mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
656 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
63eb28bb14 |
ARM:
- Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts. - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface. - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally. - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range. - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor. - Convert more system register sanitization to the config-driven implementation. - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls. - Various cleanups and minor fixes. LoongArch: - Add stat information for in-kernel irqchip - Add tracepoints for CPUCFG and CSR emulation exits - Enhance in-kernel irqchip emulation - Various cleanups. RISC-V: - Enable ring-based dirty memory tracking - Improve perf kvm stat to report interrupt events - Delegate illegal instruction trap to VS-mode - MMU improvements related to upcoming nested virtualization s390x - Fixes x86: - Add CONFIG_KVM_IOAPIC for x86 to allow disabling support for I/O APIC, PIC, and PIT emulation at compile time. - Share device posted IRQ code between SVM and VMX and harden it against bugs and runtime errors. - Use vcpu_idx, not vcpu_id, for GA log tag/metadata, to make lookups O(1) instead of O(n). - For MMIO stale data mitigation, track whether or not a vCPU has access to (host) MMIO based on whether the page tables have MMIO pfns mapped; using VFIO is prone to false negatives - Rework the MSR interception code so that the SVM and VMX APIs are more or less identical. - Recalculate all MSR intercepts from scratch on MSR filter changes, instead of maintaining shadow bitmaps. - Advertise support for LKGS (Load Kernel GS base), a new instruction that's loosely related to FRED, but is supported and enumerated independently. - Fix a user-triggerable WARN that syzkaller found by setting the vCPU in INIT_RECEIVED state (aka wait-for-SIPI), and then putting the vCPU into VMX Root Mode (post-VMXON). Trying to detect every possible path leading to architecturally forbidden states is hard and even risks breaking userspace (if it goes from valid to valid state but passes through invalid states), so just wait until KVM_RUN to detect that the vCPU state isn't allowed. - Add KVM_X86_DISABLE_EXITS_APERFMPERF to allow disabling interception of APERF/MPERF reads, so that a "properly" configured VM can access APERF/MPERF. This has many caveats (APERF/MPERF cannot be zeroed on vCPU creation or saved/restored on suspend and resume, or preserved over thread migration let alone VM migration) but can be useful whenever you're interested in letting Linux guests see the effective physical CPU frequency in /proc/cpuinfo. - Reject KVM_SET_TSC_KHZ for vm file descriptors if vCPUs have been created, as there's no known use case for changing the default frequency for other VM types and it goes counter to the very reason why the ioctl was added to the vm file descriptor. And also, there would be no way to make it work for confidential VMs with a "secure" TSC, so kill two birds with one stone. - Dynamically allocation the shadow MMU's hashed page list, and defer allocating the hashed list until it's actually needed (the TDP MMU doesn't use the list). - Extract many of KVM's helpers for accessing architectural local APIC state to common x86 so that they can be shared by guest-side code for Secure AVIC. - Various cleanups and fixes. x86 (Intel): - Preserve the host's DEBUGCTL.FREEZE_IN_SMM when running the guest. Failure to honor FREEZE_IN_SMM can leak host state into guests. - Explicitly check vmcs12.GUEST_DEBUGCTL on nested VM-Enter to prevent L1 from running L2 with features that KVM doesn't support, e.g. BTF. x86 (AMD): - WARN and reject loading kvm-amd.ko instead of panicking the kernel if the nested SVM MSRPM offsets tracker can't handle an MSR (which is pretty much a static condition and therefore should never happen, but still). - Fix a variety of flaws and bugs in the AVIC device posted IRQ code. - Inhibit AVIC if a vCPU's ID is too big (relative to what hardware supports) instead of rejecting vCPU creation. - Extend enable_ipiv module param support to SVM, by simply leaving IsRunning clear in the vCPU's physical ID table entry. - Disable IPI virtualization, via enable_ipiv, if the CPU is affected by erratum #1235, to allow (safely) enabling AVIC on such CPUs. - Request GA Log interrupts if and only if the target vCPU is blocking, i.e. only if KVM needs a notification in order to wake the vCPU. - Intercept SPEC_CTRL on AMD if the MSR shouldn't exist according to the vCPU's CPUID model. - Accept any SNP policy that is accepted by the firmware with respect to SMT and single-socket restrictions. An incompatible policy doesn't put the kernel at risk in any way, so there's no reason for KVM to care. - Drop a superfluous WBINVD (on all CPUs!) when destroying a VM and use WBNOINVD instead of WBINVD when possible for SEV cache maintenance. - When reclaiming memory from an SEV guest, only do cache flushes on CPUs that have ever run a vCPU for the guest, i.e. don't flush the caches for CPUs that can't possibly have cache lines with dirty, encrypted data. Generic: - Rework irqbypass to track/match producers and consumers via an xarray instead of a linked list. Using a linked list leads to O(n^2) insertion times, which is hugely problematic for use cases that create large numbers of VMs. Such use cases typically don't actually use irqbypass, but eliminating the pointless registration is a future problem to solve as it likely requires new uAPI. - Track irqbypass's "token" as "struct eventfd_ctx *" instead of a "void *", to avoid making a simple concept unnecessarily difficult to understand. - Decouple device posted IRQs from VFIO device assignment, as binding a VM to a VFIO group is not a requirement for enabling device posted IRQs. - Clean up and document/comment the irqfd assignment code. - Disallow binding multiple irqfds to an eventfd with a priority waiter, i.e. ensure an eventfd is bound to at most one irqfd through the entire host, and add a selftest to verify eventfd:irqfd bindings are globally unique. - Add a tracepoint for KVM_SET_MEMORY_ATTRIBUTES to help debug issues related to private <=> shared memory conversions. - Drop guest_memfd's .getattr() implementation as the VFS layer will call generic_fillattr() if inode_operations.getattr is NULL. - Fix issues with dirty ring harvesting where KVM doesn't bound the processing of entries in any way, which allows userspace to keep KVM in a tight loop indefinitely. - Kill off kvm_arch_{start,end}_assignment() and x86's associated tracking, now that KVM no longer uses assigned_device_count as a heuristic for either irqbypass usage or MDS mitigation. Selftests: - Fix a comment typo. - Verify KVM is loaded when getting any KVM module param so that attempting to run a selftest without kvm.ko loaded results in a SKIP message about KVM not being loaded/enabled (versus some random parameter not existing). - Skip tests that hit EACCES when attempting to access a file, and rpint a "Root required?" help message. In most cases, the test just needs to be run with elevated permissions. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmiKXMgUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroMhMQf/QDhC/CP1aGXph2whuyeD2NMqPKiU 9KdnDNST+ftPwjg9QxZ9mTaa8zeVz/wly6XlxD9OQHy+opM1wcys3k0GZAFFEEQm YrThgURdzEZ3nwJZgb+m0t4wjJQtpiFIBwAf7qq6z1VrqQBEmHXJ/8QxGuqO+BNC j5q/X+q6KZwehKI6lgFBrrOKWFaxqhnRAYfW6rGBxRXxzTJuna37fvDpodQnNceN zOiq+avfriUMArTXTqOteJNKU0229HjiPSnjILLnFQ+B3akBlwNG0jk7TMaAKR6q IZWG1EIS9q1BAkGXaw6DE1y6d/YwtXCR5qgAIkiGwaPt5yj9Oj6kRN2Ytw== =j2At -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor - Convert more system register sanitization to the config-driven implementation - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls - Various cleanups and minor fixes LoongArch: - Add stat information for in-kernel irqchip - Add tracepoints for CPUCFG and CSR emulation exits - Enhance in-kernel irqchip emulation - Various cleanups RISC-V: - Enable ring-based dirty memory tracking - Improve perf kvm stat to report interrupt events - Delegate illegal instruction trap to VS-mode - MMU improvements related to upcoming nested virtualization s390x - Fixes x86: - Add CONFIG_KVM_IOAPIC for x86 to allow disabling support for I/O APIC, PIC, and PIT emulation at compile time - Share device posted IRQ code between SVM and VMX and harden it against bugs and runtime errors - Use vcpu_idx, not vcpu_id, for GA log tag/metadata, to make lookups O(1) instead of O(n) - For MMIO stale data mitigation, track whether or not a vCPU has access to (host) MMIO based on whether the page tables have MMIO pfns mapped; using VFIO is prone to false negatives - Rework the MSR interception code so that the SVM and VMX APIs are more or less identical - Recalculate all MSR intercepts from scratch on MSR filter changes, instead of maintaining shadow bitmaps - Advertise support for LKGS (Load Kernel GS base), a new instruction that's loosely related to FRED, but is supported and enumerated independently - Fix a user-triggerable WARN that syzkaller found by setting the vCPU in INIT_RECEIVED state (aka wait-for-SIPI), and then putting the vCPU into VMX Root Mode (post-VMXON). Trying to detect every possible path leading to architecturally forbidden states is hard and even risks breaking userspace (if it goes from valid to valid state but passes through invalid states), so just wait until KVM_RUN to detect that the vCPU state isn't allowed - Add KVM_X86_DISABLE_EXITS_APERFMPERF to allow disabling interception of APERF/MPERF reads, so that a "properly" configured VM can access APERF/MPERF. This has many caveats (APERF/MPERF cannot be zeroed on vCPU creation or saved/restored on suspend and resume, or preserved over thread migration let alone VM migration) but can be useful whenever you're interested in letting Linux guests see the effective physical CPU frequency in /proc/cpuinfo - Reject KVM_SET_TSC_KHZ for vm file descriptors if vCPUs have been created, as there's no known use case for changing the default frequency for other VM types and it goes counter to the very reason why the ioctl was added to the vm file descriptor. And also, there would be no way to make it work for confidential VMs with a "secure" TSC, so kill two