The pti_clone_kernel_text() function references __end_rodata_hpage_align,
which is only present on x86-64. This makes sense as the end of the rodata
section is not huge-page aligned on 32 bit.
Nevertheless a symbol is required for the function that points at the right
address for both 32 and 64 bit. Introduce __end_rodata_aligned for that
purpose and use it in pti_clone_kernel_text().
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-28-git-send-email-joro@8bytes.org
Generic page-table code populates all non-leaf entries with _KERNPG_TABLE
bits set. This is fine for all paging modes except PAE.
In PAE mode only a subset of the bits is allowed to be set. Make sure to
only set allowed bits by masking out the reserved bits.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-22-git-send-email-joro@8bytes.org
These two functions are required for PTI on 32 bit:
* pgdp_maps_userspace()
* pgd_large()
Also re-implement pgdp_maps_userspace() so that it will work on 64 and 32
bit kernels.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-21-git-send-email-joro@8bytes.org
The way page-table folding is implemented on 32 bit, these functions are
not only setting, but also PUDs and even PMDs. Give the function a more
generic name to reflect that.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-16-git-send-email-joro@8bytes.org
The function does not update sp0 anymore but updates makes the task-stack
visible for entry code. This is by either writing it to sp1 or by doing a
hypercall. Rename the function to get rid of the misleading name.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-15-git-send-email-joro@8bytes.org
Use the entry-stack as a trampoline to enter the kernel. The entry-stack is
already in the cpu_entry_area and will be mapped to userspace when PTI is
enabled.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-8-git-send-email-joro@8bytes.org
It supposed to be safe to modify static branches after jump_label_init().
But, because static key modifying code eventually calls text_poke() it can
end up accessing a struct page which has not been initialized yet.
Here is how to quickly reproduce the problem. Insert code like this
into init/main.c:
| +static DEFINE_STATIC_KEY_FALSE(__test);
| asmlinkage __visible void __init start_kernel(void)
| {
| char *command_line;
|@@ -587,6 +609,10 @@ asmlinkage __visible void __init start_kernel(void)
| vfs_caches_init_early();
| sort_main_extable();
| trap_init();
|+ {
|+ static_branch_enable(&__test);
|+ WARN_ON(!static_branch_likely(&__test));
|+ }
| mm_init();
The following warnings show-up:
WARNING: CPU: 0 PID: 0 at arch/x86/kernel/alternative.c:701 text_poke+0x20d/0x230
RIP: 0010:text_poke+0x20d/0x230
Call Trace:
? text_poke_bp+0x50/0xda
? arch_jump_label_transform+0x89/0xe0
? __jump_label_update+0x78/0xb0
? static_key_enable_cpuslocked+0x4d/0x80
? static_key_enable+0x11/0x20
? start_kernel+0x23e/0x4c8
? secondary_startup_64+0xa5/0xb0
---[ end trace abdc99c031b8a90a ]---
If the code above is moved after mm_init(), no warning is shown, as struct
pages are initialized during handover from memblock.
Use text_poke_early() in static branching until early boot IRQs are enabled
and from there switch to text_poke. Also, ensure text_poke() is never
invoked when unitialized memory access may happen by using adding a
!after_bootmem assertion.
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-9-pasha.tatashin@oracle.com
Now that CPUs in lazy TLB mode no longer receive TLB shootdown IPIs, except
at page table freeing time, and idle CPUs will no longer get shootdown IPIs
for things like mprotect and madvise, we can always use lazy TLB mode.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-7-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andy discovered that speculative memory accesses while in lazy
TLB mode can crash a system, when a CPU tries to dereference a
speculative access using memory contents that used to be valid
page table memory, but have since been reused for something else
and point into la-la land.
The latter problem can be prevented in two ways. The first is to
always send a TLB shootdown IPI to CPUs in lazy TLB mode, while
the second one is to only send the TLB shootdown at page table
freeing time.
The second should result in fewer IPIs, since operationgs like
mprotect and madvise are very common with some workloads, but
do not involve page table freeing. Also, on munmap, batching
of page table freeing covers much larger ranges of virtual
memory than the batching of unmapped user pages.
