resize() tracing: Have event inject files inc the trace array ref count tracing: Have option files inc the trace array ref count tracing: Have current_trace inc the trace array ref count tracing: Have tracing_max_latency inc the trace array ref count tracing: Increase trace array ref count on enable and filter files tracefs/eventfs: Use dput to free the toplevel events directory tracefs/eventfs: Add missing lockdown checks tracefs: Add missing lockdown check to tracefs_create_dir() |