birds with one stone - Dynamically allocation the shadow MMU's hashed page list, and defer allocating the hashed list until it's actually needed (the TDP MMU doesn't use the list) - Extract many of KVM's helpers for accessing architectural local APIC state to common x86 so that they can be shared by guest-side code for Secure AVIC - Various cleanups and fixes x86 (Intel): - Preserve the host's DEBUGCTL.FREEZE_IN_SMM when running the guest. Failure to honor FREEZE_IN_SMM can leak host state into guests - Explicitly check vmcs12.GUEST_DEBUGCTL on nested VM-Enter to prevent L1 from running L2 with features that KVM doesn't support, e.g. BTF x86 (AMD): - WARN and reject loading kvm-amd.ko instead of panicking the kernel if the nested SVM MSRPM offsets tracker can't handle an MSR (which is pretty much a static condition and therefore should never happen, but still) - Fix a variety of flaws and bugs in the AVIC device posted IRQ code - Inhibit AVIC if a vCPU's ID is too big (relative to what hardware supports) instead of rejecting vCPU creation - Extend enable_ipiv module param support to SVM, by simply leaving IsRunning clear in the vCPU's physical ID table entry - Disable IPI virtualization, via enable_ipiv, if the CPU is affected by erratum #1235, to allow (safely) enabling AVIC on such CPUs - Request GA Log interrupts if and only if the target vCPU is blocking, i.e. only if KVM needs a notification in order to wake the vCPU - Intercept SPEC_CTRL on AMD if the MSR shouldn't exist according to the vCPU's CPUID model - Accept any SNP policy that is accepted by the firmware with respect to SMT and single-socket restrictions. An incompatible policy doesn't put the kernel at risk in any way, so there's no reason for KVM to care - Drop a superfluous WBINVD (on all CPUs!) when destroying a VM and use WBNOINVD instead of WBINVD when possible for SEV cache maintenance - When reclaiming memory from an SEV guest, only do cache flushes on CPUs that have ever run a vCPU for the guest, i.e. don't flush the caches for CPUs that can't possibly have cache lines with dirty, encrypted data Generic: - Rework irqbypass to track/match producers and consumers via an xarray instead of a linked list. Using a linked list leads to O(n^2) insertion times, which is hugely problematic for use cases that create large numbers of VMs. Such use cases typically don't actually use irqbypass, but eliminating the pointless registration is a future problem to solve as it likely requires new uAPI - Track irqbypass's "token" as "struct eventfd_ctx *" instead of a "void *", to avoid making a simple concept unnecessarily difficult to understand - Decouple device posted IRQs from VFIO device assignment, as binding a VM to a VFIO group is not a requirement for enabling device posted IRQs - Clean up and document/comment the irqfd assignment code - Disallow binding multiple irqfds to an eventfd with a priority waiter, i.e. ensure an eventfd is bound to at most one irqfd through the entire host, and add a selftest to verify eventfd:irqfd bindings are globally unique - Add a tracepoint for KVM_SET_MEMORY_ATTRIBUTES to help debug issues related to private <=> shared memory conversions - Drop guest_memfd's .getattr() implementation as the VFS layer will call generic_fillattr() if inode_operations.getattr is NULL - Fix issues with dirty ring harvesting where KVM doesn't bound the processing of entries in any way, which allows userspace to keep KVM in a tight loop indefinitely - Kill off kvm_arch_{start,end}_assignment() and x86's associated tracking, now that KVM no longer uses assigned_device_count as a heuristic for either irqbypass usage or MDS mitigation Selftests: - Fix a comment typo - Verify KVM is loaded when getting any KVM module param so that attempting to run a selftest without kvm.ko loaded results in a SKIP message about KVM not being loaded/enabled (versus some random parameter not existing) - Skip tests that hit EACCES when attempting to access a file, and print a "Root required?" help message. In most cases, the test just needs to be run with elevated permissions" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (340 commits) Documentation: KVM: Use unordered list for pre-init VGIC registers RISC-V: KVM: Avoid re-acquiring memslot in kvm_riscv_gstage_map() RISC-V: KVM: Use find_vma_intersection() to search for intersecting VMAs RISC-V: perf/kvm: Add reporting of interrupt events RISC-V: KVM: Enable ring-based dirty memory tracking RISC-V: KVM: Fix inclusion of Smnpm in the guest ISA bitmap RISC-V: KVM: Delegate illegal instruction fault to VS mode RISC-V: KVM: Pass VMID as parameter to kvm_riscv_hfence_xyz() APIs RISC-V: KVM: Factor-out g-stage page table management RISC-V: KVM: Add vmid field to struct kvm_riscv_hfence RISC-V: KVM: Introduce struct kvm_gstage_mapping RISC-V: KVM: Factor-out MMU related declarations into separate headers RISC-V: KVM: Use ncsr_xyz() in kvm_riscv_vcpu_trap_redirect() RISC-V: KVM: Implement kvm_arch_flush_remote_tlbs_range() RISC-V: KVM: Don't flush TLB when PTE is unchanged RISC-V: KVM: Replace KVM_REQ_HFENCE_GVMA_VMID_ALL with KVM_REQ_TLB_FLUSH RISC-V: KVM: Rename and move kvm_riscv_local_tlb_sanitize() RISC-V: KVM: Drop the return value of kvm_riscv_vcpu_aia_init() RISC-V: KVM: Check kvm_riscv_vcpu_alloc_vector_context() return value KVM: arm64: selftests: Add FEAT_RAS EL2 registers to get-reg-list ... |
||
![]() |
6fb44438a5 |
arm64 updates for 6.17:
Perf and PMU updates: - Add support for new (v3) Hisilicon SLLC and DDRC PMUs - Add support for Arm-NI PMU integrations that share interrupts between clock domains within a given instance - Allow SPE to be configured with a lower sample period than the minimum recommendation advertised by PMSIDR_EL1.Interval - Add suppport for Arm's "Branch Record Buffer Extension" (BRBE) - Adjust the perf watchdog period according to cpu frequency changes - Minor driver fixes and cleanups Hardware features: - Support for MTE store-only checking (FEAT_MTE_STORE_ONLY) - Support for reporting the non-address bits during a synchronous MTE tag check fault (FEAT_MTE_TAGGED_FAR) - Optimise the TLBI when folding/unfolding contiguous PTEs on hardware with FEAT_BBM (break-before-make) level 2 and no TLB conflict aborts Software features: - Enable HAVE_LIVEPATCH after implementing arch_stack_walk_reliable() and using the text-poke API for late module relocations - Force VMAP_STACK always on and change arm64_efi_rt_init() to use arch_alloc_vmap_stack() in order to avoid KASAN false positives ACPI: - Improve SPCR handling and messaging on systems lacking an SPCR table Debug: - Simplify the debug exception entry path - Drop redundant DBG_MDSCR_* macros Kselftests: - Cleanups and improvements for SME, SVE and FPSIMD tests Miscellaneous: - Optimise loop to reduce redundant operations in contpte_ptep_get() - Remove ISB when resetting POR_EL0 during signal handling - Mark the kernel as tainted on SEA and SError panic - Remove redundant gcs_free() call -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmiDkgoACgkQa9axLQDI XvFucQ//bYugRP5/Sdlrq5eDKWBGi1HufYzwfDEBLc4S75Eu8mGL/tuThfu9yFn+ qCowtt4U84HdWsZDTSVo6lym6v2vJUpGOMgXzepvJaFBRnqGv9X9NxH6RQO1LTnu Pm7rO+7I9tNpfuc7Zu9pHDggsJEw+WzVfmEF6WPSFlT9mUNv6NbSx4rbLQKU86Dm ouTqXaePEQZ5oiRXVasxyT0otGtiACD20WpgOtNjYGzsfUVwCf/C83V/2DLwwbhr 9cW9lCtFxA/yFdQcA9ThRzWZ9Eo5LAHqjGIq00+zOjuzgDbBtcTT79gpChkhovIR FBIsWHd9j9i3nYxzf4V4eRKQnyqS3NQWv7g7uKFwNgARif1Zk0VJ77QIlAYk5xLI ENTRjLKz5WNGGnhdkeCvDlVyxX+OktgcVTp3vqRxAKCRahMMUqBrwxiM8RzVF37e yzkEQayL8F7uZqy9H7Sjn48UpHZux6frJ1bBQw1oEvR9QmAoAdqavPMSAYIOT3Zr ze4WIljq/cFr3kBPIFP5pK1e0qYMHXZpSKIm8MAv6y/7KmQuVbMjZthpuPbLSIw0 Q7C0KalB8lToPIbO7qMni/he0dCN4K2+E1YHFTR+pzfcoLuW4rjSg7i8tqMLKMJ8 H+SeGLyPtM5A6bdAPTTpqefcgUUe7064ENUqrGUpDEynGXA7boE= =5h1C -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "A quick summary: perf support for Branch Record Buffer Extensions (BRBE), typical PMU hardware updates, small additions to MTE for store-only tag checking and exposing non-address bits to signal handlers, HAVE_LIVEPATCH enabled on arm64, VMAP_STACK forced on. There is also a TLBI optimisation on hardware that does not require break-before-make when changing the user PTEs between contiguous and non-contiguous. More details: Perf and PMU updates: - Add support for new (v3) Hisilicon SLLC and DDRC PMUs - Add support for Arm-NI PMU integrations that share interrupts between clock domains within a given instance - Allow SPE to be configured with a lower sample period than the minimum recommendation advertised by PMSIDR_EL1.Interval - Add suppport for Arm's "Branch Record Buffer Extension" (BRBE) - Adjust the perf watchdog period according to cpu frequency changes - Minor driver fixes and cleanups Hardware features: - Support for MTE store-only checking (FEAT_MTE_STORE_ONLY) - Support for reporting the non-address bits during a synchronous MTE tag check fault (FEAT_MTE_TAGGED_FAR) - Optimise the TLBI when folding/unfolding contiguous PTEs on hardware with FEAT_BBM (break-before-make) level 2 and no TLB conflict aborts Software features: - Enable HAVE_LIVEPATCH after implementing arch_stack_walk_reliable() and using the text-poke API for late module relocations - Force VMAP_STACK always on and change arm64_efi_rt_init() to use arch_alloc_vmap_stack() in order to avoid KASAN false positives ACPI: - Improve SPCR handling and messaging on systems lacking an SPCR table Debug: - Simplify the debug exception entry path - Drop redundant DBG_MDSCR_* macros Kselftests: - Cleanups and improvements for SME, SVE and FPSIMD tests Miscellaneous: - Optimise loop to reduce redundant operations in contpte_ptep_get() - Remove ISB when resetting POR_EL0 during signal handling - Mark the kernel as tainted on SEA and SError panic - Remove redundant gcs_free() call" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits) arm64/gcs: task_gcs_el0_enable() should use passed task arm64: Kconfig: Keep selects somewhat alphabetically ordered arm64: signal: Remove ISB when resetting POR_EL0 kselftest/arm64: Handle attempts to disable SM on SME only systems kselftest/arm64: Fix SVE write data generation for SME only systems kselftest/arm64: Test SME on SME only systems in fp-ptrace kselftest/arm64: Test FPSIMD format data writes via NT_ARM_SVE in fp-ptrace kselftest/arm64: Allow sve-ptrace to run on SME only systems arm64/mm: Drop redundant addr increment in set_huge_pte_at() kselftest/arm4: Provide local defines for AT_HWCAP3 arm64: Mark kernel as tainted on SAE and SError panic arm64/gcs: Don't call gcs_free() when releasing task_struct drivers/perf: hisi: Support PMUs with no interrupt drivers/perf: hisi: Relax the event number check of v2 PMUs drivers/perf: hisi: Add support for HiSilicon SLLC v3 PMU driver drivers/perf: hisi: Use ACPI driver_data to retrieve SLLC PMU information drivers/perf: hisi: Add support for HiSilicon DDRC v3 PMU driver drivers/perf: hisi: Simplify the probe process for each DDRC version perf/arm-ni: Support sharing IRQs within an NI instance perf/arm-ni: Consolidate CPU affinity handling ... |