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-3-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All copy_to_user() implementations need to be prepared to handle faults
accessing userspace. The __memcpy_mcsafe() implementation handles both
mmu-faults on the user destination and machine-check-exceptions on the
source buffer. However, the memcpy_mcsafe() wrapper may silently
fallback to memcpy() depending on build options and cpu-capabilities.
Force copy_to_user_mcsafe() to always use __memcpy_mcsafe() when
available, and otherwise disable all of the copy_to_user_mcsafe()
infrastructure when __memcpy_mcsafe() is not available, i.e.
CONFIG_X86_MCE=n.
This fixes crashes of the form:
run fstests generic/323 at 2018-07-02 12:46:23
BUG: unable to handle kernel paging request at 00007f0d50001000
RIP: 0010:__memcpy+0x12/0x20
[..]
Call Trace:
copyout_mcsafe+0x3a/0x50
_copy_to_iter_mcsafe+0xa1/0x4a0
? dax_alive+0x30/0x50
dax_iomap_actor+0x1f9/0x280
? dax_iomap_rw+0x100/0x100
iomap_apply+0xba/0x130
? dax_iomap_rw+0x100/0x100
dax_iomap_rw+0x95/0x100
? dax_iomap_rw+0x100/0x100
xfs_file_dax_read+0x7b/0x1d0 [xfs]
xfs_file_read_iter+0xa7/0xc0 [xfs]
aio_read+0x11c/0x1a0
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Fixes: 8780356ef6 ("x86/asm/memcpy_mcsafe: Define copy_to_iter_mcsafe()")
Link: http://lkml.kernel.org/r/153108277790.37979.1486841789275803399.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce the 'l1tf=' kernel command line option to allow for boot-time
switching of mitigation that is used on processors affected by L1TF.
The possible values are:
full
Provides all available mitigations for the L1TF vulnerability. Disables
SMT and enables all mitigations in the hypervisors. SMT control via
/sys/devices/system/cpu/smt/control is still possible after boot.
Hypervisors will issue a warning when the first VM is started in
a potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
full,force
Same as 'full', but disables SMT control. Implies the 'nosmt=force'
command line option. sysfs control of SMT and the hypervisor flush
control is disabled.
flush
Leaves SMT enabled and enables the conditional hypervisor mitigation.
Hypervisors will issue a warning when the first VM is started in a
potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
flush,nosmt
Disables SMT and enables the conditional hypervisor mitigation. SMT
control via /sys/devices/system/cpu/smt/control is still possible
after boot. If SMT is reenabled or flushing disabled at runtime
hypervisors will issue a warning.
flush,nowarn
Same as 'flush', but hypervisors will not warn when
a VM is started in a potentially insecure configuration.
off
Disables hypervisor mitigations and doesn't emit any warnings.
Default is 'flush'.
Let KVM adhere to these semantics, which means:
- 'lt1f=full,force' : Performe L1D flushes. No runtime control
possible.
- 'l1tf=full'
- 'l1tf-flush'
- 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if
SMT has been runtime enabled or L1D flushing
has been run-time enabled
- 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted.
- 'l1tf=off' : L1D flushes are not performed and no warnings
are emitted.
KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush'
module parameter except when lt1f=full,force is set.
This makes KVM's private 'nosmt' option redundant, and as it is a bit
non-systematic anyway (this is something to control globally, not on
hypervisor level), remove that option.
Add the missing Documentation entry for the l1tf vulnerability sysfs file
while at it.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de
If Extended Page Tables (EPT) are disabled or not supported, no L1D
flushing is required. The setup function can just avoid setting up the L1D
flush for the EPT=n case.
Invoke it after the hardware setup has be done and enable_ept has the
correct state and expose the EPT disabled state in the mitigation status as
well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142322.612160168@linutronix.de
Store the effective mitigation of VMX in a status variable and use it to
report the VMX state in the l1tf sysfs file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142322.433098358@linutronix.de
In the VM mode on Hyper-V, currently, when the kernel panics, an error
code and few register values are populated in an MSR and the Hypervisor
notified. This information is collected on the host. The amount of
information currently collected is found to be limited and not very
actionable. To gather more actionable data, such as stack trace, the
proposal is to write one page worth of kmsg data on an allocated page
and the Hypervisor notified of the page address through the MSR.
- Sysctl option to control the behavior, with ON by default.
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The enum is currently defined in Intel-specific DMAR header file,
but it is also used by APIC common code. Therefore, move it to
a more appropriate interrupt-remapping common header file.
