Pull locking fixes from Ingo Molnar:
"A lockdep warning fix and a script execution fix when atomics are
generated"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomics: Don't assume that scripts are executable
locking/lockdep: Make lockdep_unregister_key() honor 'debug_locks' again
Add cgroup:cgroup_freeze and cgroup:cgroup_unfreeze events,
which are using the existing cgroup tracing infrastructure.
Add the cgroup_event event class, which is similar to the cgroup
class, but contains an additional integer field to store a new
value (the level field is dropped).
Also add two tracing events: cgroup_notify_populated and
cgroup_notify_frozen, which are raised in a generic way using
the TRACE_CGROUP_PATH() macro.
This allows to trace cgroup state transitions and is generally
helpful for debugging the cgroup freezer code.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To use the TRACE_CGROUP_PATH() macro with css_set_lock
locked, let's make the macro irq-safe.
It's necessary in order to trace cgroup freezer state
transitions (frozen/not frozen), which are happening
with css_set_lock locked.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cgroup v1 implements the freezer controller, which provides an ability
to stop the workload in a cgroup and temporarily free up some
resources (cpu, io, network bandwidth and, potentially, memory)
for some other tasks. Cgroup v2 lacks this functionality.
This patch implements freezer for cgroup v2.
Cgroup v2 freezer tries to put tasks into a state similar to jobctl
stop. This means that tasks can be killed, ptraced (using
PTRACE_SEIZE*), and interrupted. It is possible to attach to
a frozen task, get some information (e.g. read registers) and detach.
It's also possible to migrate a frozen tasks to another cgroup.
This differs cgroup v2 freezer from cgroup v1 freezer, which mostly
tried to imitate the system-wide freezer. However uninterruptible
sleep is fine when all tasks are going to be frozen (hibernation case),
it's not the acceptable state for some subset of the system.
Cgroup v2 freezer is not supporting freezing kthreads.
If a non-root cgroup contains kthread, the cgroup still can be frozen,
but the kthread will remain running, the cgroup will be shown
as non-frozen, and the notification will not be delivered.
* PTRACE_ATTACH is not working because non-fatal signal delivery
is blocked in frozen state.
There are some interface differences between cgroup v1 and cgroup v2
freezer too, which are required to conform the cgroup v2 interface
design principles:
1) There is no separate controller, which has to be turned on:
the functionality is always available and is represented by
cgroup.freeze and cgroup.events cgroup control files.
2) The desired state is defined by the cgroup.freeze control file.
Any hierarchical configuration is allowed.
3) The interface is asynchronous. The actual state is available
using cgroup.events control file ("frozen" field). There are no
dedicated transitional states.
4) It's allowed to make any changes with the cgroup hierarchy
(create new cgroups, remove old cgroups, move tasks between cgroups)
no matter if some cgroups are frozen.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com>
Cc: kernel-team@fb.com
The number of descendant cgroups and the number of dying
descendant cgroups are currently synchronized using the cgroup_mutex.
The number of descendant cgroups will be required by the cgroup v2
freezer, which will use it to determine if a cgroup is frozen
(depending on total number of descendants and number of frozen
descendants). It's not always acceptable to grab the cgroup_mutex,
especially from quite hot paths (e.g. exit()).
To avoid this, let's additionally synchronize these counters using
the css_set_lock.
So, it's safe to read these counters with either cgroup_mutex or
css_set_lock locked, and for changing both locks should be acquired.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
The helper is identical to the existing cgroup_task_count()
except it doesn't take the css_set_lock by itself, assuming
that the caller does.
Also, move cgroup_task_count() implementation into
kernel/cgroup/cgroup.c, as there is nothing specific to cgroup v1.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Freezer.c will contain an implementation of cgroup v2 freezer,
so let's rename the v1 freezer to avoid naming conflicts.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Commit:
fc560a26ac ("cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()")
removed the local list (q) that was used to perform a top-down scan
of all cpusets; however, comments mentioning it were not updated.
