mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-05-24 10:39:52 +00:00
8 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
7af5b901e8 |
ARM: 9358/2: Implement PAN for LPAE by TTBR0 page table walks disablement
With LPAE enabled, privileged no-access cannot be enforced using CPU domains as such feature is not available. This patch implements PAN by disabling TTBR0 page table walks while in kernel mode. The ARM architecture allows page table walks to be split between TTBR0 and TTBR1. With LPAE enabled, the split is defined by a combination of TTBCR T0SZ and T1SZ bits. Currently, an LPAE-enabled kernel uses TTBR0 for user addresses and TTBR1 for kernel addresses with the VMSPLIT_2G and VMSPLIT_3G configurations. The main advantage for the 3:1 split is that TTBR1 is reduced to 2 levels, so potentially faster TLB refill (though usually the first level entries are already cached in the TLB). The PAN support on LPAE-enabled kernels uses TTBR0 when running in user space or in kernel space during user access routines (TTBCR T0SZ and T1SZ are both 0). When running user accesses are disabled in kernel mode, TTBR0 page table walks are disabled by setting TTBCR.EPD0. TTBR1 is used for kernel accesses (including loadable modules; anything covered by swapper_pg_dir) by reducing the TTBCR.T0SZ to the minimum (2^(32-7) = 32MB). To avoid user accesses potentially hitting stale TLB entries, the ASID is switched to 0 (reserved) by setting TTBCR.A1 and using the ASID value in TTBR1. The difference from a non-PAN kernel is that with the 3:1 memory split, TTBR1 always uses 3 levels of page tables. As part of the change we are using preprocessor elif definied() clauses so balance these clauses by converting relevant precedingt ifdef clauses to if defined() clauses. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Florian Fainelli <florian.fainelli@broadcom.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> |
||
![]() |
de7f60f0b0 |
ARM: 9357/2: Reduce the number of #ifdef CONFIG_CPU_SW_DOMAIN_PAN
This is a clean-up patch aimed at reducing the number of checks on CONFIG_CPU_SW_DOMAIN_PAN, together with some empty lines for better clarity once the CONFIG_CPU_TTBR0_PAN is introduced. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Florian Fainelli <florian.fainelli@broadcom.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> |
||
![]() |
a9ff696160 |
ARM: mm: Make virt_to_pfn() a static inline
Making virt_to_pfn() a static inline taking a strongly typed (const void *) makes the contract of a passing a pointer of that type to the function explicit and exposes any misuse of the macro virt_to_pfn() acting polymorphic and accepting many types such as (void *), (unitptr_t) or (unsigned long) as arguments without warnings. Doing this is a bit intrusive: virt_to_pfn() requires PHYS_PFN_OFFSET and PAGE_SHIFT to be defined, and this is defined in <asm/page.h>, so this must be included *before* <asm/memory.h>. The use of macros were obscuring the unclear inclusion order here, as the macros would eventually be resolved, but a static inline like this cannot be compiled with unresolved macros. The naive solution to include <asm/page.h> at the top of <asm/memory.h> does not work, because <asm/memory.h> sometimes includes <asm/page.h> at the end of itself, which would create a confusing inclusion loop. So instead, take the approach to always unconditionally include <asm/page.h> at the end of <asm/memory.h> arch/arm uses <asm/memory.h> explicitly in a lot of places, however it turns out that if we just unconditionally include <asm/memory.h> into <asm/page.h> and switch all inclusions of <asm/memory.h> to <asm/page.h> instead, we enforce the right order and <asm/memory.h> will always have access to the definitions. Put an inclusion guard in place making it impossible to include <asm/memory.h> explicitly. Link: https://lore.kernel.org/linux-mm/20220701160004.2ffff4e5ab59a55499f4c736@linux-foundation.org/ Signed-off-by: Linus Walleij <linus.walleij@linaro.org> |
||
![]() |
8ac6f5d7f8 |
ARM: 9113/1: uaccess: remove set_fs() implementation
There are no remaining callers of set_fs(), so just remove it along with all associated code that operates on thread_info->addr_limit. There are still further optimizations that can be done: - In get_user(), the address check could be moved entirely into the out of line code, rather than passing a constant as an argument, - I assume the DACR handling can be simplified as we now only change it during user access when CONFIG_CPU_SW_DOMAIN_PAN is set, but not during set_fs(). Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> |