This will also be used by subsequent patches.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add the logic for flushing L1D on VMENTER. The flush depends on the static
key being enabled and the new l1tf_flush_l1d flag being set.
The flags is set:
- Always, if the flush module parameter is 'always'
- Conditionally at:
- Entry to vcpu_run(), i.e. after executing user space
- From the sched_in notifier, i.e. when switching to a vCPU thread.
- From vmexit handlers which are considered unsafe, i.e. where
sensitive data can be brought into L1D:
- The emulator, which could be a good target for other speculative
execution-based threats,
- The MMU, which can bring host page tables in the L1 cache.
- External interrupts
- Nested operations that require the MMU (see above). That is
vmptrld, vmptrst, vmclear,vmwrite,vmread.
- When handling invept,invvpid
[ tglx: Split out from combo patch and reduced to a single flag ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR
(IA32_FLUSH_CMD aka 0x10B) which has similar write-only semantics to other
MSRs defined in the document.
The semantics of this MSR is to allow "finer granularity invalidation of
caching structures than existing mechanisms like WBINVD. It will writeback
and invalidate the L1 data cache, including all cachelines brought in by
preceding instructions, without invalidating all caches (eg. L2 or
LLC). Some processors may also invalidate the first level level instruction
cache on a L1D_FLUSH command. The L1 data and instruction caches may be
shared across the logical processors of a core."
Use it instead of the loop based L1 flush algorithm.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Avoid allocating pages when the MSR is available ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The Hyper-V feature and hint flags in hyperv-tlfs.h are all defined
with the string "X64" in the name. Some of these flags are indeed
x86/x64 specific, but others are not. For the ones that are used
in architecture independent Hyper-V driver code, or will be used in
the upcoming support for Hyper-V for ARM64, this patch removes the
"X64" from the name.
This patch changes the flags that are currently known to be
used on multiple architectures. Hyper-V for ARM64 is still a
work-in-progress and the Top Level Functional Spec (TLFS) has not
been separated into x86/x64 and ARM64 areas. So additional flags
may need to be updated later.
This patch only changes symbol names. There are no functional
changes.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
After custom TSC calibration gone, there is no more reason to have
custom platform code for each of Intel MID.
Thus, remove it for good.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Link: https://lkml.kernel.org/r/20180629193113.84425-7-andriy.shevchenko@linux.intel.com
Since the commit
7da7c15613 ("x86, tsc: Add static (MSR) TSC calibration on Intel Atom SoCs")
introduced a common way for all Intel MID chips to get their TSC frequency
via MSRs, there is no need to keep a duplication in each of Intel MID
platform code.
Thus, remove the custom calibration code for good.
Note, there is slight difference in how to get frequency for (reserved?)
values in MSRs, i.e. legacy code enforces some defaults while new code just
uses 0 in that cases.
Suggested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Bin Gao <bin.gao@intel.com>
Link: https://lkml.kernel.org/r/20180629193113.84425-6-andriy.shevchenko@linux.intel.com
These macros are often used by drivers and there exists already a lot of
duplication as ICPU() macro across the drivers.
Provide a generic x86 macro for users.
Note, as Ingo Molnar pointed out this has a hidden issue when a driver
needs to preserve const qualifier. Though, it would be addressed
separately at some point.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Link: https://lkml.kernel.org/r/20180629193113.84425-2-andriy.shevchenko@linux.intel.com
In architecture independent code for manipulating Hyper-V synthetic timers
and synthetic interrupts, pass in an ordinal number identifying the timer
or interrupt, rather than an actual MSR register address. Then in
x86/x64 specific code, map the ordinal number to the appropriate MSR.
This change facilitates the introduction of an ARM64 version of Hyper-V,
which uses the same synthetic timers and interrupts, but a different
mechanism for accessing them.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Implement 'Fast' hypercall with two 64-bit input parameter. This is
going to be used for HvCallSendSyntheticClusterIpi hypercall.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Tianyu Lan <Tianyu.Lan@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Link: https://lkml.kernel.org/r/20180622170625.30688-2-vkuznets@redhat.com
Dave Hansen reported, that it's outright dangerous to keep SMT siblings
disabled completely so they are stuck in the BIOS and wait for SIPI.
