Commit graph

163 commits

Author SHA1 Message Date
Ard Biesheuvel
5d4456fc88 x86/boot/compressed: Merge the local pgtable.h include into <asm/boot.h>
Merge the local include "pgtable.h" -which declares the API of the
5-level paging trampoline- into <asm/boot.h> so that its implementation
in la57toggle.S as well as the calling code can be decoupled from the
traditional decompressor.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250401133416.1436741-9-ardb+git@google.com
2025-04-06 20:15:14 +02:00
Linus Torvalds
1fa753c7b5 EFI updates for v6.15
- Decouple mixed mode startup code from the traditional x86 decompressor
 
 - Revert zero-length file hack in efivarfs
 
 - Prevent EFI zboot from using the CopyMem/SetMem boot services after
   ExitBootServices()
 
 - Update EFI zboot to use the ZLIB/ZSTD library interfaces directly
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZ9vAPwAKCRAwbglWLn0t
 XNsFAQCq4zXmbHnFl8gR3rq06f2gR3DKPfUBGVnyfaP/77ag0AD6Alzm4Pg014cL
 GsZPQf38uGnygMTGYsU1HdE8EugFFQY=
 =UXC0
 -----END PGP SIGNATURE-----

Merge tag 'efi-next-for-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi

Pull EFI updates from Ard Biesheuvel:

 - Decouple mixed mode startup code from the traditional x86
   decompressor

 - Revert zero-length file hack in efivarfs

 - Prevent EFI zboot from using the CopyMem/SetMem boot services after
   ExitBootServices()

 - Update EFI zboot to use the ZLIB/ZSTD library interfaces directly

* tag 'efi-next-for-v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
  efi/libstub: Avoid legacy decompressor zlib/zstd wrappers
  efi/libstub: Avoid CopyMem/SetMem EFI services after ExitBootServices
  efi: efibc: change kmalloc(size * count, ...) to kmalloc_array()
  efivarfs: Revert "allow creation of zero length files"
  x86/efi/mixed: Move mixed mode startup code into libstub
  x86/efi/mixed: Simplify and document thunking logic
  x86/efi/mixed: Remove dependency on legacy startup_32 code
  x86/efi/mixed: Set up 1:1 mapping of lower 4GiB in the stub
  x86/efi/mixed: Factor out and clean up long mode entry
  x86/efi/mixed: Check CPU compatibility without relying on verify_cpu()
  x86/efistub: Merge PE and handover entrypoints
2025-03-29 11:36:19 -07:00
Ard Biesheuvel
e27dffba1b x86/boot: Move the LA57 trampoline to separate source file
To permit the EFI stub to call this code even when building the kernel
without the legacy decompressor, move the trampoline out of the latter's
startup code.

This is part of an ongoing WIP effort on my part to make the existing,
generic EFI zboot format work on x86 as well.

No functional change intended.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250313120324.1095968-2-ardb+git@google.com
2025-03-13 18:12:38 +01:00
Ard Biesheuvel
6e2da8d87c x86/efi/mixed: Remove dependency on legacy startup_32 code
The EFI mixed mode startup code calls into startup_32 in the legacy
decompressor with a mocked up boot_params struct, only to get it to set
up the 1:1 mapping of the lower 4 GiB of memory and switch to a GDT that
supports 64-bit mode.

In order to be able to reuse the EFI mixed mode startup code in EFI
zboot images, which do not incorporate the legacy decompressor code,
decouple it, by dealing with the GDT and IDT directly.

Doing so makes it possible to construct a GDT that is compatible with
the one the firmware uses, with one additional entry for a 64-bit mode
code segment appended. This removes the need entirely to switch between
GDTs and IDTs or data segment selector values and all of this code can
be removed.

Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2025-02-21 16:54:31 +01:00
Ard Biesheuvel
a0025f587c x86/boot/64: Clear most of CR4 in startup_64(), except PAE, MCE and LA57
The early 64-bit boot code must be entered with a 1:1 mapping of the
bootable image, but it cannot operate without a 1:1 mapping of all the
assets in memory that it accesses, and therefore, it creates such
mappings for all known assets upfront, and additional ones on demand
when a page fault happens on a memory address.

These mappings are created with the global bit G set, as the flags used
to create page table descriptors are based on __PAGE_KERNEL_LARGE_EXEC
defined by the core kernel, even though the context where these mappings
are used is very different.

This means that the TLB maintenance carried out by the decompressor is
not sufficient if it is entered with CR4.PGE enabled, which has been
observed to happen with the stage0 bootloader of project Oak. While this
is a dubious practice if no global mappings are being used to begin
with, the decompressor is clearly at fault here for creating global
mappings and not performing the appropriate TLB maintenance.

Since commit:

  f97b67a773 ("x86/decompressor: Only call the trampoline when changing paging levels")

CR4 is no longer modified by the decompressor if no change in the number
of paging levels is needed. Before that, CR4 would always be set to a
consistent value with PGE cleared.

So let's reinstate a simplified version of the original logic to put CR4
into a known state, and preserve the PAE, MCE and LA57 bits, none of
which can be modified freely at this point (PAE and LA57 cannot be
changed while running in long mode, and MCE cannot be cleared when
running under some hypervisors).

This effectively clears PGE and works around the project Oak bug.