Update comments to reflect current implementation.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cgroups@vger.kernel.org
Cc: lizefan@huawei.com
Link: http://lkml.kernel.org/r/20181219133445.31982-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Separate print_modules() and hard lockup error message.
Before the patch:
NMI watchdog: Watchdog detected hard LOCKUP on cpu 1Modules linked in: nls_cp437
Link: http://lkml.kernel.org/r/20190412062557.2700-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Large values could overflow u64 and pass following sanity checks.
# echo 18446744073750000 > cpu.cfs_period_us
# cat cpu.cfs_period_us
40448
# echo 18446744073750000 > cpu.cfs_quota_us
# cat cpu.cfs_quota_us
40448
After this patch they will fail with -EINVAL.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125502079.293431.3947497929372138600.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bit shift in scale_load() could overflow shares. This patch saturates
it to MAX_SHARES like following sched_group_set_shares().
Example:
# echo 9223372036854776832 > cpu.shares
# cat cpu.shares
Before patch: 1024
After pattch: 262144
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125501891.293431.3345233332801109696.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The rseq system call, when invoked with flags of "0" or
"RSEQ_FLAG_UNREGISTER" values, expects the rseq_len parameter to
be equal to sizeof(struct rseq), which is fixed-size and fixed-layout,
specified in uapi linux/rseq.h.
Expecting a fixed size for rseq_len is a design choice that ensures
multiple libraries and application defining __rseq_abi in the same
process agree on its exact size.
Considering that this size is and will always be the same value, there
is no point in saving this value within task_struct rseq_len. Remove
this field from task_struct.
No change in functionality intended.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-3-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "event counter" was removed from rseq before it was merged upstream.
However, a few comments in the source code still refer to it. Adapt the
comments to match reality.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-2-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To make ICMPv6 closer to ICMPv4, add ratemask parameter. Since the ICMP
message types use larger numeric values, a simple bitmask doesn't fit.
I use large bitmap. The input and output are the in form of list of
ranges. Set the default to rate limit all error messages but Packet Too
Big. For Packet Too Big, use ratemask instead of hard-coded.
There are functions where icmpv6_xrlim_allow() and icmpv6_global_allow()
aren't called. This patch only adds them to icmpv6_echo_reply().
Rate limiting error messages is mandated by RFC 4443 but RFC 4890 says
that it is also acceptable to rate limit informational messages. Thus,
I removed the current hard-coded behavior of icmpv6_mask_allow() that
doesn't rate limit informational messages.
v2: Add dummy function proc_do_large_bitmap() if CONFIG_PROC_SYSCTL
isn't defined, expand the description in ip-sysctl.txt and remove
unnecessary conditional before kfree().
v3: Inline the bitmap instead of dynamically allocated. Still is a
pointer to it is needed because of the way proc_do_large_bitmap work.
Signed-off-by: Stephen Suryaputra <ssuryaextr@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix these sparse warnings:
kernel/sched/core.c:6577:11: warning: symbol 'min_cfs_quota_period' was not declared. Should it be static?
kernel/sched/core.c:6657:5: warning: symbol 'tg_set_cfs_quota' was not declared. Should it be static?
kernel/sched/core.c:6670:6: warning: symbol 'tg_get_cfs_quota' was not declared. Should it be static?
kernel/sched/core.c:6683:5: warning: symbol 'tg_set_cfs_period' was not declared. Should it be static?
kernel/sched/core.c:6693:6: warning: symbol 'tg_get_cfs_period' was not declared. Should it be static?
kernel/sched/fair.c:2596:6: warning: symbol 'task_tick_numa' was not declared. Should it be static?
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190418144713.34332-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As stated in the original commit for pidfd_send_signal() we don't allow
to signal processes through O_PATH file descriptors since it is
semantically equivalent to a write on the pidfd.
We already correctly error out right now and return EBADF if an O_PATH
fd is passed. This is because we use file->f_op to detect whether a
pidfd is passed and O_PATH fds have their file->f_op set to empty_fops
in do_dentry_open() and thus fail the test.
Thus, there is no regression. It's just semantically correct to use
fdget() and return an error right from there instead of taking a
reference and returning an error later.