The reason is that Machine Check Exceptions are broadcasted to siblings and
the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a
logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or
reboots the machine. The MCE chapter in the SDM contains the following
blurb:
Because the logical processors within a physical package are tightly
coupled with respect to shared hardware resources, both logical
processors are notified of machine check errors that occur within a
given physical processor. If machine-check exceptions are enabled when
a fatal error is reported, all the logical processors within a physical
package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the
shutdown state and assert the IERR# signal. When enabling machine-check
exceptions, the MCE flag in control register CR4 should be set for each
logical processor.
Reverting the commit which ignores siblings at enumeration time solves only
half of the problem. The core cpuhotplug logic needs to be adjusted as
well.
This thoughtful engineered mechanism also turns the boot process on all
Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU
before the secondary CPUs are brought up. Depending on the number of
physical cores the window in which this situation can happen is smaller or
larger. On a HSW-EX it's about 750ms:
MCE is enabled on the boot CPU:
[ 0.244017] mce: CPU supports 22 MCE banks
The corresponding sibling #72 boots:
[ 1.008005] .... node #0, CPUs: #72
That means if an MCE hits on physical core 0 (logical CPUs 0 and 72)
between these two points the machine is going to shutdown. At least it's a
known safe state.
It's obvious that the early boot can be hit by an MCE as well and then runs
into the same situation because MCEs are not yet enabled on the boot CPU.
But after enabling them on the boot CPU, it does not make any sense to
prevent the kernel from recovering.
Adjust the nosmt kernel parameter documentation as well.
Reverts: 2207def700 ("x86/apic: Ignore secondary threads if nosmt=force")
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Move early dump functionality into common code so that it is available for
all architectures. No need to carry arch-specific reads around as the read
hooks are already initialized by the time pci_setup_device() is getting
called during scan.
Tested-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Jan has noticed that pte_pfn and co. resp. pfn_pte are incorrect for
CONFIG_PAE because phys_addr_t is wider than unsigned long and so the
pte_val reps. shift left would get truncated. Fix this up by using proper
types.
Fixes: 6b28baca9b ("x86/speculation/l1tf: Protect PROT_NONE PTEs against speculation")
Reported-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
The PAE 3-level paging code currently doesn't mitigate L1TF by flipping the
offset bits, and uses the high PTE word, thus bits 32-36 for type, 37-63 for
offset. The lower word is zeroed, thus systems with less than 4GB memory are
safe. With 4GB to 128GB the swap type selects the memory locations vulnerable
to L1TF; with even more memory, also the swap offfset influences the address.
This might be a problem with 32bit PAE guests running on large 64bit hosts.
By continuing to keep the whole swap entry in either high or low 32bit word of
PTE we would limit the swap size too much. Thus this patch uses the whole PAE
PTE with the same layout as the 64bit version does. The macros just become a
bit tricky since they assume the arch-dependent swp_entry_t to be 32bit.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
This reverts the following commits:
1ea66554d3 ("x86/mm: Mark p4d_offset() __always_inline")
046c0dbec0 ("x86: Mark native_set_p4d() as __always_inline")
p4d_offset(), native_set_p4d() and native_p4d_clear() were marked
__always_inline in attempt to move __pgtable_l5_enabled into __initdata
section.
It was required as KASAN initialization code is a user of
USE_EARLY_PGTABLE_L5, so all pgtable_l5_enabled() translated to
__pgtable_l5_enabled there. This includes pgtable_l5_enabled() called
from inline p4d helpers.
If compiler would decided to not inline these p4d helpers, but leave
them standalone, we end up with section mismatch.
We don't need __always_inline here anymore. __pgtable_l5_enabled moved
back to be __ro_after_init. See the following commit:
51be133515 ("Revert "x86/mm: Mark __pgtable_l5_enabled __initdata"")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180626100341.49910-1-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the P4D page table layer is folded at runtime, the p4d_free()
should do nothing, the same as in <asm-generic/pgtable-nop4d.h>.
It seems this bug should cause double-free in efi_call_phys_epilog(),
but I don't know how to trigger that code path, so I can't confirm that
by testing.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # 4.17
Fixes: 98219dda2a ("x86/mm: Fold p4d page table layer at runtime")
Link: http://lkml.kernel.org/r/20180625102427.15015-1-aryabinin@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>