Fixes: f97b67a773 ("x86/decompressor: Only call the trampoline when ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20240410151354.506098-2-ardb+git@google.com
2024-04-11 15:37:17 +02:00
Ard Biesheuvel
a1b87d54f4 x86/efistub: Avoid legacy decompressor when doing EFI boot
The bare metal decompressor code was never really intended to run in a
hosted environment such as the EFI boot services, and does a few things
that are becoming problematic in the context of EFI boot now that the
logo requirements are getting tighter: EFI executables will no longer be
allowed to consist of a single executable section that is mapped with
read, write and execute permissions if they are intended for use in a
context where Secure Boot is enabled (and where Microsoft's set of
certificates is used, i.e., every x86 PC built to run Windows).

To avoid stepping on reserved memory before having inspected the E820
tables, and to ensure the correct placement when running a kernel build
that is non-relocatable, the bare metal decompressor moves its own
executable image to the end of the allocation that was reserved for it,
in order to perform the decompression in place. This means the region in
question requires both write and execute permissions, which either need
to be given upfront (which EFI will no longer permit), or need to be
applied on demand using the existing page fault handling framework.

However, the physical placement of the kernel is usually randomized
anyway, and even if it isn't, a dedicated decompression output buffer
can be allocated anywhere in memory using EFI APIs when still running in
the boot services, given that EFI support already implies a relocatable
kernel. This means that decompression in place is never necessary, nor
is moving the compressed image from one end to the other.

Since EFI already maps all of memory 1:1, it is also unnecessary to
create new page tables or handle page faults when decompressing the
kernel. That means there is also no need to replace the special
exception handlers for SEV. Generally, there is little need to do
any of the things that the decompressor does beyond

- initialize SEV encryption, if needed,
- perform the 4/5 level paging switch, if needed,
- decompress the kernel
- relocate the kernel

So do all of this from the EFI stub code, and avoid the bare metal
decompressor altogether.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-24-ardb@kernel.org
2023-08-07 21:07:43 +02:00
Ard Biesheuvel
24388292e2 x86/decompressor: Move global symbol references to C code
It is no longer necessary to be cautious when referring to global
variables in the position independent decompressor code, now that it is
built using PIE codegen and makes an assertion in the linker script that
no GOT entries exist (which would require adjustment for the actual
runtime load address of the decompressor binary).

This means global variables can be referenced directly from C code,
instead of having to pass their runtime addresses into C routines from
asm code, which needs to happen at each call site. Do so for the code
that will be called directly from the EFI stub after a subsequent patch,
and avoid the need to duplicate this logic a third time.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-20-ardb@kernel.org
2023-08-07 20:58:02 +02:00
Ard Biesheuvel
03dda95137 x86/decompressor: Merge trampoline cleanup with switching code
Now that the trampoline setup code and the actual invocation of it are
all done from the C routine, the trampoline cleanup can be merged into
it as well, instead of returning to asm just to call another C function.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-16-ardb@kernel.org
2023-08-07 20:51:17 +02:00
Ard Biesheuvel
cb83cece57 x86/decompressor: Pass pgtable address to trampoline directly
The only remaining use of the trampoline address by the trampoline
itself is deriving the page table address from it, and this involves
adding an offset of 0x0. So simplify this, and pass the new CR3 value
directly.

This makes the fact that the page table happens to be at the start of
the trampoline allocation an implementation detail of the caller.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-15-ardb@kernel.org
2023-08-07 20:49:26 +02:00
Ard Biesheuvel
f97b67a773 x86/decompressor: Only call the trampoline when changing paging levels
Since the current and desired number of paging levels are known when the
trampoline is being prepared, avoid calling the trampoline at all if it
is clear that calling it is not going to result in a change to the
number of paging levels.

Given that the CPU is already running in long mode, the PAE and LA57
settings are necessarily consistent with the currently active page
tables, and other fields in CR4 will be initialized by the startup code
in the kernel proper. So limit the manipulation of CR4 to toggling the
LA57 bit, which is the only thing that really needs doing at this point
in the boot. This also means that there is no need to pass the value of
l5_required to toggle_la57(), as it will not be called unless CR4.LA57
needs to toggle.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-14-ardb@kernel.org
2023-08-07 20:48:09 +02:00
Ard Biesheuvel
64ef578b6b x86/decompressor: Call trampoline directly from C code
Instead of returning to the asm calling code to invoke the trampoline,
call it straight from the C code that sets it up. That way, the struct
return type is no longer needed for returning two values, and the call
can be made conditional more cleanly in a subsequent patch.

This means that all callee save 64-bit registers need to be preserved
and restored, as their contents may not survive the legacy mode switch.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-13-ardb@kernel.org
2023-08-07 20:46:57 +02:00
Ard Biesheuvel
bd328aa01f x86/decompressor: Avoid the need for a stack in the 32-bit trampoline
The 32-bit trampoline no longer uses the stack for anything except
performing a far return back to long mode, and preserving the caller's
stack pointer value. Currently, the trampoline stack is placed in the
same page that carries the trampoline code, which means this page must
be mapped writable and executable, and the stack is therefore executable
as well.

Replace the far return with a far jump, so that the return address can
be pre-calculated and patched into the code before it is called. This
removes the need for a 32-bit addressable stack entirely, and in a later
patch, this will be taken advantage of by removing writable permissions
from (and adding executable permissions to) the trampoline code page
when booting via the EFI stub.

Note that the value of RSP still needs to be preserved explicitly across
the switch into 32-bit mode, as the register may get truncated to 32
bits.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-12-ardb@kernel.org
2023-08-07 20:45:55 +02:00
Ard Biesheuvel
918a7a04e7 x86/decompressor: Use standard calling convention for trampoline
Update the trampoline code so its arguments are passed via RDI and RSI,
which matches the ordinary SysV calling convention for x86_64. This will
allow this code to be called directly from C.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-11-ardb@kernel.org
2023-08-07 20:43:59 +02:00
Ard Biesheuvel
e8972a76aa x86/decompressor: Call trampoline as a normal function
Move the long return to switch to 32-bit mode into the trampoline code
so it can be called as an ordinary function. This will allow it to be
called directly from C code in a subsequent patch.

While at it, reorganize the code somewhat to keep the prologue and
epilogue of the function together, making the code a bit easier to
follow. Also, given that the trampoline is now entered in 64-bit mode, a
simple RIP-relative reference can be used to take the address of the
exit point.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-10-ardb@kernel.org
2023-08-07 20:43:13 +02:00
Ard Biesheuvel
8b63cba746 x86/decompressor: Store boot_params pointer in callee save register
Instead of pushing and popping %RSI several times to preserve the struct
boot_params pointer across the execution of the startup code, move it
into a callee save register before the first call into C, and copy it
back when needed.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-8-ardb@kernel.org
2023-08-07 20:41:04 +02:00
Ard Biesheuvel
1279206458 x86/decompressor: Avoid magic offsets for EFI handover entrypoint
The native 32-bit or 64-bit EFI handover protocol entrypoint offset
relative to the respective startup_32/64 address is described in
boot_params as handover_offset, so that the special Linux/x86 aware EFI
loader can find it there.

When mixed mode is enabled, this single field has to describe this
offset for both the 32-bit and 64-bit entrypoints, so their respective
relative offsets have to be identical. Given that startup_32 and
startup_64 are 0x200 bytes apart, and the EFI handover entrypoint
resides at a fixed offset, the 32-bit and 64-bit versions of those
entrypoints must be exactly 0x200 bytes apart as well.

Currently, hard-coded fixed offsets are used to ensure this, but it is
sufficient to emit the 64-bit entrypoint 0x200 bytes after the 32-bit
one, wherever it happens to reside. This allows this code (which is now
EFI mixed mode specific) to be moved into efi_mixed.S and out of the
startup code in head_64.S.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-6-ardb@kernel.org
2023-08-07 20:39:00 +02:00
Ard Biesheuvel
df9215f152 x86/efistub: Simplify and clean up handover entry code
Now that the EFI entry code in assembler is only used by the optional
and deprecated EFI handover protocol, and given that the EFI stub C code
no longer returns to it, most of it can simply be dropped.

While at it, clarify the symbol naming, by merging efi_main() and
efi_stub_entry(), making the latter the shared entry point for all
different boot modes that enter via the EFI stub.

The efi32_stub_entry() and efi64_stub_entry() names are referenced
explicitly by the tooling that populates the setup header, so these must
be retained, but can be emitted as aliases of efi_stub_entry() where
appropriate.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-5-ardb@kernel.org
2023-08-07 20:37:09 +02:00
Ard Biesheuvel
264b82fdb4 x86/decompressor: Don't rely on upper 32 bits of GPRs being preserved
The 4-to-5 level mode switch trampoline disables long mode and paging in
order to be able to flick the LA57 bit. According to section 3.4.1.1 of
the x86 architecture manual [0], 64-bit GPRs might not retain the upper
32 bits of their contents across such a mode switch.

Given that RBP, RBX and RSI are live at this point, preserve them on the
stack, along with the return address that might be above 4G as well.

[0] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture

  "Because the upper 32 bits of 64-bit general-purpose registers are
   undefined in 32-bit modes, the upper 32 bits of any general-purpose
   register are not preserved when switching from 64-bit mode to a 32-bit
   mode (to protected mode or compatibility mode). Software must not
   depend on these bits to maintain a value after a 64-bit to 32-bit
   mode switch."

Fixes: 194a9749c7 ("x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-2-ardb@kernel.org
2023-08-07 19:02:06 +02:00
Alexander Lobakin
7734a0f31e x86/boot: Robustify calling startup_{32,64}() from the decompressor code
After commit ce697ccee1 ("kbuild: remove head-y syntax"), I
started digging whether x86 is ready for removing this old cruft.
Removing its objects from the list makes the kernel unbootable.
This applies only to bzImage, vmlinux still works correctly.
The reason is that with no strict object order determined by the
linker arguments, not the linker script, startup_64 can be placed
not right at the beginning of the kernel.
Here's vmlinux.map's beginning before removing:

  ffffffff81000000         vmlinux.o:(.head.text)
  ffffffff81000000                 startup_64
  ffffffff81000070                 secondary_startup_64
  ffffffff81000075                 secondary_startup_64_no_verify
  ffffffff81000160                 verify_cpu

and after:

  ffffffff81000000         vmlinux.o:(.head.text)
  ffffffff81000000                 pvh_start_xen
  ffffffff81000080                 startup_64
  ffffffff810000f0                 secondary_startup_64
  ffffffff810000f5                 secondary_startup_64_no_verify

Not a problem itself, but the self-extractor code has the address of
that function hardcoded the beginning, not looking onto the ELF
header, which always contains the address of startup_{32,64}().