Signed-off-by: Christian Brauner <christian@brauner.io>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jann@thejh.net>
Cc: David Howells <dhowells@redhat.com>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull RCU and LKMM commits from Paul E. McKenney:
- An LKMM commit adding support for synchronize_srcu_expedited()
- A couple of straggling RCU flavor consolidation updates
- Documentation updates.
- Miscellaneous fixes
- SRCU updates
- RCU CPU stall-warning updates
- Torture-test updates
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tick_freeze() introduced by suspend-to-idle in commit 124cf9117c ("PM /
sleep: Make it possible to quiesce timers during suspend-to-idle") uses
timekeeping_suspend() instead of syscore_suspend() during
suspend-to-idle. As a consequence generic sched_clock will keep going
because sched_clock_suspend() and sched_clock_resume() are not invoked
during suspend-to-idle which can result in a generic sched_clock wrap.
On a ARM system with suspend-to-idle enabled, sched_clock is registered
as "56 bits at 13MHz, resolution 76ns, wraps every 4398046511101ns", which
means the real wrapping duration is 8796093022202ns.
[ 134.551779] suspend-to-idle suspend (timekeeping_suspend())
[ 1204.912239] suspend-to-idle resume (timekeeping_resume())
......
[ 1206.912239] suspend-to-idle suspend (timekeeping_suspend())
[ 5880.502807] suspend-to-idle resume (timekeeping_resume())
......
[ 6000.403724] suspend-to-idle suspend (timekeeping_suspend())
[ 8035.753167] suspend-to-idle resume (timekeeping_resume())
......
[ 8795.786684] (2)[321:charger_thread]......
[ 8795.788387] (2)[321:charger_thread]......
[ 0.057226] (0)[0:swapper/0]......
[ 0.061447] (2)[0:swapper/2]......
sched_clock was not stopped during suspend-to-idle, and sched_clock_poll
hrtimer was not expired because timekeeping_suspend() was invoked during
suspend-to-idle. It makes sched_clock wrap at kernel time 8796s.
To prevent this, invoke sched_clock_suspend() and sched_clock_resume() in
tick_freeze() together with timekeeping_suspend() and timekeeping_resume().
Fixes: 124cf9117c (PM / sleep: Make it possible to quiesce timers during suspend-to-idle)
Signed-off-by: Chang-An Chen <chang-an.chen@mediatek.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Corey Minyard <cminyard@mvista.com>
Cc: <linux-mediatek@lists.infradead.org>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: Stanley Chu <stanley.chu@mediatek.com>
Cc: <kuohong.wang@mediatek.com>
Cc: <freddy.hsin@mediatek.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1553828349-8914-1-git-send-email-chang-an.chen@mediatek.com
The QEMU PowerPC/PSeries machine model was not expecting a self-IPI,
and it may be a bit surprising thing to do, so have irq_work_queue_on
do local queueing when target is the current CPU.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: =?UTF-8?q?C=C3=A9dric=20Le=20Goater?= <clg@kaod.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190409093403.20994-1-npiggin@gmail.com
[ Simplified the preprocessor comments.
Fixed unbalanced curly brackets pointed out by Thomas. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of open-coding the bitmasks, generate them using the
lockdep_states.h header.
This prepares for additional states, which would make the manual masks
tedious and error prone.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to optimize check_irq_usage() and factorize all the IRQ usage
validations we'll need to be able to check multiple lock usage bits at
once. Prepare the low level usage mask check functions for that purpose.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-4-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clarify the code with mapping some more constant numbers that haven't
been named after their corresponding LOCK_USAGE_* symbol.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-3-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
valid_state() and print_usage_bug*() functions are not used beyond
irq locking correctness checks under CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING.
Sadly the "unused function" warning wouldn't fire because valid_state()
is inline so the unused case has remained unseen until now.
So move them inside the appropriate CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
section.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-2-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A lot of the performance gain comes from this patch.
While analysing performance overhead it was found that the largest CPU
stalls were caused when touching the struct page area. It is first read with
a READ_ONCE from build_skb_around via page_is_pfmemalloc(), and when freed
written by page_frag_free() call.