||
![]() |
314b40b3b6 |
KVM/arm64 changes for 6.17, round #1
- Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts. - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface. - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally. - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range. - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor. - Convert more system register sanitization to the config-driven implementation. - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls. - Various cleanups and minor fixes. -----BEGIN PGP SIGNATURE----- iI0EABYIADUWIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCaIezbRccb2xpdmVyLnVw dG9uQGxpbnV4LmRldgAKCRCivnWIJHzdFr/eAQDY5NIG5cR6ZcAWnPQLmGWpz2ou pq4Jhn9E/mGR3n5L1AEAsJpfLLpOsmnLBdwfbjmW59gGsa8k3i5tjWEOJ6yzAwk= =r+sp -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.17' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 changes for 6.17, round #1 - Host driver for GICv5, the next generation interrupt controller for arm64, including support for interrupt routing, MSIs, interrupt translation and wired interrupts. - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on GICv5 hardware, leveraging the legacy VGIC interface. - Userspace control of the 'nASSGIcap' GICv3 feature, allowing userspace to disable support for SGIs w/o an active state on hardware that previously advertised it unconditionally. - Map supporting endpoints with cacheable memory attributes on systems with FEAT_S2FWB and DIC where KVM no longer needs to perform cache maintenance on the address range. - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest hypervisor to inject external aborts into an L2 VM and take traps of masked external aborts to the hypervisor. - Convert more system register sanitization to the config-driven implementation. - Fixes to the visibility of EL2 registers, namely making VGICv3 system registers accessible through the VGIC device instead of the ONE_REG vCPU ioctls. - Various cleanups and minor fixes. |
||
![]() |
ccd73c5782 |
GICv5 initial host support
Add host kernel support for the new arm64 GICv5 architecture, which is quite a departure from the previous ones. Include support for the full gamut of the architecture (interrupt routing and delivery to CPUs, wired interrupts, MSIs, and interrupt translation). -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmh45MYACgkQI9DQutE9 ekPa3w//b5FfQAXwSco2+zqfR80a914CkBchHWJ50S1XHxymikI0VWin+4nsFXz1 90/k52hz4a1rhjpMA0Z0rnEpzTpvyPckrfKDzUqf2Q8aAmfHMRw91kYvl2BII39O iWqEQKFRIxK5QR3mRt6C7mV8xth8zUbk/jPBdFbuB7iS/s8+Ayrxul9H4gHQsZqL f8fFZmFMKIIoshnWSr604510j0/jhj2lTXyesXGoNa/bBpPYsjOZeZByPaw+3RLS wGluBhMsbRk3gPzplVuPzMtQYLMinf2i08bhg4113zVvF1nvi1cs8ah28+HRH33X ZFIzClvWmCOu1zsYes49X8A6U2iJ4BL5Ndh9W6M3E7iH+pnzmYPsSuKL69welyvz 7qRJnoAkIooaWrgES+TVCDGqC4gBTClBWUZKMRa21GMwyyPLaPQZBnAmHzqbbFO1 k8WMcOVtvStc/Hd4Jc8GgbdWn5IRI6YAqIOEht1vYP9bKka8oj0nEt4I275bUlJP K2Qife4C6If8oAG+5Qu0dD6pAh7Pp6wylPm0EQ9AE5KCR4wWONOluvrSvU0WaAw6 2uk5H/lTl0l9onO84YKP2dkYNawkKLVWeYnKFtpT1HKRUt1OkF01NsGKYivE5xp3 qdsgyOYXR6r/MKa0ymfQ58y0txqTY7IQ/GSl44Sjh2WVU94Sp8A= =pB67 -----END PGP SIGNATURE----- Merge tag 'irqchip-gic-v5-host' into kvmarm/next GICv5 initial host support Add host kernel support for the new arm64 GICv5 architecture, which is quite a departure from the previous ones. Include support for the full gamut of the architecture (interrupt routing and delivery to CPUs, wired interrupts, MSIs, and interrupt translation). * tag 'irqchip-gic-v5-host': (32 commits) arm64: smp: Fix pNMI setup after GICv5 rework arm64: Kconfig: Enable GICv5 docs: arm64: gic-v5: Document booting requirements for GICv5 irqchip/gic-v5: Add GICv5 IWB support irqchip/gic-v5: Add GICv5 ITS support irqchip/msi-lib: Add IRQ_DOMAIN_FLAG_FWNODE_PARENT handling irqchip/gic-v3: Rename GICv3 ITS MSI parent PCI/MSI: Add pci_msi_map_rid_ctlr_node() helper function of/irq: Add of_msi_xlate() helper function irqchip/gic-v5: Enable GICv5 SMP booting irqchip/gic-v5: Add GICv5 LPI/IPI support irqchip/gic-v5: Add GICv5 IRS/SPI support irqchip/gic-v5: Add GICv5 PPI support arm64: Add support for GICv5 GSB barriers arm64: smp: Support non-SGIs for IPIs arm64: cpucaps: Add GICv5 CPU interface (GCIE) capability arm64: cpucaps: Rename GICv3 CPU interface capability arm64: Disable GICv5 read/write/instruction traps arm64/sysreg: Add ICH_HFGITR_EL2 arm64/sysreg: Add ICH_HFGWTR_EL2 ... Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
5b1ae9de71 |
Merge branch 'for-next/feat_mte_store_only' into for-next/core
* for-next/feat_mte_store_only: : MTE feature to restrict tag checking to store only operations kselftest/arm64/mte: Add MTE_STORE_ONLY testcases kselftest/arm64/mte: Preparation for mte store only test kselftest/arm64/abi: Add MTE_STORE_ONLY feature hwcap test KVM: arm64: Expose MTE_STORE_ONLY feature to guest arm64/hwcaps: Add MTE_STORE_ONLY hwcaps arm64/kernel: Support store-only mte tag check prctl: Introduce PR_MTE_STORE_ONLY arm64/cpufeature: Add MTE_STORE_ONLY feature |
||
![]() |
3ae8cef210 |
Merge branches 'for-next/livepatch', 'for-next/user-contig-bbml2', 'for-next/misc', 'for-next/acpi', 'for-next/debug-entry', 'for-next/feat_mte_tagged_far', 'for-next/kselftest', 'for-next/mdscr-cleanup' and 'for-next/vmap-stack', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: (23 commits) drivers/perf: hisi: Support PMUs with no interrupt drivers/perf: hisi: Relax the event number check of v2 PMUs drivers/perf: hisi: Add support for HiSilicon SLLC v3 PMU driver drivers/perf: hisi: Use ACPI driver_data to retrieve SLLC PMU information drivers/perf: hisi: Add support for HiSilicon DDRC v3 PMU driver drivers/perf: hisi: Simplify the probe process for each DDRC version perf/arm-ni: Support sharing IRQs within an NI instance perf/arm-ni: Consolidate CPU affinity handling perf/cxlpmu: Fix typos in cxl_pmu.c comments and documentation perf/cxlpmu: Remove unintended newline from IRQ name format string perf/cxlpmu: Fix devm_kcalloc() argument order in cxl_pmu_probe() perf: arm_spe: Relax period restriction perf: arm_pmuv3: Add support for the Branch Record Buffer Extension (BRBE) KVM: arm64: nvhe: Disable branch generation in nVHE guests arm64: Handle BRBE booting requirements arm64/sysreg: Add BRBE registers and fields perf/arm: Add missing .suppress_bind_attrs perf/arm-cmn: Reduce stack usage during discovery perf: imx9_perf: make the read-only array mask static const perf/arm-cmn: Broaden module description for wider interconnect support ... * for-next/livepatch: : Support for HAVE_LIVEPATCH on arm64 arm64: Kconfig: Keep selects somewhat alphabetically ordered arm64: Implement HAVE_LIVEPATCH arm64: stacktrace: Implement arch_stack_walk_reliable() arm64: stacktrace: Check kretprobe_find_ret_addr() return value arm64/module: Use text-poke API for late relocations. * for-next/user-contig-bbml2: : Optimise the TLBI when folding/unfolding contigous PTEs on hardware with BBML2 and no TLB conflict aborts arm64/mm: Elide tlbi in contpte_convert() under BBML2 iommu/arm: Add BBM Level 2 smmu feature arm64: Add BBM Level 2 cpu feature arm64: cpufeature: Introduce MATCH_ALL_EARLY_CPUS capability type * for-next/misc: : Miscellaneous arm64 patches arm64/gcs: task_gcs_el0_enable() should use passed task arm64: signal: Remove ISB when resetting POR_EL0 arm64/mm: Drop redundant addr increment in set_huge_pte_at() arm64: Mark kernel as tainted on SAE and SError panic arm64/gcs: Don't call gcs_free() when releasing task_struct arm64: fix unnecessary rebuilding when CONFIG_DEBUG_EFI=y arm64/mm: Optimize loop to reduce redundant operations of contpte_ptep_get arm64: pi: use 'targets' instead of extra-y in Makefile * for-next/acpi: : Various ACPI arm64 changes ACPI: Suppress misleading SPCR console message when SPCR table is absent ACPI: Return -ENODEV from acpi_parse_spcr() when SPCR support is disabled * for-next/debug-entry: : Simplify the debug exception entry path arm64: debug: remove debug exception registration infrastructure arm64: debug: split bkpt32 exception entry arm64: debug: split brk64 exception entry arm64: debug: split hardware watchpoint exception entry arm64: debug: split single stepping exception entry arm64: debug: refactor reinstall_suspended_bps() arm64: debug: split hardware breakpoint exception entry arm64: entry: Add entry and exit functions for debug exceptions arm64: debug: remove break/step handler registration infrastructure arm64: debug: call step handlers statically arm64: debug: call software breakpoint handlers statically arm64: refactor aarch32_break_handler() arm64: debug: clean up single_step_handler logic * for-next/feat_mte_tagged_far: : Support for reporting the non-address bits during a synchronous MTE tag check fault kselftest/arm64/mte: Add mtefar tests on check_mmap_options kselftest/arm64/mte: Refactor check_mmap_option test kselftest/arm64/mte: Add verification for address tag in signal handler kselftest/arm64/mte: Add address tag related macro and function kselftest/arm64/mte: Check MTE_FAR feature is supported kselftest/arm64/mte: Register mte signal handler with SA_EXPOSE_TAGBITS kselftest/arm64: Add MTE_FAR hwcap test KVM: arm64: Expose FEAT_MTE_TAGGED_FAR feature to guest arm64: Report address tag when FEAT_MTE_TAGGED_FAR is supported arm64/cpufeature: Add FEAT_MTE_TAGGED_FAR feature * for-next/kselftest: : Kselftest updates for arm64 kselftest/arm64: Handle attempts to disable SM on SME only systems kselftest/arm64: Fix SVE write data generation for SME only systems kselftest/arm64: Test SME on SME only systems in fp-ptrace kselftest/arm64: Test FPSIMD format data writes via NT_ARM_SVE in fp-ptrace kselftest/arm64: Allow sve-ptrace to run on SME only systems kselftest/arm4: Provide local defines for AT_HWCAP3 kselftest/arm64: Specify SVE data when testing VL set in sve-ptrace kselftest/arm64: Fix test for streaming FPSIMD write in sve-ptrace kselftest/arm64: Fix check for setting new VLs in sve-ptrace kselftest/arm64: Convert tpidr2 test to use kselftest.h * for-next/mdscr-cleanup: : Drop redundant DBG_MDSCR_* macros KVM: selftests: Change MDSCR_EL1 register holding variables as uint64_t arm64/debug: Drop redundant DBG_MDSCR_* macros * for-next/vmap-stack: : Force VMAP_STACK on arm64 arm64: remove CONFIG_VMAP_STACK checks from entry code arm64: remove CONFIG_VMAP_STACK checks from SDEI stack handling arm64: remove CONFIG_VMAP_STACK checks from stacktrace overflow logic arm64: remove CONFIG_VMAP_STACK conditionals from traps overflow stack arm64: remove CONFIG_VMAP_STACK conditionals from irq stack setup arm64: Remove CONFIG_VMAP_STACK conditionals from THREAD_SHIFT and THREAD_ALIGN arm64: efi: Remove CONFIG_VMAP_STACK check arm64: Mandate VMAP_STACK arm64: efi: Fix KASAN false positive for EFI runtime stack arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth() arm64/gcs: Don't call gcs_free() during flush_gcs() arm64: Restrict pagetable teardown to avoid false warning docs: arm64: Fix ICC_SRE_EL2 register typo in booting.rst |