So, instead of doing an "act of blind faith", just take the address
from the ELF header and extract a relative offset to the entry
point. The decompressor function already returns a pointer to the
beginning of the kernel to the Asm code, which then jumps to it,
so add that offset to the return value.
This doesn't change anything for now, but allows to resign from the
"head object list" for x86 and makes sure valid Kbuild or any other
improvements won't break anything here in general.

Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Slaby <jirislaby@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20230109170403.4117105-2-alexandr.lobakin@intel.com
2023-01-09 18:22:21 +01:00
Linus Torvalds
94a855111e - Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for
 Skylake-based cores where enabling IBRS is a big hammer and causes a
 significant performance impact.
 
 What it basically does is, it aligns all kernel functions to 16 bytes
 boundary and adds a 16-byte padding before the function, objtool
 collects all functions' locations and when the mitigation gets applied,
 it patches a call accounting thunk which is used to track the call depth
 of the stack at any time.
 
 When that call depth reaches a magical, microarchitecture-specific value
 for the Return Stack Buffer, the code stuffs that RSB and avoids its
 underflow which could otherwise lead to the Intel variant of Retbleed.
 
 This software-only solution brings a lot of the lost performance back,
 as benchmarks suggest:
 
   https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
 
 That page above also contains a lot more detailed explanation of the
 whole mechanism
 
 - Implement a new control flow integrity scheme called FineIBT which is
 based on the software kCFI implementation and uses hardware IBT support
 where present to annotate and track indirect branches using a hash to
 validate them
 
 - Other misc fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
 VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
 VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
 gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
 iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
 Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
 ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
 ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
 i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
 Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
 zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
 =cRy1
 -----END PGP SIGNATURE-----

Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Borislav Petkov:

 - Add the call depth tracking mitigation for Retbleed which has been
   long in the making. It is a lighterweight software-only fix for
   Skylake-based cores where enabling IBRS is a big hammer and causes a
   significant performance impact.

   What it basically does is, it aligns all kernel functions to 16 bytes
   boundary and adds a 16-byte padding before the function, objtool
   collects all functions' locations and when the mitigation gets
   applied, it patches a call accounting thunk which is used to track
   the call depth of the stack at any time.

   When that call depth reaches a magical, microarchitecture-specific
   value for the Return Stack Buffer, the code stuffs that RSB and
   avoids its underflow which could otherwise lead to the Intel variant
   of Retbleed.

   This software-only solution brings a lot of the lost performance
   back, as benchmarks suggest:

       https://lore.kernel.org/all/20220915111039.092790446@infradead.org/

   That page above also contains a lot more detailed explanation of the
   whole mechanism

 - Implement a new control flow integrity scheme called FineIBT which is
   based on the software kCFI implementation and uses hardware IBT
   support where present to annotate and track indirect branches using a
   hash to validate them

 - Other misc fixes and cleanups

* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  x86/paravirt: Use common macro for creating simple asm paravirt functions
  x86/paravirt: Remove clobber bitmask from .parainstructions
  x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
  x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
  x86/Kconfig: Enable kernel IBT by default
  x86,pm: Force out-of-line memcpy()
  objtool: Fix weak hole vs prefix symbol
  objtool: Optimize elf_dirty_reloc_sym()
  x86/cfi: Add boot time hash randomization
  x86/cfi: Boot time selection of CFI scheme
  x86/ibt: Implement FineIBT
  objtool: Add --cfi to generate the .cfi_sites section
  x86: Add prefix symbols for function padding
  objtool: Add option to generate prefix symbols
  objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
  objtool: Slice up elf_create_section_symbol()
  kallsyms: Revert "Take callthunks into account"
  x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
  x86/retpoline: Fix crash printing warning
  x86/paravirt: Fix a !PARAVIRT build warning
  ...
2022-12-14 15:03:00 -08:00
Ard Biesheuvel
cc3fdda287 x86/efi: Make the deprecated EFI handover protocol optional
The EFI handover protocol permits a bootloader to invoke the kernel as a
EFI PE/COFF application, while passing a bootparams struct as a third
argument to the entrypoint function call.

This has no basis in the UEFI specification, and there are better ways
to pass additional data to a UEFI application (UEFI configuration
tables, UEFI variables, UEFI protocols) than going around the
StartImage() boot service and jumping to a fixed offset in the loaded
image, just to call a different function that takes a third parameter.

The reason for handling struct bootparams in the bootloader was that the
EFI stub could only load initrd images from the EFI system partition,
and so passing it via struct bootparams was needed for loaders like
GRUB, which pass the initrd in memory, and may load it from anywhere,
including from the network. Another motivation was EFI mixed mode, which
could not use the initrd loader in the EFI stub at all due to 32/64 bit
incompatibilities (which will be fixed shortly [0]), and could not
invoke the ordinary PE/COFF entry point either, for the same reasons.

Given that loaders such as GRUB already carried the bootparams handling
in order to implement non-EFI boot, retaining that code and just passing
bootparams to the EFI stub was a reasonable choice (although defining an
alternate entrypoint could have been avoided.) However, the GRUB side
changes never made it upstream, and are only shipped by some of the
distros in their downstream versions.

In the meantime, EFI support has been added to other Linux architecture
ports, as well as to U-boot and systemd, including arch-agnostic methods
for passing initrd images in memory [1], and for doing mixed mode boot
[2], none of them requiring anything like the EFI handover protocol. So
given that only out-of-tree distro GRUB relies on this, let's permit it
to be omitted from the build, in preparation for retiring it completely
at a later date. (Note that systemd-boot does have an implementation as
well, but only uses it as a fallback for booting images that do not
implement the LoadFile2 based initrd loading method, i.e., v5.8 or older)

[0] https://lore.kernel.org/all/20220927085842.2860715-1-ardb@kernel.org/
[1] ec93fc371f ("efi/libstub: Add support for loading the initrd from a device path")
[2] 97aa276579 ("efi/x86: Add true mixed mode entry point into .compat section")

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-18-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
30c9ca16a5 x86/boot/compressed: Adhere to calling convention in get_sev_encryption_bit()
Make get_sev_encryption_bit() follow the ordinary i386 calling
convention, and only call it if CONFIG_AMD_MEM_ENCRYPT is actually
enabled. This clarifies the calling code, and makes it more
maintainable.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-16-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
9d7eaae6a0 x86/boot/compressed: Move startup32_check_sev_cbit() out of head_64.S
Now that the startup32_check_sev_cbit() routine can execute from
anywhere and behaves like an ordinary function, it can be moved where it
belongs.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-15-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
b5d854cd4b x86/boot/compressed: Move startup32_check_sev_cbit() into .text
Move startup32_check_sev_cbit() into the .text section and turn it into
an ordinary function using the ordinary 32-bit calling convention,
instead of saving/restoring the registers that are known to be live at
the only call site. This improves maintainability, and makes it possible
to move this function out of head_64.S and into a separate compilation
unit that is specific to memory encryption.

Note that this requires the call site to be moved before the mixed mode
check, as %eax will be live otherwise.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-14-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
9ea813be3d x86/boot/compressed: Move startup32_load_idt() out of head_64.S
Now that startup32_load_idt() has been refactored into an ordinary
callable function, move it into mem-encrypt.S where it belongs.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-13-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
c6355995ba x86/boot/compressed: Move startup32_load_idt() into .text section
Convert startup32_load_idt() into an ordinary function and move it into
the .text section. This involves turning the rva() immediates into ones
derived from a local label, and preserving/restoring the %ebp and %ebx
as per the calling convention.

Also move the #ifdef to the only existing call site. This makes it clear
that the function call does nothing if support for memory encryption is
not compiled in.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-12-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
d73a257f7f x86/boot/compressed: Pull global variable reference into startup32_load_idt()
In preparation for moving startup32_load_idt() out of head_64.S and
turning it into an ordinary function using the ordinary 32-bit calling
convention, pull the global variable reference to boot32_idt up into
startup32_load_idt() so that startup32_set_idt_entry() does not need to
discover its own runtime physical address, which will no longer be
correlated with startup_32 once this code is moved into .text.

While at it, give startup32_set_idt_entry() static linkage.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-11-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
6aac80a8da x86/boot/compressed: Avoid touching ECX in startup32_set_idt_entry()
Avoid touching register %ecx in startup32_set_idt_entry(), by folding
the MOV, SHL and ORL instructions into a single ORL which no longer
requires a temp register.

This permits ECX to be used as a function argument in a subsequent
patch.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-10-ardb@kernel.org
2022-11-24 08:57:41 +01:00
Ard Biesheuvel
4b52016247 x86/boot/compressed, efi: Merge multiple definitions of image_offset into one
There is no need for head_32.S and head_64.S both declaring a copy of
the global 'image_offset' variable, so drop those and make the extern C
declaration the definition.

When image_offset is moved to the .c file, it needs to be placed
particularly in the .data section because it lands by default in the
.bss section which is cleared too late, in .Lrelocated, before the first
access to it and thus garbage gets read, leading to SEV guests exploding
in early boot.

This happens only when the SEV guest kernel is loaded through grub. If
supplied with qemu's -kernel command line option, that memory is always
cleared upfront by qemu and all is fine there.

  [ bp: Expand commit message with SEV aspect. ]

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-8-ardb@kernel.org
2022-11-24 08:55:55 +01:00
Ard Biesheuvel
7f22ca3967 x86/boot/compressed: Move efi32_pe_entry() out of head_64.S
Move the implementation of efi32_pe_entry() into efi-mixed.S, which is a
more suitable location that only gets built if EFI mixed mode is
actually enabled.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-7-ardb@kernel.org
2022-11-22 19:24:57 +01:00
Ard Biesheuvel
73a6dec80e x86/boot/compressed: Move efi32_entry out of head_64.S
Move the efi32_entry() routine out of head_64.S and into efi-mixed.S,
which reduces clutter in the complicated startup routines. It also
permits linkage of some symbols used by code to be made local.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-6-ardb@kernel.org
2022-11-22 19:24:09 +01:00
Ard Biesheuvel
91592b5c0c x86/boot/compressed: Move efi32_pe_entry into .text section
Move efi32_pe_entry() into the .text section, so that it can be moved
out of head_64.S and into a separate compilation unit in a subsequent
patch.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-5-ardb@kernel.org
2022-11-22 19:23:01 +01:00
Ard Biesheuvel
5c3a85f35b x86/boot/compressed: Move bootargs parsing out of 32-bit startup code
Move the logic that chooses between the different EFI entrypoints out of
the 32-bit boot path, and into a 64-bit helper that can perform the same
task much more cleanly. While at it, document the mixed mode boot flow
in a code comment.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-4-ardb@kernel.org
2022-11-22 19:21:26 +01:00
Ard Biesheuvel
e2ab9eab32 x86/boot/compressed: Move 32-bit entrypoint code into .text section
Move the code that stores the arguments passed to the EFI entrypoint
into the .text section, so that it can be moved into a separate
compilation unit in a subsequent patch.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221122161017.2426828-3-ardb@kernel.org
2022-11-22 19:03:56 +01:00
Peter Zijlstra
d49a062621 arch: Introduce CONFIG_FUNCTION_ALIGNMENT
Generic function-alignment infrastructure.