||
![]() |
c12366ba44 |
ARM: 9015/2: Define the virtual space of KASan's shadow region
Define KASAN_SHADOW_OFFSET,KASAN_SHADOW_START and KASAN_SHADOW_END for the Arm kernel address sanitizer. We are "stealing" lowmem (the 4GB addressable by a 32bit architecture) out of the virtual address space to use as shadow memory for KASan as follows: +----+ 0xffffffff | | | | |-> Static kernel image (vmlinux) BSS and page table | |/ +----+ PAGE_OFFSET | | | | |-> Loadable kernel modules virtual address space area | |/ +----+ MODULES_VADDR = KASAN_SHADOW_END | | | | |-> The shadow area of kernel virtual address. | |/ +----+-> TASK_SIZE (start of kernel space) = KASAN_SHADOW_START the | | shadow address of MODULES_VADDR | | | | | | | | |-> The user space area in lowmem. The kernel address | | | sanitizer do not use this space, nor does it map it. | | | | | | | | | | | | | |/ ------ 0 0 .. TASK_SIZE is the memory that can be used by shared userspace/kernelspace. It us used for userspace processes and for passing parameters and memory buffers in system calls etc. We do not need to shadow this area. KASAN_SHADOW_START: This value begins with the MODULE_VADDR's shadow address. It is the start of kernel virtual space. Since we have modules to load, we need to cover also that area with shadow memory so we can find memory bugs in modules. KASAN_SHADOW_END This value is the 0x100000000's shadow address: the mapping that would be after the end of the kernel memory at 0xffffffff. It is the end of kernel address sanitizer shadow area. It is also the start of the module area. KASAN_SHADOW_OFFSET: This value is used to map an address to the corresponding shadow address by the following formula: shadow_addr = (address >> 3) + KASAN_SHADOW_OFFSET; As you would expect, >> 3 is equal to dividing by 8, meaning each byte in the shadow memory covers 8 bytes of kernel memory, so one bit shadow memory per byte of kernel memory is used. The KASAN_SHADOW_OFFSET is provided in a Kconfig option depending on the VMSPLIT layout of the system: the kernel and userspace can split up lowmem in different ways according to needs, so we calculate the shadow offset depending on this. When kasan is enabled, the definition of TASK_SIZE is not an 8-bit rotated constant, so we need to modify the TASK_SIZE access code in the *.s file. The kernel and modules may use different amounts of memory, according to the VMSPLIT configuration, which in turn determines the PAGE_OFFSET. We use the following KASAN_SHADOW_OFFSETs depending on how the virtual memory is split up: - 0x1f000000 if we have 1G userspace / 3G kernelspace split: - The kernel address space is 3G (0xc0000000) - PAGE_OFFSET is then set to 0x40000000 so the kernel static image (vmlinux) uses addresses 0x40000000 .. 0xffffffff - On top of that we have the MODULES_VADDR which under the worst case (using ARM instructions) is PAGE_OFFSET - 16M (0x01000000) = 0x3f000000 so the modules use addresses 0x3f000000 .. 0x3fffffff - So the addresses 0x3f000000 .. 0xffffffff need to be covered with shadow memory. That is 0xc1000000 bytes of memory. - 1/8 of that is needed for its shadow memory, so 0x18200000 bytes of shadow memory is needed. We "steal" that from the remaining lowmem. - The KASAN_SHADOW_START becomes 0x26e00000, to KASAN_SHADOW_END at 0x3effffff. - Now we can calculate the KASAN_SHADOW_OFFSET for any kernel address as 0x3f000000 needs to map to the first byte of shadow memory and 0xffffffff needs to map to the last byte of shadow memory. Since: SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET 0x26e00000 = (0x3f000000 >> 3) + KASAN_SHADOW_OFFSET KASAN_SHADOW_OFFSET = 0x26e00000 - (0x3f000000 >> 3) KASAN_SHADOW_OFFSET = 0x26e00000 - 0x07e00000 KASAN_SHADOW_OFFSET = 0x1f000000 - 0x5f000000 if we have 2G userspace / 2G kernelspace split: - The kernel space is 2G (0x80000000) - PAGE_OFFSET is set to 0x80000000 so the kernel static image uses 0x80000000 .. 0xffffffff. - On top of that we have the MODULES_VADDR which under the worst case (using ARM instructions) is PAGE_OFFSET - 16M (0x01000000) = 0x7f000000 so the modules use addresses 0x7f000000 .. 0x7fffffff - So the addresses 0x7f000000 .. 0xffffffff need to be covered with shadow memory. That is 0x81000000 bytes of memory. - 1/8 of that is needed for its shadow memory, so 0x10200000 bytes of shadow memory is needed. We "steal" that from the remaining lowmem. - The KASAN_SHADOW_START becomes 0x6ee00000, to KASAN_SHADOW_END at 0x7effffff. - Now we can calculate the KASAN_SHADOW_OFFSET for any kernel address as 0x7f000000 needs to map to the first byte of shadow memory and 0xffffffff needs to map to the last byte of shadow memory. Since: SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET 0x6ee00000 = (0x7f000000 >> 3) + KASAN_SHADOW_OFFSET KASAN_SHADOW_OFFSET = 0x6ee00000 - (0x7f000000 >> 3) KASAN_SHADOW_OFFSET = 0x6ee00000 - 0x0fe00000 KASAN_SHADOW_OFFSET = 0x5f000000 - 0x9f000000 if we have 3G userspace / 1G kernelspace split, and this is the default split for ARM: - The kernel address space is 1GB (0x40000000) - PAGE_OFFSET is set to 0xc0000000 so the kernel static image uses 0xc0000000 .. 0xffffffff. - On top of that we have the MODULES_VADDR which under the worst case (using ARM instructions) is PAGE_OFFSET - 16M (0x01000000) = 0xbf000000 so the modules use addresses 0xbf000000 .. 0xbfffffff - So the addresses 0xbf000000 .. 0xffffffff need to be covered with shadow memory. That is 0x41000000 bytes of memory. - 1/8 of that is needed for its shadow memory, so 0x08200000 bytes of shadow memory is needed. We "steal" that from the remaining lowmem. - The KASAN_SHADOW_START becomes 0xb6e00000, to KASAN_SHADOW_END at 0xbfffffff. - Now we can calculate the KASAN_SHADOW_OFFSET for any kernel address as 0xbf000000 needs to map to the first byte of shadow memory and 0xffffffff needs to map to the last byte of shadow memory. Since: SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET 0xb6e00000 = (0xbf000000 >> 3) + KASAN_SHADOW_OFFSET KASAN_SHADOW_OFFSET = 0xb6e00000 - (0xbf000000 >> 3) KASAN_SHADOW_OFFSET = 0xb6e00000 - 0x17e00000 KASAN_SHADOW_OFFSET = 0x9f000000 - 0x8f000000 if we have 3G userspace / 1G kernelspace with full 1 GB low memory (VMSPLIT_3G_OPT): - The kernel address space is 1GB (0x40000000) - PAGE_OFFSET is set to 0xb0000000 so the kernel static image uses 0xb0000000 .. 0xffffffff. - On top of that we have the MODULES_VADDR which under the worst case (using ARM instructions) is PAGE_OFFSET - 16M (0x01000000) = 0xaf000000 so the modules use addresses 0xaf000000 .. 0xaffffff - So the addresses 0xaf000000 .. 0xffffffff need to be covered with shadow memory. That is 0x51000000 bytes of memory. - 1/8 of that is needed for its shadow memory, so 0x0a200000 bytes of shadow memory is needed. We "steal" that from the remaining lowmem. - The KASAN_SHADOW_START becomes 0xa4e00000, to KASAN_SHADOW_END at 0xaeffffff. - Now we can calculate the KASAN_SHADOW_OFFSET for any kernel address as 0xaf000000 needs to map to the first byte of shadow memory and 0xffffffff needs to map to the last byte of shadow memory. Since: SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET 0xa4e00000 = (0xaf000000 >> 3) + KASAN_SHADOW_OFFSET KASAN_SHADOW_OFFSET = 0xa4e00000 - (0xaf000000 >> 3) KASAN_SHADOW_OFFSET = 0xa4e00000 - 0x15e00000 KASAN_SHADOW_OFFSET = 0x8f000000 - The default value of 0xffffffff for KASAN_SHADOW_OFFSET is an error value. We should always match one of the above shadow offsets. When we do this, TASK_SIZE will sometimes get a bit odd values that will not fit into immediate mov assembly instructions. To account for this, we need to rewrite some assembly using TASK_SIZE like this: - mov r1, #TASK_SIZE + ldr r1, =TASK_SIZE or - cmp r4, #TASK_SIZE + ldr r0, =TASK_SIZE + cmp r4, r0 this is done to avoid the immediate #TASK_SIZE that need to fit into a limited number of bits. Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: kasan-dev@googlegroups.com Cc: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q Reported-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Abbott Liu <liuwenliang@huawei.com> Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
||
![]() |
71f8af1110 |
ARM: uaccess: fix DACR mismatch with nested exceptions
Tomas Paukrt reports that his SAM9X60 based system (ARM926, ARMv5TJ) fails to fix up alignment faults, eventually resulting in a kernel oops. The problem occurs when using CONFIG_CPU_USE_DOMAINS with commit |
||
![]() |
8ede890b0b |
ARM: uaccess: integrate uaccess_save and uaccess_restore
Integrate uaccess_save / uaccess_restore macros into the new uaccess_entry / uaccess_exit macros respectively. Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
||
![]() |
747ffc2fcf |
ARM: uaccess: consolidate uaccess asm to asm/uaccess-asm.h
Consolidate the user access assembly code to asm/uaccess-asm.h. This moves the csdb, check_uaccess, uaccess_mask_range_ptr, uaccess_enable, uaccess_disable, uaccess_save, uaccess_restore macros, and creates two new ones for exception entry and exit - uaccess_entry and uaccess_exit. This makes the uaccess_save and uaccess_restore macros private to asm/uaccess-asm.h. Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |