In order to have a more coherent DW AHB DMA slave configuration method -
dwc_config() - let's simplify the source and destination channel max-burst
calculation procedure:
1. Create the max-burst verification method as it has been just done for
the memory and peripheral address widths. Thus the dwc_config() method
will turn to a set of the verification methods execution.
2. Since both the generic DW AHB DMA and Intel iDMA 32-bit engines support
the power-of-2 bursts only, then the specified by the client driver
max-burst values can be converted to being power-of-2 right in the
max-burst verification method.
3. Since max-burst encoded value is required on the CTL_LO fields
calculation stage, the encode_maxburst() callback can be easily dropped
from the dw_dma structure meanwhile the encoding procedure will be
executed right in the CTL_LO register value calculation.
Thus the update will provide the next positive effects: the internal
DMA-slave config structure will contain only the real DMA-transfer config
values, which will be encoded to the DMA-controller register fields only
when it's required on the buffer mapping; the redundant encode_maxburst()
callback will be dropped simplifying the internal HW-abstraction API;
dwc_config() will look more readable executing the verification functions
one-by-one.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Acked-by: Andy Shevchenko <andy@kernel.org>
Link: https://lore.kernel.org/r/20240802075100.6475-6-fancer.lancer@gmail.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
As a preparatory change before dropping the encode_maxburst() callbacks
let's move dw_dma_encode_maxburst() and idma32_encode_maxburst() to being
defined above the dw_dma_prepare_ctllo() and idma32_prepare_ctllo()
methods respectively. That's required since the former methods will be
called from the later ones directly.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Acked-by: Andy Shevchenko <andy@kernel.org>
Link: https://lore.kernel.org/r/20240802075100.6475-5-fancer.lancer@gmail.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Currently the CTL LO fields are calculated on the platform-specific basis.
It's implemented by means of the prepare_ctllo() callbacks using the
ternary operator within the local variables init block at the beginning of
the block scope. The functions code currently is relatively hard to
comprehend and isn't that optimal since implies four conditional
statements executed and two additional local variables defined. Let's
simplify the DW AHB DMA prepare_ctllo() method by unrolling the ternary
operators into the normal if-else statement, dropping redundant
master-interface ID variables and initializing the local variables based
on the singly evaluated DMA-transfer direction check. Thus the method will
look much more readable since now the fields content can be easily
inferred right from the if-else branch. Provide the same update in the
Intel DMA32 core driver for the sake of the driver code unification.
Note besides of the effects described above this update is basically a
preparation before dropping the max burst encoding callback. The dropping
will require to call the burst fields calculation methods right in the
prepare_ctllo() callbacks. It would have made the later functions code
even more complex should they were left in the original state.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Acked-by: Andy Shevchenko <andy@kernel.org>
Link: https://lore.kernel.org/r/20240802075100.6475-4-fancer.lancer@gmail.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Intel Elkhart Lake PSE DMA implementation is integrated with crossbar IP
in order to serve more hardware than there are DMA request lines available.
Due to this, program xBAR hardware to make flexible support of PSE peripheral.
The Device-to-Device has not been tested and it's not supported by DMA Engine,
but it's left in the code for the sake of documenting hardware features.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20210712113940.42753-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
According to the DW DMA controller Databook 2.18b (page 40 "3.5 Memory
Peripherals") memory peripherals don't have handshaking interface
connected to the controller, therefore they can never be a flow
controller. Since the CTLx.SRC_MSIZE and CTLx.DEST_MSIZE are properties
valid only for peripherals with a handshaking interface, we can freely
zero these fields out if the memory peripheral is selected to be the
source or the destination of the DMA transfers.
Note according to the databook, length of burst transfers to memory is
always equal to the number of data items available in a channel FIFO or
data items required to complete the block transfer, whichever is smaller;
length of burst transfers from memory is always equal to the space
available in a channel FIFO or number of data items required to complete
the block transfer, whichever is smaller.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20200731200826.9292-5-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Intel iDMA 32-bit doesn't have a concept of bus masters and thus
there is no need to setup any kind of masters in the CTL_LO register.
Moreover, the burst size for memory-to-memory transfer is not what is says,
we need to have a corrected list of possible sizes. Note, that
the size of 8 items, each of that up to 4 bytes, is chosen because of
maximum of 1/2 FIFO, which is 64 bytes on Intel Merrifield.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
For Intel iDMA 32-bit the channel can be drained on a suspend.
We need to reset the bit on the resume to return a status quo.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Here is a kinda big refactoring that should have been done
in the first place, when Intel iDMA 32-bit support appeared.
It splits operations which are different to Synopsys DesignWare and
Intel iDMA 32-bit controllers.
No functional change intended.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Vinod Koul <vkoul@kernel.org>