Measurements show that the prefetchw (W) variant operation is needed to
achieve the performance gain. We believe this optimization it two fold,
first the W-variant saves one step in the cache-coherency protocol, and
second it helps us to avoid the non-temporal prefetch HW optimizations and
bring this into all cache-levels. It might be worth investigating if
prefetch into L2 will have the same benefit.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As cpumap now batch consume xdp_frame's from the ptr_ring, it knows how many
SKBs it need to allocate. Thus, lets bulk allocate these SKBs via
kmem_cache_alloc_bulk() API, and use the previously introduced function
build_skb_around().
Notice that the flag __GFP_ZERO asks the slab/slub allocator to clear the
memory for us. This does clear a larger area than needed, but my micro
benchmarks on Intel CPUs show that this is slightly faster due to being a
cacheline aligned area is cleared for the SKBs. (For SLUB allocator, there
is a future optimization potential, because SKBs will with high probability
originate from same page. If we can find/identify continuous memory areas
then the Intel CPU memset rep stos will have a real performance gain.)
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move ptr_ring dequeue outside loop, that allocate SKBs and calls network
stack, as these operations that can take some time. The ptr_ring is a
communication channel between CPUs, where we want to reduce/limit any
cacheline bouncing.
Do a concentrated bulk dequeue via ptr_ring_consume_batched, to shorten the
period and times the remote cacheline in ptr_ring is read
Batch size 8 is both to (1) limit BH-disable period, and (2) consume one
cacheline on 64-bit archs. After reducing the BH-disable section further
then we can consider changing this, while still thinking about L1 cacheline
size being active.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users. It's getting more and more
complicated to decide which mitigations are needed for a given
architecture. Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.
Most users fall into a few basic categories:
a) they want all mitigations off;
b) they want all reasonable mitigations on, with SMT enabled even if
it's vulnerable; or
c) they want all reasonable mitigations on, with SMT disabled if
vulnerable.
Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:
- mitigations=off: Disable all mitigations.
- mitigations=auto: [default] Enable all the default mitigations, but
leave SMT enabled, even if it's vulnerable.
- mitigations=auto,nosmt: Enable all the default mitigations, disabling
SMT if needed by a mitigation.
Currently, these options are placeholders which don't actually do
anything. They will be fleshed out in upcoming patches.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
verifier.c uses BPF_CAST_CALL for casting bpf call except at one
place in jit_subprogs(). Let's use the macro for consistency.
Signed-off-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
size = sizeof(struct foo) + count * sizeof(struct boo);
instance = devm_kzalloc(dev, size, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper.
instance = devm_kzalloc(dev, struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190410170914.GA16161@embeddedor
Almost all {,de}activate_task() invocations pair with p->on_rq
updates, the exception being the usage in rt/deadline which hold both
rq locks and therefore don't strictly need to set
TASK_ON_RQ_MIGRATING, but it is harmless if we do anyway.
Put the updates in {,de}activate_task() and cut down on repetition.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the removal of try_to_wake_up_local(), there is only one user of
ttwu_activate() left, and since it is a trivial function, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The worker accounting for CPU bound workers is plugged into the core
scheduler code and the wakeup code. This is not a hard requirement and
can be avoided by keeping track of the state in the workqueue code
itself.
Keep track of the sleeping state in the worker itself and call the
notifier before entering the core scheduler. There might be false
positives when the task is woken between that call and actually
scheduling, but that's not really different from scheduling and being
woken immediately after switching away. When nr_running is updated when
the task is retunrning from schedule() then it is later compared when it
is done from ttwu().
[ bigeasy: preempt_disable() around wq_worker_sleeping() by Daniel Bristot de Oliveira ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/ad2b29b5715f970bffc1a7026cabd6ff0b24076a.1532952814.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
syzbot reported the following warning:
[ ] WARNING: CPU: 4 PID: 17089 at kernel/sched/deadline.c:255 task_non_contending+0xae0/0x1950
line 255 of deadline.c is:
WARN_ON(hrtimer_active(&dl_se->inactive_timer));
in task_non_contending().
Unfortunately, in some cases (for example, a deadline task
continuosly blocking and waking immediately) it can happen that
a task blocks (and task_non_contending() is called) while the
0-lag timer is still active.
In this case, the safest thing to do is to immediately decrease
the running bandwidth of the task, without trying to re-arm the 0-lag timer.
Signed-off-by: luca abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chengjian (D) <cj.chengjian@huawei.com>
Link: https://lkml.kernel.org/r/20190325131530.34706-1-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With extremely short cfs_period_us setting on a parent task group with a large
number of children the for loop in sched_cfs_period_timer() can run until the
watchdog fires. There is no guarantee that the call to hrtimer_forward_now()
will ever return 0. The large number of children can make
do_sched_cfs_period_timer() take longer than the period.
NMI watchdog: Watchdog detected hard LOCKUP on cpu 24
RIP: 0010:tg_nop+0x0/0x10
<IRQ>
walk_tg_tree_from+0x29/0xb0
unthrottle_cfs_rq+0xe0/0x1a0
distribute_cfs_runtime+0xd3/0xf0
sched_cfs_period_timer+0xcb/0x160
? sched_cfs_slack_timer+0xd0/0xd0
__hrtimer_run_queues+0xfb/0x270
hrtimer_interrupt+0x122/0x270
smp_apic_timer_interrupt+0x6a/0x140
apic_timer_interrupt+0xf/0x20
</IRQ>
To prevent this we add protection to the loop that detects when the loop has run
too many times and scales the period and quota up, proportionally, so that the timer
can complete before then next period expires. This preserves the relative runtime
quota while preventing the hard lockup.
A warning is issued reporting this state and the new values.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The prototype of that function was already hoisted up in:
commit 3b1baa6496 ("sched/fair: Add 'group_misfit_task' load-balance type")
but that seems to have been missed. Get rid of the extra prototype.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Quentin Perret <quentin.perret@arm.com>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Link: http://lkml.kernel.org/r/20190416140621.19884-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch add perf_pmu_resched() a global function that can be called
to force rescheduling of events for a given PMU. The function locks
both cpuctx and task_ctx internally. This will be used by a subsequent
patch.
Signed-off-by: Stephane Eranian <eranian@google.com>
[ Simplified the calling convention. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Cc: nelson.dsouza@intel.com
Cc: tonyj@suse.com
Link: https://lkml.kernel.org/r/20190408173252.37932-2-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
1627314fb5 ("perf: Suppress AUX/OVERWRITE records")
has an unintended side-effect of also suppressing all AUX records with no flags
and non-zero size, so all the regular records in the full trace mode.
This breaks some use cases for people.
Fix this by restoring "regular" AUX records.
Reported-by: Ben Gainey <Ben.Gainey@arm.com>
Tested-by: Ben Gainey <Ben.Gainey@arm.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 1627314fb5 ("perf: Suppress AUX/OVERWRITE records")
Link: https://lkml.kernel.org/r/20190329091338.29999-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following recent commit:
c60f83b813 ("perf, pt, coresight: Fix address filters for vmas with non-zero offset")
changes the address filtering logic to communicate filter ranges to the PMU driver
via a single address range object, instead of having the driver do the final bit of
math.
That change forgets to take into account kernel filters, which are not calculated
the same way as DSO based filters.
Fix that by passing the kernel filters the same way as file-based filters.
This doesn't require any additional changes in the drivers.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: c60f83b813 ("perf, pt, coresight: Fix address filters for vmas with non-zero offset")
Link: https://lkml.kernel.org/r/20190329091212.29870-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
commit f1a2e44a3a ("bpf: add queue and stack maps") introduced new BPF
helper functions:
- BPF_FUNC_map_push_elem
- BPF_FUNC_map_pop_elem
- BPF_FUNC_map_peek_elem
but they were made available only for network BPF programs. This patch
makes them available for tracepoint, cgroup and lirc programs.
Signed-off-by: Alban Crequy <alban@kinvolk.io>
Cc: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>