||
![]() |
e3fd66620f |
arm64: Detect FEAT_DoubleFault2
KVM will soon support FEAT_DoubleFault2. Add a descriptor for the corresponding ID register field. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-3-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
bf49e73dde |
arm64: Detect FEAT_SCTLR2
KVM is about to pick up support for SCTLR2. Add cpucap for later use in the guest/host context switch hot path. Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250708172532.1699409-2-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
988699f9e6 |
arm64: cpucaps: Add GICv5 CPU interface (GCIE) capability
Implement the GCIE capability as a strict boot cpu capability to detect whether architectural GICv5 support is available in HW. Plug it in with a naming consistent with the existing GICv3 CPU interface capability. Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <maz@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-17-12e71f1b3528@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
0bb5b6faa0 |
arm64: cpucaps: Rename GICv3 CPU interface capability
In preparation for adding a GICv5 CPU interface capability, rework the existing GICv3 CPUIF capability - change its name and description so that the subsequent GICv5 CPUIF capability can be added with a more consistent naming on top. Suggested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <maz@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-16-12e71f1b3528@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
a75ad2fc76 |
arm64: Filter out SME hwcaps when FEAT_SME isn't implemented
We have a number of hwcaps for various SME subfeatures enumerated via ID_AA64SMFR0_EL1. Currently we advertise these without cross checking against the main SME feature, advertised in ID_AA64PFR1_EL1.SME which means that if the two are out of sync userspace can see a confusing situation where SME subfeatures are advertised without the base SME hwcap. This can be readily triggered by using the arm64.nosme override which only masks out ID_AA64PFR1_EL1.SME, and there have also been reports of VMMs which do the same thing. Fix this as we did previously for SVE in |
||
![]() |
f620372209 |
arm64/hwcaps: Add MTE_STORE_ONLY hwcaps
Since ARMv8.9, FEAT_MTE_STORE_ONLY can be used to restrict raise of tag check fault on store operation only. add MTE_STORE_ONLY hwcaps so that user can use this feature. Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com> Link: https://lore.kernel.org/r/20250618092957.2069907-5-yeoreum.yun@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
33e943a228 |
arm64/cpufeature: Add MTE_STORE_ONLY feature
Since ARMv8.9, FEAT_MTE_STORE_ONLY can be used to restrict raise of tag check fault on store operation only. add MTE_STORE_ONLY feature. Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20250618092957.2069907-2-yeoreum.yun@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
7c7f55039b |
arm64: Report address tag when FEAT_MTE_TAGGED_FAR is supported
If FEAT_MTE_TAGGED_FAR (Armv8.9) is supported, bits 63:60 of the fault address are preserved in response to synchronous tag check faults (SEGV_MTESERR). This patch modifies below to support this feature: - Use the original FAR_EL1 value when an MTE tag check fault occurs, if ARM64_MTE_FAR is supported so that not only logical tag (bits 59:56) but also address tag (bits 63:60] being reported too. - Add HWCAP for mtefar to let user know bits 63:60 includes address tag information when when FEAT_MTE_TAGGED_FAR is supported. Applications that require this information should install a signal handler with the SA_EXPOSE_TAGBITS flag. While this introduces a minor ABI change, most applications do not set this flag and therefore will not be affected. Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com> Link: https://lore.kernel.org/r/20250618084513.1761345-3-yeoreum.yun@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6698453689 |
arm64/cpufeature: Add FEAT_MTE_TAGGED_FAR feature
Add FEAT_MTE_TAGGED_FAR cpucap which makes FAR_ELx report all non-address bits on a synchronous MTE tag check fault since Armv8.9 Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Link: https://lore.kernel.org/r/20250618084513.1761345-2-yeoreum.yun@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
5aa4b62576 |
arm64: Add BBM Level 2 cpu feature
The Break-Before-Make cpu feature supports multiple levels (levels 0-2), and this commit adds a dedicated BBML2 cpufeature to test against support for. To support BBML2 in as wide a range of contexts as we can, we want not only the architectural guarantees that BBML2 makes, but additionally want BBML2 to not create TLB conflict aborts. Not causing aborts avoids us having to prove that no recursive faults can be induced in any path that uses BBML2, allowing its use for arbitrary kernel mappings. This feature builds on the previous ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE, as all early cpus must support BBML2 for us to enable it (and any later cpus must also support it to be onlined). Not onlining late cpus that do not support BBML2 is unavoidable, as we might currently be using BBML2 semantics for kernel memory regions. This could cause faults in the late cpus, and would be difficult to unwind, so let us avoid the case altogether. Signed-off-by: Mikołaj Lenczewski <miko.lenczewski@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Link: https://lore.kernel.org/r/20250625113435.26849-3-miko.lenczewski@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3eb06f6ce3 |
arm64: cpufeature: Introduce MATCH_ALL_EARLY_CPUS capability type
For system-wide capabilities, the kernel has the SCOPE_SYSTEM type. Such capabilities are checked once the SMP boot has completed using the sanitised ID registers. However, there is a need for a new capability type similar in scope to the system one but with checking performed locally on each CPU during boot (e.g. based on MIDR_EL1 which is not a sanitised register). Introduce ARM64_CPUCAP_MATCH_ALL_EARLY_CPUS which, together with ARM64_CPUCAP_SCOPE_LOCAL_CPU, ensures that such capability is enabled only if all early CPUs have it. For ease of use, define ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE which combines SCOPE_LOCAL_CPU, PERMITTED_FOR_LATE_CPUS and MATCH_ALL_EARLY_CPUS. Signed-off-by: Mikołaj Lenczewski <miko.lenczewski@arm.com> Reviewed-by: Suzuki K Poulose <Suzuki.Poulose@arm.com> Link: https://lore.kernel.org/r/20250625113435.26849-2-miko.lenczewski@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e9e668cd27 |
arm64 fixes for -rc1
- Disable problematic linker assertions for broken versions of LLD. - Work around sporadic link failure with LLD and various randconfig builds. - Fix missing invalidation in the TLB batching code when reclaim races with mprotect() and friends. - Add a command-line override for MPAM to allow booting on systems with broken firmware. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmhBcycQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNDwWCACtc4Jw3wwkmaiiP9Ner1/7wKq8xRLC2WRU tJjWLSkeoTthxf0DZILc61rNpOalfaRK774/Xo0OiYOBpKeAi5cSaUYMyabVJGcK k1R0KXDUu8oS6xKXmXyeuBV2pK4v4aET3E6lzUQZfvamhzuZfCvvKKrF5K8vv5Ph eowBMWKugMrwXMOBkRgVopppobdneFuVvnoMlNNYWOy70wDekoPV3qizoVJG/ulQ BTFunXX8Otufrm48Ye2bYalfwoiGdUQaJz/gRuHko0o3SOhqR3qZp2DWxQgBwJ+g VI6/dRLnVQpdg6toTvS9jzPczVfLt4/5VhLevbBcJuaUOER4SOZl =cfnk -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "We've got a couple of build fixes when using LLD, a missing TLB invalidation and a workaround for broken firmware on SoCs with CPUs that implement MPAM: - Disable problematic linker assertions for broken versions of LLD - Work around sporadic link failure with LLD and various randconfig builds - Fix missing invalidation in the TLB batching code when reclaim races with mprotect() and friends - Add a command-line override for MPAM to allow booting on systems with broken firmware" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: Add override for MPAM arm64/mm: Close theoretical race where stale TLB entry remains valid arm64: Work around convergence issue with LLD linker arm64: Disable LLD linker ASSERT()s for the time being |
||
![]() |
10f885d63a |
arm64: Add override for MPAM
As the message of the commit
|
||
![]() |
43db111107 |
ARM:
* Add large stage-2 mapping (THP) support for non-protected guests when pKVM is enabled, clawing back some performance. * Enable nested virtualisation support on systems that support it, though it is disabled by default. * Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. * Large rework of the way KVM tracks architecture features and links them with the effects of control bits. While this has no functional impact, it ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. * Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. * New selftest checking the pKVM ownership transition rules * Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. * Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. * Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. * Add a new selftest for the SVE host state being corrupted by a guest. * Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. * Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. * Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. * and the usual random cleanups. LoongArch: * Don't flush tlb if the host supports hardware page table walks. * Add KVM selftests support. RISC-V: * Add vector registers to get-reg-list selftest * VCPU reset related improvements * Remove scounteren initialization from VCPU reset * Support VCPU reset from userspace using set_mpstate() ioctl x86: * Initial support for TDX in KVM. This finally makes it possible to use the TDX module to run confidential guests on Intel processors. This is quite a large series, including support for private page tables (managed by the TDX module and mirrored in KVM for efficiency), forwarding some TDVMCALLs to userspace, and handling several special VM exits from the TDX module. This has been in the works for literally years and it's not really possible to describe everything here, so I'll defer to the various merge commits up to and including commit |
||
![]() |
c73497194a |
Merge branch 'for-next/mm' into for-next/core
* for-next/mm: arm64/boot: Disallow BSS exports to startup code arm64/boot: Move global CPU override variables out of BSS arm64/boot: Move init_pgdir[] and init_idmap_pgdir[] into __pi_ namespace arm64: mm: Drop redundant check in pmd_trans_huge() arm64/mm: Permit lazy_mmu_mode to be nested arm64/mm: Disable barrier batching in interrupt contexts arm64/mm: Batch barriers when updating kernel mappings mm/vmalloc: Enter lazy mmu mode while manipulating vmalloc ptes arm64/mm: Support huge pte-mapped pages in vmap mm/vmalloc: Gracefully unmap huge ptes mm/vmalloc: Warn on improper use of vunmap_range() arm64/mm: Hoist barriers out of set_ptes_anysz() loop arm64: hugetlb: Use __set_ptes_anysz() and __ptep_get_and_clear_anysz() arm64/mm: Refactor __set_ptes() and __ptep_get_and_clear() mm/page_table_check: Batch-check pmds/puds just like ptes arm64: hugetlb: Refine tlb maintenance scope arm64: hugetlb: Cleanup huge_pte size discovery mechanisms arm64: pageattr: Explicitly bail out when changing permissions for vmalloc_huge mappings arm64: Support ARM64_VA_BITS=52 when setting ARCH_MMAP_RND_BITS_MAX arm64/mm: Remove randomization of the linear map |
||
![]() |
dc64de4033 |
Merge branch 'for-next/fixes' into for-next/core
Merge in for-next/fixes, as subsequent improvements to our early PI code that disallow BSS exports depend on the 'arm64_use_ng_mappings' fix here. * for-next/fixes: arm64: cpufeature: Move arm64_use_ng_mappings to the .data section to prevent wrong idmap generation arm64: errata: Add missing sentinels to Spectre-BHB MIDR arrays |
||
![]() |
4d526b02df |
KVM/arm64 updates for 6.16
* New features: - Add large stage-2 mapping support for non-protected pKVM guests, clawing back some performance. - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. - Enable nested virtualisation support on systems that support it (yes, it has been a long time coming), though it is disabled by default. * Improvements, fixes and cleanups: - Large rework of the way KVM tracks architecture features and links them with the effects of control bits. This ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. - Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. - New selftest checking the pKVM ownership transition rules - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. - Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. - Add a new selftest for the SVE host state being corrupted by a guest. - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. - and the usual random cleanups. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmgwU7UACgkQI9DQutE9 ekN93g//fNnejxf01dBFIbuylzYEyHZSEH0iTGLeM+ES9zvntCzciTYVzb27oqNG RDLShlQYp3w4rAe6ORzyePyHptOmKXCxfj/VXUFp3A7H9QYOxt1nacD3WxI9fCOo LzaSLquvgwFBaeTdDE0KdeTUKQHluId+w1Azh0lnHGeUP+lOHNZ8FqoP1/la0q04 GvVL+l3wz/IhPP8r1YA0Q1bzJ5SLfSpjIw/0F5H/xgI4lyYdHzgFL8sKuSyFeCyM 2STQi+ZnTCsAs4bkXkw2Pp9CFYrfQgZi+sf7Om+noAKhbJo3vb7/RHpgjv+QCjJy Kx4g9CbxHfaM03cH6uSLBoFzsACR1iAuUz8BCSRvvVNH4RVT6H+34nzjLZXLncrP gm1uYs9aMTLr91caeAx0aYIMWGYa1uqV0rum3WxyIHezN9Q/NuQoZyfprUufr8oX wCYE+ot4VT3DwG0UFZKKwj0BiCbYcbph9nBLVyZJsg8OKxpvspkCtPriFp1kb6BP dTTGSXd9JJqwSgP9qJLxijcv6Nfgp2gT42TWwh/dJRZXhnTCvr9IyclFIhoIIq3G Q2BkFCXOoEoNQhBA1tiWzJ9nDHf52P72Z2K1gPyyMZwF49HGa2BZBCJGkqX06wSs Riolf1/cjFhDno1ThiHKsHT0sG1D4oc9k/1NLq5dyNAEGcgATIA= =Jju3 -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.16 * New features: - Add large stage-2 mapping support for non-protected pKVM guests, clawing back some performance. - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and protected modes. - Enable nested virtualisation support on systems that support it (yes, it has been a long time coming), though it is disabled by default. * Improvements, fixes and cleanups: - Large rework of the way KVM tracks architecture features and links them with the effects of control bits. This ensures correctness of emulation (the data is automatically extracted from the published JSON files), and helps dealing with the evolution of the architecture. - Significant changes to the way pKVM tracks ownership of pages, avoiding page table walks by storing the state in the hypervisor's vmemmap. This in turn enables the THP support described above. - New selftest checking the pKVM ownership transition rules - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests even if the host didn't have it. - Fixes for the address translation emulation, which happened to be rather buggy in some specific contexts. - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N from the number of counters exposed to a guest and addressing a number of issues in the process. - Add a new selftest for the SVE host state being corrupted by a guest. - Keep HCR_EL2.xMO set at all times for systems running with the kernel at EL2, ensuring that the window for interrupts is slightly bigger, and avoiding a pretty bad erratum on the AmpereOne HW. - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers from a pretty bad case of TLB corruption unless accesses to HCR_EL2 are heavily synchronised. - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS tables in a human-friendly fashion. - and the usual random cleanups. |
||
![]() |
fef3acf5ae |
Merge branch kvm-arm64/fgt-masks into kvmarm-master/next
* kvm-arm64/fgt-masks: (43 commits) : . : Large rework of the way KVM deals with trap bits in conjunction with : the CPU feature registers. It now draws a direct link between which : the feature set, the system registers that need to UNDEF to match : the configuration and bits that need to behave as RES0 or RES1 in : the trap registers that are visible to the guest. : : Best of all, these definitions are mostly automatically generated : from the JSON description published by ARM under a permissive : license. : . KVM: arm64: Handle TSB CSYNC traps KVM: arm64: Add FGT descriptors for FEAT_FGT2 KVM: arm64: Allow sysreg ranges for FGT descriptors KVM: arm64: Add context-switch for FEAT_FGT2 registers KVM: arm64: Add trap routing for FEAT_FGT2 registers KVM: arm64: Add sanitisation for FEAT_FGT2 registers KVM: arm64: Add FEAT_FGT2 registers to the VNCR page KVM: arm64: Use HCR_EL2 feature map to drive fixed-value bits KVM: arm64: Use HCRX_EL2 feature map to drive fixed-value bits KVM: arm64: Allow kvm_has_feat() to take variable arguments KVM: arm64: Use FGT feature maps to drive RES0 bits KVM: arm64: Validate FGT register descriptions against RES0 masks KVM: arm64: Switch to table-driven FGU configuration KVM: arm64: Handle PSB CSYNC traps KVM: arm64: Use KVM-specific HCRX_EL2 RES0 mask KVM: arm64: Remove hand-crafted masks for FGT registers KVM: arm64: Use computed FGT masks to setup FGT registers KVM: arm64: Propagate FGT masks to the nVHE hypervisor KVM: arm64: Unconditionally configure fine-grain traps KVM: arm64: Use computed masks as sanitisers for FGT registers ... Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
4afff6cc9a |
arm64/boot: Move global CPU override variables out of BSS
Accessing BSS will no longer be permitted from the startup code in arch/arm64/kernel/pi, as some of it executes before BSS is cleared. Clearing BSS earlier would involve managing cache coherency explicitly in software, which is a hassle we prefer to avoid. So move some variables that are assigned by the startup code out of BSS and into .data. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Yeoreum Yun <yeoreum.yun@arm.com> Reviewed-by: Yeoreum Yun <yeoreum.yun@arm.com> Link: https://lore.kernel.org/r/20250508114328.2460610-7-ardb+git@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
5799a2983f |
arm64/sysreg: Expose MTE_frac so that it is visible to KVM
KVM exposes the sanitised ID registers to guests. Currently these ignore the ID_AA64PFR1_EL1.MTE_frac field, meaning guests always see a value of zero. This is a problem for platforms without the MTE_ASYNC feature where ID_AA64PFR1_EL1.MTE==0x2 and ID_AA64PFR1_EL1.MTE_frac==0xf. KVM forces MTE_frac to zero, meaning the guest believes MTE_ASYNC is supported, when no async fault will ever occur. Before KVM can fix this, the architecture needs to sanitise the ID register field for MTE_frac. Linux itself does not use MTE_frac field and just assumes MTE async faults can be generated if MTE is supported. Signed-off-by: Ben Horgan <ben.horgan@arm.com> Link: https://lore.kernel.org/r/20250512114112.359087-2-ben.horgan@arm.com Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
fbc8a4e137 |
arm64: Add FEAT_FGT2 capability
As we will eventually have to context-switch the FEAT_FGT2 registers in KVM (something that has been completely ignored so far), add a new cap that we will be able to check for. Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
363cd2b81c |
arm64: cpufeature: Move arm64_use_ng_mappings to the .data section to prevent wrong idmap generation
The PTE_MAYBE_NG macro sets the nG page table bit according to the value
of "arm64_use_ng_mappings". This variable is currently placed in the
.bss section. create_init_idmap() is called before the .bss section
initialisation which is done in early_map_kernel(). Therefore,
data/test_prot in create_init_idmap() could be set incorrectly through
the PAGE_KERNEL -> PROT_DEFAULT -> PTE_MAYBE_NG macros.