Architectures can select FUNCTION_ALIGNMENT_xxB symbols; the
FUNCTION_ALIGNMENT symbol is then set to the largest such selected
size, 0 otherwise.

From this the -falign-functions compiler argument and __ALIGN macro
are set.

This incorporates the DEBUG_FORCE_FUNCTION_ALIGN_64B knob and future
alignment requirements for x86_64 (later in this series) into a single
place.

NOTE: also removes the 0x90 filler byte from the generic __ALIGN
      primitive, that value makes no sense outside of x86.

NOTE: .balign 0 reverts to a no-op.

Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.719248727@infradead.org
2022-10-17 16:40:58 +02:00
Linus Torvalds
3a755ebcc2 Intel Trust Domain Extensions
This is the Intel version of a confidential computing solution called
 Trust Domain Extensions (TDX). This series adds support to run the
 kernel as part of a TDX guest. It provides similar guest protections to
 AMD's SEV-SNP like guest memory and register state encryption, memory
 integrity protection and a lot more.
 
 Design-wise, it differs from AMD's solution considerably: it uses
 a software module which runs in a special CPU mode called (Secure
 Arbitration Mode) SEAM. As the name suggests, this module serves as sort
 of an arbiter which the confidential guest calls for services it needs
 during its lifetime.
 
 Just like AMD's SNP set, this series reworks and streamlines certain
 parts of x86 arch code so that this feature can be properly accomodated.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLbisACgkQEsHwGGHe
 VUqZLg/7B55iygCwzz0W/KLcXL2cISatUpzGbFs1XTbE9DMz06BPkOsEjF2k8ckv
 kfZjgqhSx3GvUI80gK0Tn2M2DfIj3nKuNSXd1pfextP7AxEf68FFJsQz1Ju7bHpT
 pZaG+g8IK4+mnEHEKTCO9ANg/Zw8yqJLdtsCaCNE9SUGUfQ6m/ujTEfsambXDHNm
 khyCAgpIGSOt51/4apoR9ebyrNCaeVbDawpIPjTy+iyFRc/WyaLFV9CQ8klw4gbw
 r/90x2JYxvAf0/z/ifT9Wa+TnYiQ0d4VjFbfr0iJ4GcPn5L3EIoIKPE8vPGMpoSX
 fLSzoNmAOT3ja57ytUUQ3o0edoRUIPEdixOebf9qWvE/aj7W37YRzrlJ8Ej/x9Jy
 HcI4WZF6Dr1bh6FnI/xX2eVZRzLOL4j9gNyPCwIbvgr1NjDqQnxU7nhxVMmQhJrs
 IdiEcP5WYerLKfka/uF//QfWUg5mDBgFa1/3xK57Z3j0iKWmgjaPpR0SWlOKjj8G
 tr0gGN9ejikZTqXKGsHn8fv/R3bjXvbVD8z0IEcx+MIrRmZPnX2QBlg7UA1AXV5n
 HoVwPFdH1QAtjZq1MRcL4hTOjz3FkS68rg7ZH0f2GWJAzWmEGytBIhECRnN/PFFq
 VwRB4dCCt0bzqRxkiH5lzdgR+xqRe61juQQsMzg+Flv/trpXDqM=
 =ac9K
 -----END PGP SIGNATURE-----

Merge tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull Intel TDX support from Borislav Petkov:
 "Intel Trust Domain Extensions (TDX) support.

  This is the Intel version of a confidential computing solution called
  Trust Domain Extensions (TDX). This series adds support to run the
  kernel as part of a TDX guest. It provides similar guest protections
  to AMD's SEV-SNP like guest memory and register state encryption,
  memory integrity protection and a lot more.

  Design-wise, it differs from AMD's solution considerably: it uses a
  software module which runs in a special CPU mode called (Secure
  Arbitration Mode) SEAM. As the name suggests, this module serves as
  sort of an arbiter which the confidential guest calls for services it
  needs during its lifetime.

  Just like AMD's SNP set, this series reworks and streamlines certain
  parts of x86 arch code so that this feature can be properly
  accomodated"

* tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  x86/tdx: Fix RETs in TDX asm
  x86/tdx: Annotate a noreturn function
  x86/mm: Fix spacing within memory encryption features message
  x86/kaslr: Fix build warning in KASLR code in boot stub
  Documentation/x86: Document TDX kernel architecture
  ACPICA: Avoid cache flush inside virtual machines
  x86/tdx/ioapic: Add shared bit for IOAPIC base address
  x86/mm: Make DMA memory shared for TD guest
  x86/mm/cpa: Add support for TDX shared memory
  x86/tdx: Make pages shared in ioremap()
  x86/topology: Disable CPU online/offline control for TDX guests
  x86/boot: Avoid #VE during boot for TDX platforms
  x86/boot: Set CR0.NE early and keep it set during the boot
  x86/acpi/x86/boot: Add multiprocessor wake-up support
  x86/boot: Add a trampoline for booting APs via firmware handoff
  x86/tdx: Wire up KVM hypercalls
  x86/tdx: Port I/O: Add early boot support
  x86/tdx: Port I/O: Add runtime hypercalls
  x86/boot: Port I/O: Add decompression-time support for TDX
  x86/boot: Port I/O: Allow to hook up alternative helpers
  ...
2022-05-23 17:51:12 -07:00
Sean Christopherson
77a512e35d x86/boot: Avoid #VE during boot for TDX platforms
There are a few MSRs and control register bits that the kernel
normally needs to modify during boot. But, TDX disallows
modification of these registers to help provide consistent security
guarantees. Fortunately, TDX ensures that these are all in the correct
state before the kernel loads, which means the kernel does not need to
modify them.

The conditions to avoid are:

 * Any writes to the EFER MSR
 * Clearing CR4.MCE

This theoretically makes the guest boot more fragile. If, for instance,
EFER was set up incorrectly and a WRMSR was performed, it will trigger
early exception panic or a triple fault, if it's before early
exceptions are set up. However, this is likely to trip up the guest
BIOS long before control reaches the kernel. In any case, these kinds
of problems are unlikely to occur in production environments, and
developers have good debug tools to fix them quickly.

Change the common boot code to work on TDX and non-TDX systems.
This should have no functional effect on non-TDX systems.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-24-kirill.shutemov@linux.intel.com
2022-04-07 08:27:53 -07:00
Kirill A. Shutemov
9cf3060640 x86/boot: Set CR0.NE early and keep it set during the boot
TDX guest requires CR0.NE to be set. Clearing the bit triggers #GP(0).

If CR0.NE is 0, the MS-DOS compatibility mode for handling floating-point
exceptions is selected. In this mode, the software exception handler for
floating-point exceptions is invoked externally using the processor’s
FERR#, INTR, and IGNNE# pins.

Using FERR# and IGNNE# to handle floating-point exception is deprecated.
CR0.NE=0 also limits newer processors to operate with one logical
processor active.

Kernel uses CR0_STATE constant to initialize CR0. It has NE bit set.
But during early boot kernel has more ad-hoc approach to setting bit
in the register. During some of this ad-hoc manipulation, CR0.NE is
cleared. This causes a #GP in TDX guests and makes it die in early boot.

Make CR0 initialization consistent, deriving the initial value of CR0
from CR0_STATE. Since CR0_STATE always has CR0.NE=1, this ensures that
CR0.NE is never 0 and avoids the #GP.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-23-kirill.shutemov@linux.intel.com
2022-04-07 08:27:53 -07:00
Michael Roth
ec1c66af3a x86/compressed/64: Detect/setup SEV/SME features earlier during boot
With upcoming SEV-SNP support, SEV-related features need to be
initialized earlier during boot, at the same point the initial #VC
handler is set up, so that the SEV-SNP CPUID table can be utilized
during the initial feature checks. Also, SEV-SNP feature detection
will rely on EFI helper functions to scan the EFI config table for the
Confidential Computing blob, and so would need to be implemented at
least partially in C.

Currently set_sev_encryption_mask() is used to initialize the
sev_status and sme_me_mask globals that advertise what SEV/SME features
are available in a guest. Rename it to sev_enable() to better reflect
that (SME is only enabled in the case of SEV guests in the
boot/compressed kernel), and move it to just after the stage1 #VC
handler is set up so that it can be used to initialize SEV-SNP as well
in future patches.

While at it, re-implement it as C code so that all SEV feature
detection can be better consolidated with upcoming SEV-SNP feature
detection, which will also be in C.

The 32-bit entry path remains unchanged, as it never relied on the
set_sev_encryption_mask() initialization to begin with.

  [ bp: Massage commit message. ]

Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-8-brijesh.singh@amd.com
2022-04-06 13:02:21 +02:00
Mark Rutland
7be2e31964 x86: clean up symbol aliasing
Now that we have SYM_FUNC_ALIAS() and SYM_FUNC_ALIAS_WEAK(), use those
to simplify the definition of function aliases across arch/x86.

For clarity, where there are multiple annotations such as
EXPORT_SYMBOL(), I've tried to keep annotations grouped by symbol. For
example, where a function has a name and an alias which are both
exported, this is organised as:

	SYM_FUNC_START(func)
	    ... asm insns ...
	SYM_FUNC_END(func)
	EXPORT_SYMBOL(func)

	SYM_FUNC_ALIAS(alias, func)
	EXPORT_SYMBOL(alias)

Where there are only aliases and no exports or other annotations, I have
not bothered with line spacing, e.g.

	SYM_FUNC_START(func)
	    ... asm insns ...
	SYM_FUNC_END(func)
	SYM_FUNC_ALIAS(alias, func)

The tools/perf/ copies of memset_64.S and memset_64.S are updated
likewise to avoid the build system complaining these are mismatched:

| Warning: Kernel ABI header at 'tools/arch/x86/lib/memcpy_64.S' differs from latest version at 'arch/x86/lib/memcpy_64.S'
| diff -u tools/arch/x86/lib/memcpy_64.S arch/x86/lib/memcpy_64.S
| Warning: Kernel ABI header at 'tools/arch/x86/lib/memset_64.S' differs from latest version at 'arch/x86/lib/memset_64.S'
| diff -u tools/arch/x86/lib/memset_64.S arch/x86/lib/memset_64.S

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Mark Brown <broonie@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220216162229.1076788-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2022-02-22 16:21:34 +00:00
Peter Zijlstra
f94909ceb1 x86: Prepare asm files for straight-line-speculation
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.

  find arch/x86/ -name \*.S | while read file
  do
	sed -i 's/\<ret[q]*\>/RET/' $file
  done

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
2021-12-08 12:25:37 +01:00
Joerg Roedel
22aa45cb46 x86/efi: Restore Firmware IDT before calling ExitBootServices()
Commit

  79419e13e8 ("x86/boot/compressed/64: Setup IDT in startup_32 boot path")

introduced an IDT into the 32-bit boot path of the decompressor stub.
But the IDT is set up before ExitBootServices() is called, and some UEFI
firmwares rely on their own IDT.

Save the firmware IDT on boot and restore it before calling into EFI
functions to fix boot failures introduced by above commit.

Fixes: 79419e13e8 ("x86/boot/compressed/64: Setup IDT in startup_32 boot path")
Reported-by: Fabio Aiuto <fabioaiuto83@gmail.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org # 5.13+
Link: https://lkml.kernel.org/r/20210820125703.32410-1-joro@8bytes.org
2021-08-21 17:57:04 +02:00
Linus Torvalds
ea5bc7b977 Trivial cleanups and fixes all over the place.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
 VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
 +HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
 /uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
 4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
 lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
 LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
 sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
 kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
 dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
 wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
 Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
 =bO1i
 -----END PGP SIGNATURE-----

Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Borislav Petkov:
 "Trivial cleanups and fixes all over the place"

* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  MAINTAINERS: Remove me from IDE/ATAPI section
  x86/pat: Do not compile stubbed functions when X86_PAT is off
  x86/asm: Ensure asm/proto.h can be included stand-alone
  x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
  x86/msr: Make locally used functions static
  x86/cacheinfo: Remove unneeded dead-store initialization
  x86/process/64: Move cpu_current_top_of_stack out of TSS
  tools/turbostat: Unmark non-kernel-doc comment
  x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
  x86/fpu/math-emu: Fix function cast warning
  x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
  x86: Fix various typos in comments, take #2
  x86: Remove unusual Unicode characters from comments
  x86/kaslr: Return boolean values from a function returning bool
  x86: Fix various typos in comments
  x86/setup: Remove unused RESERVE_BRK_ARRAY()
  stacktrace: Move documentation for arch_stack_walk_reliable() to header
  x86: Remove duplicate TSC DEADLINE MSR definitions
2021-04-26 09:25:47 -07:00
Ingo Molnar
163b099146 x86: Fix various typos in comments, take #2
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-21 23:50:28 +01:00
Joerg Roedel
fef81c8626 x86/boot/compressed/64: Check SEV encryption in the 32-bit boot-path
Check whether the hypervisor reported the correct C-bit when running
as an SEV guest. Using a wrong C-bit position could be used to leak
sensitive data from the guest to the hypervisor.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210312123824.306-8-joro@8bytes.org
2021-03-18 23:04:12 +01:00
Joerg Roedel
1ccdbf748d x86/boot/compressed/64: Add 32-bit boot #VC handler
Add a #VC exception handler which is used when the kernel still executes
in protected mode. This boot-path already uses CPUID, which will cause #VC
exceptions in an SEV-ES guest.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210312123824.306-6-joro@8bytes.org
2021-03-18 23:03:43 +01:00
Joerg Roedel
79419e13e8 x86/boot/compressed/64: Setup IDT in startup_32 boot path
This boot path needs exception handling when it is used with SEV-ES.
Setup an IDT and provide a helper function to write IDT entries for
use in 32-bit protected mode.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210312123824.306-5-joro@8bytes.org
2021-03-18 16:44:46 +01:00
Joerg Roedel
0c289ff81c x86/boot/compressed/64: Reload CS in startup_32
Exception handling in the startup_32 boot path requires the CS
selector to be correctly set up. Reload it from the current GDT.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210312123824.306-4-joro@8bytes.org
2021-03-18 16:44:43 +01:00
Uros Bizjak
ab09b58e4b x86/boot/compressed/64: Use TEST %reg,%reg instead of CMP $0,%reg
Use TEST %reg,%reg which sets the zero flag in the same way as CMP
$0,%reg, but the encoding uses one byte less.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20201029160258.139216-1-ubizjak@gmail.com
2020-11-21 10:26:25 +01:00
Arvind Sankar
b17a45b6e5 x86/boot/64: Explicitly map boot_params and command line
Commits

  ca0e22d4f0 ("x86/boot/compressed/64: Always switch to own page table")
  8570978ea0 ("x86/boot/compressed/64: Don't pre-map memory in KASLR code")

set up a new page table in the decompressor stub, but without explicit
mappings for boot_params and the kernel command line, relying on the #PF
handler instead.

This is fragile, as boot_params and the command line mappings are
required for the main kernel. If EARLY_PRINTK and RANDOMIZE_BASE are
disabled, a QEMU/OVMF boot never accesses the command line in the
decompressor stub, and so it never gets mapped. The main kernel accesses
it from the identity mapping if AMD_MEM_ENCRYPT is enabled, and will
crash.

Fix this by adding back the explicit mapping of boot_params and the
command line.

Note: the changes also removed the explicit mapping of the main kernel,
with the result that .bss and .brk may not be in the identity mapping,
but those don't get accessed by the main kernel before it switches to
its own page tables.

 [ bp: Pass boot_params with a MOV %rsp... instead of PUSH/POP. Use
   block formatting for the comment. ]

Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20201016200404.1615994-1-nivedita@alum.mit.edu
2020-10-19 19:39:50 +02:00