# llvm-objdump-21 --syms vmlinux-gcc | grep arm64_use_ng_mappings
ffff800082f242a8 g O .bss 0000000000000001 arm64_use_ng_mappings
The create_init_idmap() function disassembly compiled with llvm-21:
// create_init_idmap()
ffff80008255c058: d10103ff sub sp, sp, #0x40
ffff80008255c05c: a9017bfd stp x29, x30, [sp, #0x10]
ffff80008255c060: a90257f6 stp x22, x21, [sp, #0x20]
ffff80008255c064: a9034ff4 stp x20, x19, [sp, #0x30]
ffff80008255c068: 910043fd add x29, sp, #0x10
ffff80008255c06c: 90003fc8 adrp x8, 0xffff800082d54000
ffff80008255c070: d280e06a mov x10, #0x703 // =1795
ffff80008255c074: 91400409 add x9, x0, #0x1, lsl #12 // =0x1000
ffff80008255c078: 394a4108 ldrb w8, [x8, #0x290] ------------- (1)
ffff80008255c07c: f2e00d0a movk x10, #0x68, lsl #48
ffff80008255c080: f90007e9 str x9, [sp, #0x8]
ffff80008255c084: aa0103f3 mov x19, x1
ffff80008255c088: aa0003f4 mov x20, x0
ffff80008255c08c: 14000000 b 0xffff80008255c08c <__pi_create_init_idmap+0x34>
ffff80008255c090: aa082d56 orr x22, x10, x8, lsl #11 -------- (2)
Note (1) is loading the arm64_use_ng_mappings value in w8 and (2) is set
the text or data prot with the w8 value to set PTE_NG bit. If the .bss
section isn't initialized, x8 could include a garbage value and generate
an incorrect mapping.
Annotate arm64_use_ng_mappings as __read_mostly so that it is placed in
the .data section.
Fixes:
|
||
![]() |
35382a3646 |
arm64/cpufeature: Add missing id_aa64mmfr4 feature reg update
Add missing id_aa64mmfr4 feature register check and update in update_cpu_features(). Update the taint status as well. Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20250329034409.21354-2-yangyicong@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
1b1d1b17b8 |
Merge branch 'kvm-arm64/pmuv3-asahi' into kvmarm/next
* kvm-arm64/pmuv3-asahi: : Support PMUv3 for KVM guests on Apple silicon : : Take advantage of some IMPLEMENTATION DEFINED traps available on Apple : parts to trap-and-emulate the PMUv3 registers on behalf of a KVM guest. : Constrain the vPMU to a cycle counter and single event counter, as the : Apple PMU has events that cannot be counted on every counter. : : There is a small new interface between the ARM PMU driver and KVM, where : the PMU driver owns the PMUv3 -> hardware event mappings. arm64: Enable IMP DEF PMUv3 traps on Apple M* KVM: arm64: Provide 1 event counter on IMPDEF hardware drivers/perf: apple_m1: Provide helper for mapping PMUv3 events KVM: arm64: Remap PMUv3 events onto hardware KVM: arm64: Advertise PMUv3 if IMPDEF traps are present KVM: arm64: Compute synthetic sysreg ESR for Apple PMUv3 traps KVM: arm64: Move PMUVer filtering into KVM code KVM: arm64: Use guard() to cleanup usage of arm_pmus_lock KVM: arm64: Drop kvm_arm_pmu_available static key KVM: arm64: Use a cpucap to determine if system supports FEAT_PMUv3 KVM: arm64: Always support SW_INCR PMU event KVM: arm64: Compute PMCEID from arm_pmu's event bitmaps drivers/perf: apple_m1: Support host/guest event filtering drivers/perf: apple_m1: Refactor event select/filter configuration Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
d300b0168e |
Merge branch 'kvm-arm64/pv-cpuid' into kvmarm/next
* kvm-arm64/pv-cpuid: : Paravirtualized implementation ID, courtesy of Shameer Kolothum : : Big-little has historically been a pain in the ass to virtualize. The : implementation ID (MIDR, REVIDR, AIDR) of a vCPU can change at the whim : of vCPU scheduling. This can be particularly annoying when the guest : needs to know the underlying implementation to mitigate errata. : : "Hyperscalers" face a similar scheduling problem, where VMs may freely : migrate between hosts in a pool of heterogenous hardware. And yes, our : server-class friends are equally riddled with errata too. : : In absence of an architected solution to this wart on the ecosystem, : introduce support for paravirtualizing the implementation exposed : to a VM, allowing the VMM to describe the pool of implementations that a : VM may be exposed to due to scheduling/migration. : : Userspace is expected to intercept and handle these hypercalls using the : SMCCC filter UAPI, should it choose to do so. smccc: kvm_guest: Fix kernel builds for 32 bit arm KVM: selftests: Add test for KVM_REG_ARM_VENDOR_HYP_BMAP_2 smccc/kvm_guest: Enable errata based on implementation CPUs arm64: Make _midr_in_range_list() an exported function KVM: arm64: Introduce KVM_REG_ARM_VENDOR_HYP_BMAP_2 KVM: arm64: Specify hypercall ABI for retrieving target implementations arm64: Modify _midr_range() functions to read MIDR/REVIDR internally Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
6f34024d18 |
KVM: arm64: Use a cpucap to determine if system supports FEAT_PMUv3
KVM is about to learn some new tricks to virtualize PMUv3 on IMPDEF hardware. As part of that, we now need to differentiate host support from guest support for PMUv3. Add a cpucap to determine if an architectural PMUv3 is present to guard host usage of PMUv3 controls. Tested-by: Janne Grunau <j@jannau.net> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250305202641.428114-6-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
86edf6bdcf |
smccc/kvm_guest: Enable errata based on implementation CPUs
Retrieve any migration target implementation CPUs using the hypercall and enable associated errata. Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Sebastian Ott <sebott@redhat.com> Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250221140229.12588-6-shameerali.kolothum.thodi@huawei.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
e3121298c7 |
arm64: Modify _midr_range() functions to read MIDR/REVIDR internally
These changes lay the groundwork for adding support for guest kernels, allowing them to leverage target CPU implementations provided by the VMM. No functional changes intended. Suggested-by: Oliver Upton <oliver.upton@linux.dev> Reviewed-by: Sebastian Ott <sebott@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250221140229.12588-2-shameerali.kolothum.thodi@huawei.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
88aea41b9b |
arm64: cpufeature: Handle NV_frac as a synonym of NV2
With ARMv9.5, an implementation supporting Nested Virtualization is allowed to only support NV2, and to avoid supporting the old (and useless) ARMv8.3 variant. This is indicated by ID_AA64MMFR2_EL1.NV being 0 (as if NV wasn't implemented) and ID_AA64MMFR4_EL1.NV_frac being 1 (indicating that NV2 is actually supported). Given that KVM only deals with NV2 and refuses to use the old NV, detecting NV2 or NV_frac is what we need to enable it. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20250220134907.554085-2-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
a4cc8494f1 |
arm64: Add missing registrations of hwcaps
Commit |
||
![]() |
21fed7c223 |
arm64/hwcap: Remove stray references to SF8MMx
Due to SME currently being disabled when removing the SF8MMx support it
wasn't noticed that there were some stray references in the hwcap table,
delete them.
Fixes:
|
||
![]() |
1d6d399223 |
Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: _ kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: * Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() * Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware * Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. * Default affine kthread to its preferred node. * Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation * Implement kthreads preferred affinity * Unify kthread worker and kthread API's style * Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmeNf8gACgkQhSRUR1CO jHedQQ/+IxTjjqQiItzrq41TES2S0desHDq8lNJFb7rsR/DtKFyLx3s67cOYV+cM Yx54QHg2m/Fz4nXMQ7Po5ygOtJGCKBc5C5QQy7y0lVKeTQK+daDfEtBSa3oG7j3C u+E3tTY6qxkbCzymUyaKkHN4/ay2vLvjFS50luV7KMyI3x47Aji+t7VdCX4LCPP2 eAwOALWD0+7qLJ/VF6gsmQLKA4Qx7PQAzBa3KSBmUN9UcN8Gk1bQHCTIQKDHP9LQ v8BXrNZtYX1o2+snNYpX2z6/ECjxkdwriOgqqZY5306hd9RAQ1u46Dx3byrIqjGn ULG/XQ2istPyhTqb/h+RbrobdOcwEUIeqk8hRRbBXE8bPpqUz9EMuaCMxWDbQjgH NTuKG4ifKJ/IqstkkuDkdOiByE/ysMmwqrTXgSnu2ITNL9yY3BEgFbvA95hgo42s f7QCxEfZb1MHcNEMENSMwM3xw5lLMGMpxVZcMQ3gLwyotMBRrhFZm1qZJG7TITYW IDIeCbH4JOMdQwLs3CcWTXio0N5/85NhRNFV+IDn96OrgxObgnMtV8QwNgjXBAJ5 wGeJWt8s34W1Zo3qS9gEuVzEhW4XaxISQQMkHe8faKkK6iHmIB/VjSQikDwwUNQ/ AspYj82RyWBCDZsqhiYh71kpxjvS6Xp0bj39Ce1sNsOnuksxKkQ= =g8In -----END PGP SIGNATURE----- Merge tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull kthread updates from Frederic Weisbecker: "Kthreads affinity follow either of 4 existing different patterns: 1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: - kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: - Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() - Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware - Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. - Default affine kthread to its preferred node. - Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation - Implement kthreads preferred affinity - Unify kthread worker and kthread API's style - Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation" * tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: kthread: modify kernel-doc function name to match code rcu: Use kthread preferred affinity for RCU exp kworkers treewide: Introduce kthread_run_worker[_on_cpu]() kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format rcu: Use kthread preferred affinity for RCU boost kthread: Implement preferred affinity mm: Create/affine kswapd to its preferred node mm: Create/affine kcompactd to its preferred node kthread: Default affine kthread to its preferred NUMA node kthread: Make sure kthread hasn't started while binding it sched,arm64: Handle CPU isolation on last resort fallback rq selection arm64: Exclude nohz_full CPUs from 32bits el0 support lib: test_objpool: Use kthread_run_on_cpu() kallsyms: Use kthread_run_on_cpu() soc/qman: test: Use kthread_run_on_cpu() arm/bL_switcher: Use kthread_run_on_cpu() |
||
![]() |
602ffd4ce3 |
Merge branch 'for-next/mm' into for-next/core
* for-next/mm: arm64: mm: Test for pmd_sect() in vmemmap_check_pmd() arm64/mm: Replace open encodings with PXD_TABLE_BIT arm64/mm: Rename pte_mkpresent() as pte_mkvalid() arm64: Kconfig: force ARM64_PAN=y when enabling TTBR0 sw PAN arm64/kvm: Avoid invalid physical addresses to signal owner updates arm64/kvm: Configure HYP TCR.PS/DS based on host stage1 arm64/mm: Override PARange for !LPA2 and use it consistently arm64/mm: Reduce PA space to 48 bits when LPA2 is not enabled |
||
![]() |
3a5446612a |
sched,arm64: Handle CPU isolation on last resort fallback rq selection
When a kthread or any other task has an affinity mask that is fully offline or unallowed, the scheduler reaffines the task to all possible CPUs as a last resort. This default decision doesn't mix up very well with nohz_full CPUs that are part of the possible cpumask but don't want to be disturbed by unbound kthreads or even detached pinned user tasks. Make the fallback affinity setting aware of nohz_full. Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
![]() |
4a1567b466 |
arm64: Exclude nohz_full CPUs from 32bits el0 support
Nohz full CPUs are not a desirable fallback target to run 32bits el0 applications. If present, prefer a set of housekeeping CPUs that can do the job instead. Otherwise just don't support el0 32 bits. Should the need arise, appropriate support can be introduced in the future. Suggested-by: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
![]() |
819935464c |
arm64/hwcap: Describe 2024 dpISA extensions to userspace
The 2024 dpISA introduces a number of architecture features all of which only add new instructions so only require the addition of hwcaps and ID register visibility. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-3-7578da51fc3d@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
064737920b |
arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented
The hwcaps code that exposes SVE features to userspace only
considers ID_AA64ZFR0_EL1, while this is only valid when
ID_AA64PFR0_EL1.SVE advertises that SVE is actually supported.
The expectations are that when ID_AA64PFR0_EL1.SVE is 0, the
ID_AA64ZFR0_EL1 register is also 0. So far, so good.
Things become a bit more interesting if the HW implements SME.
In this case, a few ID_AA64ZFR0_EL1 fields indicate *SME*
features. And these fields overlap with their SVE interpretations.
But the architecture says that the SME and SVE feature sets must
match, so we're still hunky-dory.
This goes wrong if the HW implements SME, but not SVE. In this
case, we end-up advertising some SVE features to userspace, even
if the HW has none. That's because we never consider whether SVE
is actually implemented. Oh well.
Fix it by restricting all SVE capabilities to ID_AA64PFR0_EL1.SVE
being non-zero. The HWCAPS documentation is amended to reflect the
actually checks performed by the kernel.
Fixes:
|
||
![]() |
d3c7c48d00 |
arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu()
In commit |
||
![]() |
e5ecedcd7c |
arm64/sysreg: Get rid of CPACR_ELx SysregFields
There is no such thing as CPACR_ELx in the architecture. What we have is CPACR_EL1, for which CPTR_EL12 is an accessor. Rename CPACR_ELx_* to CPACR_EL1_*, and fix the bit of code using these names. Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241219173351.1123087-5-maz@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7052e808c4 |
arm64/sysreg: Get rid of the TCR2_EL1x SysregFields
TCR2_EL1x is a pretty bizarre construct, as it is shared between TCR2_EL1 and TCR2_EL12. But the latter is obviously only an accessor to the former. In order to make things more consistent, upgrade TCR2_EL1x to a full-blown sysreg definition for TCR2_EL1, and describe TCR2_EL12 as a mapping to TCR2_EL1. This results in a couple of minor changes to the actual code. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241219173351.1123087-3-maz@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
62cffa496a |
arm64/mm: Override PARange for !LPA2 and use it consistently
When FEAT_LPA{,2} are not implemented, the ID_AA64MMFR0_EL1.PARange and
TCR.IPS values corresponding with 52-bit physical addressing are
reserved.
Setting the TCR.IPS field to 0b110 (52-bit physical addressing) has side
effects, such as how the TTBRn_ELx.BADDR fields are interpreted, and so
it is important that disabling FEAT_LPA2 (by overriding the
ID_AA64MMFR0.TGran fields) also presents a PARange field consistent with
that.
So limit the field to 48 bits unless LPA2 is enabled, and update
existing references to use the override consistently.
Fixes:
|
||
![]() |
e52163df77 |
arm64/cpufeature: Refactor conditional logic in init_cpu_ftr_reg()
Unnecessarily checks ftr_ovr == tmp in an extra else if, which is not needed because that condition would already be true by default if the previous conditions are not satisfied. if (ftr_ovr != tmp) { } else if (ftr_new != tmp) { } else if (ftr_ovr == tmp) { Logic: The first and last conditions are inverses of each other, so the last condition must be true if the first two conditions are false. Additionally, all branches set the variable str, making the subsequent "if (str)" check redundant Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Hardevsinh Palaniya <hardevsinh.palaniya@siliconsignals.io> Link: https://lore.kernel.org/r/20241115053740.20523-1-hardevsinh.palaniya@siliconsignals.io Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
9f16d5e6f2 |
The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages. The reason to do so was that KVM needs to map both non-refcounted pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain refcounted pages. However, the result was security issues in the past, and more recently the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by struct page but is not refcounted. In particular this broke virtio-gpu blob resources (which directly map host graphics buffers into the guest as "vram" for the virtio-gpu device) with the amdgpu driver, because amdgpu allocates non-compound higher order pages and the tail pages could not be mapped into KVM. This requires adjusting all uses of struct page in the per-architecture code, to always work on the pfn whenever possible. The large series that did this, from David Stevens and Sean Christopherson, also cleaned up substantially the set of functions that provided arch code with the pfn for a host virtual addresses. The previous maze of twisty little passages, all different, is replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages) saving almost 200 lines of code. ARM: * Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker * Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI * Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps * PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest * Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM * Avoid emulated MMIO completion if userspace has requested synchronous external abort injection * Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests LoongArch: * Add iocsr and mmio bus simulation in kernel. * Add in-kernel interrupt controller emulation. * Add support for virtualization extensions to the eiointc irqchip. PPC: * Drop lingering and utterly obsolete references to PPC970 KVM, which was removed 10 years ago. * Fix incorrect documentation references to non-existing ioctls RISC-V: * Accelerate KVM RISC-V when running as a guest * Perf support to collect KVM guest statistics from host side s390: * New selftests: more ucontrol selftests and CPU model sanity checks * Support for the gen17 CPU model * List registers supported by KVM_GET/SET_ONE_REG in the documentation x86: * Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve documentation, harden against unexpected changes. Even if the hardware A/D tracking is disabled, it is possible to use the hardware-defined A/D bits to track if a PFN is Accessed and/or Dirty, and that removes a lot of special cases. * Elide TLB flushes when aging secondary PTEs, as has been done in x86's primary MMU for over 10 years. * Recover huge pages in-place in the TDP MMU when dirty page logging is toggled off, instead of zapping them and waiting until the page is re-accessed to create a huge mapping. This reduces vCPU jitter. * Batch TLB flushes when dirty page logging is toggled off. This reduces the time it takes to disable dirty logging by ~3x. * Remove the shrinker that was (poorly) attempting to reclaim shadow page tables in low-memory situations. * Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE. * Advertise CPUIDs for new instructions in Clearwater Forest * Quirk KVM's misguided behavior of initialized certain feature MSRs to their maximum supported feature set, which can result in KVM creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero value results in the vCPU having invalid state if userspace hides PDCM from the guest, which in turn can lead to save/restore failures. * Fix KVM's handling of non-canonical checks for vCPUs that support LA57 to better follow the "architecture", in quotes because the actual behavior is poorly documented. E.g. most MSR writes and descriptor table loads ignore CR4.LA57 and operate purely on whether the CPU supports LA57. * Bypass the register cache when querying CPL from kvm_sched_out(), as filling the cache from IRQ context is generally unsafe; harden the cache accessors to try to prevent similar issues from occuring in the future. The issue that triggered this change was already fixed in 6.12, but was still kinda latent. * Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM over-advertises SPEC_CTRL when trying to support cross-vendor VMs. * Minor cleanups * Switch hugepage recovery thread to use vhost_task. These kthreads can consume significant amounts of CPU time on behalf of a VM or in response to how the VM behaves (for example how it accesses its memory); therefore KVM tried to place the thread in the VM's cgroups and charge the CPU time consumed by that work to the VM's container. However the kthreads did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM instances inside could not complete freezing. Fix this by replacing the kthread with a PF_USER_WORKER thread, via the vhost_task abstraction. Another 100+ lines removed, with generally better behavior too like having these threads properly parented in the process tree. * Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't really work; there was really nothing to work around anyway: the broken patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the erratum. * Fix 6.12 regression where CONFIG_KVM will be built as a module even if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'. x86 selftests: * x86 selftests can now use AVX. Documentation: * Use rST internal links * Reorganize the introduction to the API document Generic: * Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead of RCU, so that running a vCPU on a different task doesn't encounter long due to having to wait for all CPUs become quiescent. In general both reads and writes are rare, but userspace that supports confidential computing is introducing the use of "helper" vCPUs that may jump from one host processor to another. Those will be very happy to trigger a synchronize_rcu(), and the effect on performance is quite the disaster. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4 dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI 1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+ t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig== =lWpE -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "The biggest change here is eliminating the awful idea that KVM had of essentially guessing which pfns are refcounted pages. The reason to do so was that KVM needs to map both non-refcounted pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain refcounted pages. However, the result was security issues in the past, and more recently the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by struct page but is not refcounted. In particular this broke virtio-gpu blob resources (which directly map host graphics buffers into the guest as "vram" for the virtio-gpu device) with the amdgpu driver, because amdgpu allocates non-compound higher order pages and the tail pages could not be mapped into KVM. This requires adjusting all uses of struct page in the per-architecture code, to always work on the pfn whenever possible. The large series that did this, from David Stevens and Sean Christopherson, also cleaned up substantially the set of functions that provided arch code with the pfn for a host virtual addresses. The previous maze of twisty little passages, all different, is replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages) saving almost 200 lines of code. ARM: - Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps - PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest - Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM - Avoid emulated MMIO completion if userspace has requested synchronous external abort injection - Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests LoongArch: - Add iocsr and mmio bus simulation in kernel. - Add in-kernel interrupt controller emulation. - Add support for virtualization extensions to the eiointc irqchip. PPC: - Drop lingering and utterly obsolete references to PPC970 KVM, which was removed 10 years ago. - Fix incorrect documentation references to non-existing ioctls RISC-V: - Accelerate KVM RISC-V when running as a guest - Perf support to collect KVM guest statistics from host side s390: - New selftests: more ucontrol selftests and CPU model sanity checks - Support for the gen17 CPU model - List registers supported by KVM_GET/SET_ONE_REG in the documentation x86: - Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve documentation, harden against unexpected changes. Even if the hardware A/D tracking is disabled, it is possible to use the hardware-defined A/D bits to track if a PFN is Accessed and/or Dirty, and that removes a lot of special cases. - Elide TLB flushes when aging secondary PTEs, as has been done in x86's primary MMU for over 10 years. - Recover huge pages in-place in the TDP MMU when dirty page logging is toggled off, instead of zapping them and waiting until the page is re-accessed to create a huge mapping. This reduces vCPU jitter. - Batch TLB flushes when dirty page logging is toggled off. This reduces the time it takes to disable dirty logging by ~3x. - Remove the shrinker that was (poorly) attempting to reclaim shadow page tables in low-memory situations. - Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE. - Advertise CPUIDs for new instructions in Clearwater Forest - Quirk KVM's misguided behavior of initialized certain feature MSRs to their maximum supported feature set, which can result in KVM creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero value results in the vCPU having invalid state if userspace hides PDCM from the guest, which in turn can lead to save/restore failures. - Fix KVM's handling of non-canonical checks for vCPUs that support LA57 to better follow the "architecture", in quotes because the actual behavior is poorly documented. E.g. most MSR writes and descriptor table loads ignore CR4.LA57 and operate purely on whether the CPU supports LA57. - Bypass the register cache when querying CPL from kvm_sched_out(), as filling the cache from IRQ context is generally unsafe; harden the cache accessors to try to prevent similar issues from occuring in the future. The issue that triggered this change was already fixed in 6.12, but was still kinda latent. - Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM over-advertises SPEC_CTRL when trying to support cross-vendor VMs. - Minor cleanups - Switch hugepage recovery thread to use vhost_task. These kthreads can consume significant amounts of CPU time on behalf of a VM or in response to how the VM behaves (for example how it accesses its memory); therefore KVM tried to place the thread in the VM's cgroups and charge the CPU time consumed by that work to the VM's container. However the kthreads did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM instances inside could not complete freezing. Fix this by replacing the kthread with a PF_USER_WORKER thread, via the vhost_task abstraction. Another 100+ lines removed, with generally better behavior too like having these threads properly parented in the process tree. - Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't really work; there was really nothing to work around anyway: the broken patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the erratum. - Fix 6.12 regression where CONFIG_KVM will be built as a module even if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'. x86 selftests: - x86 selftests can now use AVX. Documentation: - Use rST internal links - Reorganize the introduction to the API document Generic: - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead of RCU, so that running a vCPU on a different task doesn't encounter long due to having to wait for all CPUs become quiescent. In general both reads and writes are rare, but userspace that supports confidential computing is introducing the use of "helper" vCPUs that may jump from one host processor to another. Those will be very happy to trigger a synchronize_rcu(), and the effect on performance is quite the disaster" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits) KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD KVM: x86: add back X86_LOCAL_APIC dependency Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()" KVM: x86: switch hugepage recovery thread to vhost_task KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest Documentation: KVM: fix malformed table irqchip/loongson-eiointc: Add virt extension support LoongArch: KVM: Add irqfd support LoongArch: KVM: Add PCHPIC user mode read and write functions LoongArch: KVM: Add PCHPIC read and write functions LoongArch: KVM: Add PCHPIC device support LoongArch: KVM: Add EIOINTC user mode read and write functions LoongArch: KVM: Add EIOINTC read and write functions LoongArch: KVM: Add EIOINTC device support LoongArch: KVM: Add IPI user mode read and write function LoongArch: KVM: Add IPI read and write function LoongArch: KVM: Add IPI device support LoongArch: KVM: Add iocsr and mmio bus simulation in kernel KVM: arm64: Pass on SVE mapping failures ... |
||
![]() |
5a4332062e |
Merge branches 'for-next/gcs', 'for-next/probes', 'for-next/asm-offsets', 'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: Switch back to struct platform_driver::remove() perf: arm_pmuv3: Add support for Samsung Mongoose PMU dt-bindings: arm: pmu: Add Samsung Mongoose core compatible perf/dwc_pcie: Fix typos in event names perf/dwc_pcie: Add support for Ampere SoCs ARM: pmuv3: Add missing write_pmuacr() perf/marvell: Marvell PEM performance monitor support perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control perf/dwc_pcie: Convert the events with mixed case to lowercase perf/cxlpmu: Support missing events in 3.1 spec perf: imx_perf: add support for i.MX91 platform dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible drivers perf: remove unused field pmu_node * for-next/gcs: (42 commits) : arm64 Guarded Control Stack user-space support kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c arm64/gcs: Fix outdated ptrace documentation kselftest/arm64: Ensure stable names for GCS stress test results kselftest/arm64: Validate that GCS push and write permissions work kselftest/arm64: Enable GCS for the FP stress tests kselftest/arm64: Add a GCS stress test kselftest/arm64: Add GCS signal tests kselftest/arm64: Add test coverage for GCS mode locking kselftest/arm64: Add a GCS test program built with the system libc kselftest/arm64: Add very basic GCS test program kselftest/arm64: Always run signals tests with GCS enabled kselftest/arm64: Allow signals tests to specify an expected si_code kselftest/arm64: Add framework support for GCS to signal handling tests kselftest/arm64: Add GCS as a detected feature in the signal tests kselftest/arm64: Verify the GCS hwcap arm64: Add Kconfig for Guarded Control Stack (GCS) arm64/ptrace: Expose GCS via ptrace and core files arm64/signal: Expose GCS state in signal frames arm64/signal: Set up and restore the GCS context for signal handlers arm64/mm: Implement map_shadow_stack() ... * for-next/probes: : Various arm64 uprobes/kprobes cleanups arm64: insn: Simulate nop instruction for better uprobe performance arm64: probes: Remove probe_opcode_t arm64: probes: Cleanup kprobes endianness conversions arm64: probes: Move kprobes-specific fields arm64: probes: Fix uprobes for big-endian kernels arm64: probes: Fix simulate_ldr*_literal() arm64: probes: Remove broken LDR (literal) uprobe support * for-next/asm-offsets: : arm64 asm-offsets.c cleanup (remove unused offsets) arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE arm64: asm-offsets: remove VM_EXEC and PAGE_SZ arm64: asm-offsets: remove MM_CONTEXT_ID arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET arm64: asm-offsets: remove VMA_VM_* arm64: asm-offsets: remove TSK_ACTIVE_MM * for-next/tlb: : TLB flushing optimisations arm64: optimize flush tlb kernel range arm64: tlbflush: add __flush_tlb_range_limit_excess() * for-next/misc: : Miscellaneous patches arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled arm64/ptrace: Clarify documentation of VL configuration via ptrace acpi/arm64: remove unnecessary cast arm64/mm: Change protval as 'pteval_t' in map_range() arm64: uprobes: Optimize cache flushes for xol slot acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block() arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings arm64/mm: Sanity check PTE address before runtime P4D/PUD folding arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont() ACPI: GTDT: Tighten the check for the array of platform timer structures arm64/fpsimd: Fix a typo arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers arm64: Return early when break handler is found on linked-list arm64/mm: Re-organize arch_make_huge_pte() arm64/mm: Drop _PROT_SECT_DEFAULT arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV arm64: head: Drop SWAPPER_TABLE_SHIFT arm64: cpufeature: add POE to cpucap_is_possible() arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t * for-next/mte: : Various MTE improvements selftests: arm64: add hugetlb mte tests hugetlb: arm64: add mte support * for-next/sysreg: : arm64 sysreg updates arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09 * for-next/stacktrace: : arm64 stacktrace improvements arm64: preserve pt_regs::stackframe during exec*() arm64: stacktrace: unwind exception boundaries arm64: stacktrace: split unwind_consume_stack() arm64: stacktrace: report recovered PCs arm64: stacktrace: report source of unwind data arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk() arm64: use a common struct frame_record arm64: pt_regs: swap 'unused' and 'pmr' fields arm64: pt_regs: rename "pmr_save" -> "pmr" arm64: pt_regs: remove stale big-endian layout arm64: pt_regs: assert pt_regs is a multiple of 16 bytes * for-next/hwcap3: : Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4) arm64: Support AT_HWCAP3 binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4 * for-next/kselftest: (30 commits) : arm64 kselftest fixes/cleanups kselftest/arm64: Try harder to generate different keys during PAC tests kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all() kselftest/arm64: Corrupt P0 in the irritator when testing SSVE kselftest/arm64: Add FPMR coverage to fp-ptrace kselftest/arm64: Expand the set of ZA writes fp-ptrace does kselftets/arm64: Use flag bits for features in fp-ptrace assembler code kselftest/arm64: Enable build of PAC tests with LLVM=1 kselftest/arm64: Check that SVCR is 0 in signal handlers kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests kselftest/arm64: Fix build with stricter assemblers kselftest/arm64: Test signal handler state modification in fp-stress kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test kselftest/arm64: Implement irritators for ZA and ZT kselftest/arm64: Remove unused ADRs from irritator handlers kselftest/arm64: Correct misleading comments on fp-stress irritators kselftest/arm64: Poll less often while waiting for fp-stress children kselftest/arm64: Increase frequency of signal delivery in fp-stress kselftest/arm64: Fix encoding for SVE B16B16 test ... * for-next/crc32: : Optimise CRC32 using PMULL instructions arm64/crc32: Implement 4-way interleave using PMULL arm64/crc32: Reorganize bit/byte ordering macros arm64/lib: Handle CRC-32 alternative in C code * for-next/guest-cca: : Support for running Linux as a guest in Arm CCA arm64: Document Arm Confidential Compute virt: arm-cca-guest: TSM_REPORT support for realms arm64: Enable memory encrypt for Realms arm64: mm: Avoid TLBI when marking pages as valid arm64: Enforce bounce buffers for realm DMA efi: arm64: Map Device with Prot Shared arm64: rsi: Map unprotected MMIO as decrypted arm64: rsi: Add support for checking whether an MMIO is protected arm64: realm: Query IPA size from the RMM arm64: Detect if in a realm and set RIPAS RAM arm64: rsi: Add RSI definitions * for-next/haft: : Support for arm64 FEAT_HAFT arm64: pgtable: Warn unexpected pmdp_test_and_clear_young() arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG arm64: Add support for FEAT_HAFT arm64: setup: name 'tcr2' register arm64/sysreg: Update ID_AA64MMFR1_EL1 register * for-next/scs: : Dynamic shadow call stack fixes arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux() arm64/scs: Deal with 64-bit relative offsets in FDE frames arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames |