Commit graph

656 commits

Author SHA1 Message Date
Linus Torvalds
63eb28bb14 ARM:
- Host driver for GICv5, the next generation interrupt controller for
   arm64, including support for interrupt routing, MSIs, interrupt
   translation and wired interrupts.
 
 - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on
   GICv5 hardware, leveraging the legacy VGIC interface.
 
 - Userspace control of the 'nASSGIcap' GICv3 feature, allowing
   userspace to disable support for SGIs w/o an active state on hardware
   that previously advertised it unconditionally.
 
 - Map supporting endpoints with cacheable memory attributes on systems
   with FEAT_S2FWB and DIC where KVM no longer needs to perform cache
   maintenance on the address range.
 
 - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest
   hypervisor to inject external aborts into an L2 VM and take traps of
   masked external aborts to the hypervisor.
 
 - Convert more system register sanitization to the config-driven
   implementation.
 
 - Fixes to the visibility of EL2 registers, namely making VGICv3 system
   registers accessible through the VGIC device instead of the ONE_REG
   vCPU ioctls.
 
 - Various cleanups and minor fixes.
 
 LoongArch:
 
 - Add stat information for in-kernel irqchip
 
 - Add tracepoints for CPUCFG and CSR emulation exits
 
 - Enhance in-kernel irqchip emulation
 
 - Various cleanups.
 
 RISC-V:
 
 - Enable ring-based dirty memory tracking
 
 - Improve perf kvm stat to report interrupt events
 
 - Delegate illegal instruction trap to VS-mode
 
 - MMU improvements related to upcoming nested virtualization
 
 s390x
 
 - Fixes
 
 x86:
 
 - Add CONFIG_KVM_IOAPIC for x86 to allow disabling support for I/O APIC,
   PIC, and PIT emulation at compile time.
 
 - Share device posted IRQ code between SVM and VMX and
   harden it against bugs and runtime errors.
 
 - Use vcpu_idx, not vcpu_id, for GA log tag/metadata, to make lookups O(1)
   instead of O(n).
 
 - For MMIO stale data mitigation, track whether or not a vCPU has access to
   (host) MMIO based on whether the page tables have MMIO pfns mapped; using
   VFIO is prone to false negatives
 
 - Rework the MSR interception code so that the SVM and VMX APIs are more or
   less identical.
 
 - Recalculate all MSR intercepts from scratch on MSR filter changes,
   instead of maintaining shadow bitmaps.
 
 - Advertise support for LKGS (Load Kernel GS base), a new instruction
   that's loosely related to FRED, but is supported and enumerated
   independently.
 
 - Fix a user-triggerable WARN that syzkaller found by setting the vCPU
   in INIT_RECEIVED state (aka wait-for-SIPI), and then putting the vCPU
   into VMX Root Mode (post-VMXON).  Trying to detect every possible path
   leading to architecturally forbidden states is hard and even risks
   breaking userspace (if it goes from valid to valid state but passes
   through invalid states), so just wait until KVM_RUN to detect that
   the vCPU state isn't allowed.
 
 - Add KVM_X86_DISABLE_EXITS_APERFMPERF to allow disabling interception of
   APERF/MPERF reads, so that a "properly" configured VM can access
   APERF/MPERF.  This has many caveats (APERF/MPERF cannot be zeroed
   on vCPU creation or saved/restored on suspend and resume, or preserved
   over thread migration let alone VM migration) but can be useful whenever
   you're interested in letting Linux guests see the effective physical CPU
   frequency in /proc/cpuinfo.
 
 - Reject KVM_SET_TSC_KHZ for vm file descriptors if vCPUs have been
   created, as there's no known use case for changing the default
   frequency for other VM types and it goes counter to the very reason
   why the ioctl was added to the vm file descriptor.  And also, there
   would be no way to make it work for confidential VMs with a "secure"
   TSC, so kill two birds with one stone.
 
 - Dynamically allocation the shadow MMU's hashed page list, and defer
   allocating the hashed list until it's actually needed (the TDP MMU
   doesn't use the list).
 
 - Extract many of KVM's helpers for accessing architectural local APIC
   state to common x86 so that they can be shared by guest-side code for
   Secure AVIC.
 
 - Various cleanups and fixes.
 
 x86 (Intel):
 
 - Preserve the host's DEBUGCTL.FREEZE_IN_SMM when running the guest.
   Failure to honor FREEZE_IN_SMM can leak host state into guests.
 
 - Explicitly check vmcs12.GUEST_DEBUGCTL on nested VM-Enter to prevent
   L1 from running L2 with features that KVM doesn't support, e.g. BTF.
 
 x86 (AMD):
 
 - WARN and reject loading kvm-amd.ko instead of panicking the kernel if the
   nested SVM MSRPM offsets tracker can't handle an MSR (which is pretty
   much a static condition and therefore should never happen, but still).
 
 - Fix a variety of flaws and bugs in the AVIC device posted IRQ code.
 
 - Inhibit AVIC if a vCPU's ID is too big (relative to what hardware
   supports) instead of rejecting vCPU creation.
 
 - Extend enable_ipiv module param support to SVM, by simply leaving
   IsRunning clear in the vCPU's physical ID table entry.
 
 - Disable IPI virtualization, via enable_ipiv, if the CPU is affected by
   erratum #1235, to allow (safely) enabling AVIC on such CPUs.
 
 - Request GA Log interrupts if and only if the target vCPU is blocking,
   i.e. only if KVM needs a notification in order to wake the vCPU.
 
 - Intercept SPEC_CTRL on AMD if the MSR shouldn't exist according to the
   vCPU's CPUID model.
 
 - Accept any SNP policy that is accepted by the firmware with respect to
   SMT and single-socket restrictions.  An incompatible policy doesn't put
   the kernel at risk in any way, so there's no reason for KVM to care.
 
 - Drop a superfluous WBINVD (on all CPUs!) when destroying a VM and
   use WBNOINVD instead of WBINVD when possible for SEV cache maintenance.
 
 - When reclaiming memory from an SEV guest, only do cache flushes on CPUs
   that have ever run a vCPU for the guest, i.e. don't flush the caches for
   CPUs that can't possibly have cache lines with dirty, encrypted data.
 
 Generic:
 
 - Rework irqbypass to track/match producers and consumers via an xarray
   instead of a linked list.  Using a linked list leads to O(n^2) insertion
   times, which is hugely problematic for use cases that create large
   numbers of VMs.  Such use cases typically don't actually use irqbypass,
   but eliminating the pointless registration is a future problem to
   solve as it likely requires new uAPI.
 
 - Track irqbypass's "token" as "struct eventfd_ctx *" instead of a "void *",
   to avoid making a simple concept unnecessarily difficult to understand.
 
 - Decouple device posted IRQs from VFIO device assignment, as binding a VM
   to a VFIO group is not a requirement for enabling device posted IRQs.
 
 - Clean up and document/comment the irqfd assignment code.
 
 - Disallow binding multiple irqfds to an eventfd with a priority waiter,
   i.e.  ensure an eventfd is bound to at most one irqfd through the entire
   host, and add a selftest to verify eventfd:irqfd bindings are globally
   unique.
 
 - Add a tracepoint for KVM_SET_MEMORY_ATTRIBUTES to help debug issues
   related to private <=> shared memory conversions.
 
 - Drop guest_memfd's .getattr() implementation as the VFS layer will call
   generic_fillattr() if inode_operations.getattr is NULL.
 
 - Fix issues with dirty ring harvesting where KVM doesn't bound the
   processing of entries in any way, which allows userspace to keep KVM
   in a tight loop indefinitely.
 
 - Kill off kvm_arch_{start,end}_assignment() and x86's associated tracking,
   now that KVM no longer uses assigned_device_count as a heuristic for
   either irqbypass usage or MDS mitigation.
 
 Selftests:
 
 - Fix a comment typo.
 
 - Verify KVM is loaded when getting any KVM module param so that attempting
   to run a selftest without kvm.ko loaded results in a SKIP message about
   KVM not being loaded/enabled (versus some random parameter not existing).
 
 - Skip tests that hit EACCES when attempting to access a file, and rpint
   a "Root required?" help message.  In most cases, the test just needs to
   be run with elevated permissions.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmiKXMgUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMhMQf/QDhC/CP1aGXph2whuyeD2NMqPKiU
 9KdnDNST+ftPwjg9QxZ9mTaa8zeVz/wly6XlxD9OQHy+opM1wcys3k0GZAFFEEQm
 YrThgURdzEZ3nwJZgb+m0t4wjJQtpiFIBwAf7qq6z1VrqQBEmHXJ/8QxGuqO+BNC
 j5q/X+q6KZwehKI6lgFBrrOKWFaxqhnRAYfW6rGBxRXxzTJuna37fvDpodQnNceN
 zOiq+avfriUMArTXTqOteJNKU0229HjiPSnjILLnFQ+B3akBlwNG0jk7TMaAKR6q
 IZWG1EIS9q1BAkGXaw6DE1y6d/YwtXCR5qgAIkiGwaPt5yj9Oj6kRN2Ytw==
 =j2At
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:

   - Host driver for GICv5, the next generation interrupt controller for
     arm64, including support for interrupt routing, MSIs, interrupt
     translation and wired interrupts

   - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on
     GICv5 hardware, leveraging the legacy VGIC interface

   - Userspace control of the 'nASSGIcap' GICv3 feature, allowing
     userspace to disable support for SGIs w/o an active state on
     hardware that previously advertised it unconditionally

   - Map supporting endpoints with cacheable memory attributes on
     systems with FEAT_S2FWB and DIC where KVM no longer needs to
     perform cache maintenance on the address range

   - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the
     guest hypervisor to inject external aborts into an L2 VM and take
     traps of masked external aborts to the hypervisor

   - Convert more system register sanitization to the config-driven
     implementation

   - Fixes to the visibility of EL2 registers, namely making VGICv3
     system registers accessible through the VGIC device instead of the
     ONE_REG vCPU ioctls

   - Various cleanups and minor fixes

  LoongArch:

   - Add stat information for in-kernel irqchip

   - Add tracepoints for CPUCFG and CSR emulation exits

   - Enhance in-kernel irqchip emulation

   - Various cleanups

  RISC-V:

   - Enable ring-based dirty memory tracking

   - Improve perf kvm stat to report interrupt events

   - Delegate illegal instruction trap to VS-mode

   - MMU improvements related to upcoming nested virtualization

  s390x

   - Fixes

  x86:

   - Add CONFIG_KVM_IOAPIC for x86 to allow disabling support for I/O
     APIC, PIC, and PIT emulation at compile time

   - Share device posted IRQ code between SVM and VMX and harden it
     against bugs and runtime errors

   - Use vcpu_idx, not vcpu_id, for GA log tag/metadata, to make lookups
     O(1) instead of O(n)

   - For MMIO stale data mitigation, track whether or not a vCPU has
     access to (host) MMIO based on whether the page tables have MMIO
     pfns mapped; using VFIO is prone to false negatives

   - Rework the MSR interception code so that the SVM and VMX APIs are
     more or less identical

   - Recalculate all MSR intercepts from scratch on MSR filter changes,
     instead of maintaining shadow bitmaps

   - Advertise support for LKGS (Load Kernel GS base), a new instruction
     that's loosely related to FRED, but is supported and enumerated
     independently

   - Fix a user-triggerable WARN that syzkaller found by setting the
     vCPU in INIT_RECEIVED state (aka wait-for-SIPI), and then putting
     the vCPU into VMX Root Mode (post-VMXON). Trying to detect every
     possible path leading to architecturally forbidden states is hard
     and even risks breaking userspace (if it goes from valid to valid
     state but passes through invalid states), so just wait until
     KVM_RUN to detect that the vCPU state isn't allowed

   - Add KVM_X86_DISABLE_EXITS_APERFMPERF to allow disabling
     interception of APERF/MPERF reads, so that a "properly" configured
     VM can access APERF/MPERF. This has many caveats (APERF/MPERF
     cannot be zeroed on vCPU creation or saved/restored on suspend and
     resume, or preserved over thread migration let alone VM migration)
     but can be useful whenever you're interested in letting Linux
     guests see the effective physical CPU frequency in /proc/cpuinfo

   - Reject KVM_SET_TSC_KHZ for vm file descriptors if vCPUs have been
     created, as there's no known use case for changing the default
     frequency for other VM types and it goes counter to the very reason
     why the ioctl was added to the vm file descriptor. And also, there
     would be no way to make it work for confidential VMs with a
     "secure" TSC, so kill two birds with one stone

   - Dynamically allocation the shadow MMU's hashed page list, and defer
     allocating the hashed list until it's actually needed (the TDP MMU
     doesn't use the list)

   - Extract many of KVM's helpers for accessing architectural local
     APIC state to common x86 so that they can be shared by guest-side
     code for Secure AVIC

   - Various cleanups and fixes

  x86 (Intel):

   - Preserve the host's DEBUGCTL.FREEZE_IN_SMM when running the guest.
     Failure to honor FREEZE_IN_SMM can leak host state into guests

   - Explicitly check vmcs12.GUEST_DEBUGCTL on nested VM-Enter to
     prevent L1 from running L2 with features that KVM doesn't support,
     e.g. BTF

  x86 (AMD):

   - WARN and reject loading kvm-amd.ko instead of panicking the kernel
     if the nested SVM MSRPM offsets tracker can't handle an MSR (which
     is pretty much a static condition and therefore should never
     happen, but still)

   - Fix a variety of flaws and bugs in the AVIC device posted IRQ code

   - Inhibit AVIC if a vCPU's ID is too big (relative to what hardware
     supports) instead of rejecting vCPU creation

   - Extend enable_ipiv module param support to SVM, by simply leaving
     IsRunning clear in the vCPU's physical ID table entry

   - Disable IPI virtualization, via enable_ipiv, if the CPU is affected
     by erratum #1235, to allow (safely) enabling AVIC on such CPUs

   - Request GA Log interrupts if and only if the target vCPU is
     blocking, i.e. only if KVM needs a notification in order to wake
     the vCPU

   - Intercept SPEC_CTRL on AMD if the MSR shouldn't exist according to
     the vCPU's CPUID model

   - Accept any SNP policy that is accepted by the firmware with respect
     to SMT and single-socket restrictions. An incompatible policy
     doesn't put the kernel at risk in any way, so there's no reason for
     KVM to care

   - Drop a superfluous WBINVD (on all CPUs!) when destroying a VM and
     use WBNOINVD instead of WBINVD when possible for SEV cache
     maintenance

   - When reclaiming memory from an SEV guest, only do cache flushes on
     CPUs that have ever run a vCPU for the guest, i.e. don't flush the
     caches for CPUs that can't possibly have cache lines with dirty,
     encrypted data

  Generic:

   - Rework irqbypass to track/match producers and consumers via an
     xarray instead of a linked list. Using a linked list leads to
     O(n^2) insertion times, which is hugely problematic for use cases
     that create large numbers of VMs. Such use cases typically don't
     actually use irqbypass, but eliminating the pointless registration
     is a future problem to solve as it likely requires new uAPI

   - Track irqbypass's "token" as "struct eventfd_ctx *" instead of a
     "void *", to avoid making a simple concept unnecessarily difficult
     to understand

   - Decouple device posted IRQs from VFIO device assignment, as binding
     a VM to a VFIO group is not a requirement for enabling device
     posted IRQs

   - Clean up and document/comment the irqfd assignment code

   - Disallow binding multiple irqfds to an eventfd with a priority
     waiter, i.e. ensure an eventfd is bound to at most one irqfd
     through the entire host, and add a selftest to verify eventfd:irqfd
     bindings are globally unique

   - Add a tracepoint for KVM_SET_MEMORY_ATTRIBUTES to help debug issues
     related to private <=> shared memory conversions

   - Drop guest_memfd's .getattr() implementation as the VFS layer will
     call generic_fillattr() if inode_operations.getattr is NULL

   - Fix issues with dirty ring harvesting where KVM doesn't bound the
     processing of entries in any way, which allows userspace to keep
     KVM in a tight loop indefinitely

   - Kill off kvm_arch_{start,end}_assignment() and x86's associated
     tracking, now that KVM no longer uses assigned_device_count as a
     heuristic for either irqbypass usage or MDS mitigation

  Selftests:

   - Fix a comment typo

   - Verify KVM is loaded when getting any KVM module param so that
     attempting to run a selftest without kvm.ko loaded results in a
     SKIP message about KVM not being loaded/enabled (versus some random
     parameter not existing)

   - Skip tests that hit EACCES when attempting to access a file, and
     print a "Root required?" help message. In most cases, the test just
     needs to be run with elevated permissions"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (340 commits)
  Documentation: KVM: Use unordered list for pre-init VGIC registers
  RISC-V: KVM: Avoid re-acquiring memslot in kvm_riscv_gstage_map()
  RISC-V: KVM: Use find_vma_intersection() to search for intersecting VMAs
  RISC-V: perf/kvm: Add reporting of interrupt events
  RISC-V: KVM: Enable ring-based dirty memory tracking
  RISC-V: KVM: Fix inclusion of Smnpm in the guest ISA bitmap
  RISC-V: KVM: Delegate illegal instruction fault to VS mode
  RISC-V: KVM: Pass VMID as parameter to kvm_riscv_hfence_xyz() APIs
  RISC-V: KVM: Factor-out g-stage page table management
  RISC-V: KVM: Add vmid field to struct kvm_riscv_hfence
  RISC-V: KVM: Introduce struct kvm_gstage_mapping
  RISC-V: KVM: Factor-out MMU related declarations into separate headers
  RISC-V: KVM: Use ncsr_xyz() in kvm_riscv_vcpu_trap_redirect()
  RISC-V: KVM: Implement kvm_arch_flush_remote_tlbs_range()
  RISC-V: KVM: Don't flush TLB when PTE is unchanged
  RISC-V: KVM: Replace KVM_REQ_HFENCE_GVMA_VMID_ALL with KVM_REQ_TLB_FLUSH
  RISC-V: KVM: Rename and move kvm_riscv_local_tlb_sanitize()
  RISC-V: KVM: Drop the return value of kvm_riscv_vcpu_aia_init()
  RISC-V: KVM: Check kvm_riscv_vcpu_alloc_vector_context() return value
  KVM: arm64: selftests: Add FEAT_RAS EL2 registers to get-reg-list
  ...
2025-07-30 17:14:01 -07:00
Linus Torvalds
6fb44438a5 arm64 updates for 6.17:
Perf and PMU updates:
 
  - Add support for new (v3) Hisilicon SLLC and DDRC PMUs
 
  - Add support for Arm-NI PMU integrations that share interrupts between
    clock domains within a given instance
 
  - Allow SPE to be configured with a lower sample period than the
    minimum recommendation advertised by PMSIDR_EL1.Interval
 
  - Add suppport for Arm's "Branch Record Buffer Extension" (BRBE)
 
  - Adjust the perf watchdog period according to cpu frequency changes
 
  - Minor driver fixes and cleanups
 
 Hardware features:
 
  - Support for MTE store-only checking (FEAT_MTE_STORE_ONLY)
 
  - Support for reporting the non-address bits during a synchronous MTE
    tag check fault (FEAT_MTE_TAGGED_FAR)
 
  - Optimise the TLBI when folding/unfolding contiguous PTEs on hardware
    with FEAT_BBM (break-before-make) level 2 and no TLB conflict aborts
 
 Software features:
 
  - Enable HAVE_LIVEPATCH after implementing arch_stack_walk_reliable()
    and using the text-poke API for late module relocations
 
  - Force VMAP_STACK always on and change arm64_efi_rt_init() to use
    arch_alloc_vmap_stack() in order to avoid KASAN false positives
 
 ACPI:
 
  - Improve SPCR handling and messaging on systems lacking an SPCR table
 
 Debug:
 
  - Simplify the debug exception entry path
 
  - Drop redundant DBG_MDSCR_* macros
 
 Kselftests:
 
  - Cleanups and improvements for SME, SVE and FPSIMD tests
 
 Miscellaneous:
 
  - Optimise loop to reduce redundant operations in contpte_ptep_get()
 
  - Remove ISB when resetting POR_EL0 during signal handling
 
  - Mark the kernel as tainted on SEA and SError panic
 
  - Remove redundant gcs_free() call
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmiDkgoACgkQa9axLQDI
 XvFucQ//bYugRP5/Sdlrq5eDKWBGi1HufYzwfDEBLc4S75Eu8mGL/tuThfu9yFn+
 qCowtt4U84HdWsZDTSVo6lym6v2vJUpGOMgXzepvJaFBRnqGv9X9NxH6RQO1LTnu
 Pm7rO+7I9tNpfuc7Zu9pHDggsJEw+WzVfmEF6WPSFlT9mUNv6NbSx4rbLQKU86Dm
 ouTqXaePEQZ5oiRXVasxyT0otGtiACD20WpgOtNjYGzsfUVwCf/C83V/2DLwwbhr
 9cW9lCtFxA/yFdQcA9ThRzWZ9Eo5LAHqjGIq00+zOjuzgDbBtcTT79gpChkhovIR
 FBIsWHd9j9i3nYxzf4V4eRKQnyqS3NQWv7g7uKFwNgARif1Zk0VJ77QIlAYk5xLI
 ENTRjLKz5WNGGnhdkeCvDlVyxX+OktgcVTp3vqRxAKCRahMMUqBrwxiM8RzVF37e
 yzkEQayL8F7uZqy9H7Sjn48UpHZux6frJ1bBQw1oEvR9QmAoAdqavPMSAYIOT3Zr
 ze4WIljq/cFr3kBPIFP5pK1e0qYMHXZpSKIm8MAv6y/7KmQuVbMjZthpuPbLSIw0
 Q7C0KalB8lToPIbO7qMni/he0dCN4K2+E1YHFTR+pzfcoLuW4rjSg7i8tqMLKMJ8
 H+SeGLyPtM5A6bdAPTTpqefcgUUe7064ENUqrGUpDEynGXA7boE=
 =5h1C
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "A quick summary: perf support for Branch Record Buffer Extensions
  (BRBE), typical PMU hardware updates, small additions to MTE for
  store-only tag checking and exposing non-address bits to signal
  handlers, HAVE_LIVEPATCH enabled on arm64, VMAP_STACK forced on.

  There is also a TLBI optimisation on hardware that does not require
  break-before-make when changing the user PTEs between contiguous and
  non-contiguous.

  More details:

  Perf and PMU updates:

   - Add support for new (v3) Hisilicon SLLC and DDRC PMUs

   - Add support for Arm-NI PMU integrations that share interrupts
     between clock domains within a given instance

   - Allow SPE to be configured with a lower sample period than the
     minimum recommendation advertised by PMSIDR_EL1.Interval

   - Add suppport for Arm's "Branch Record Buffer Extension" (BRBE)

   - Adjust the perf watchdog period according to cpu frequency changes

   - Minor driver fixes and cleanups

  Hardware features:

   - Support for MTE store-only checking (FEAT_MTE_STORE_ONLY)

   - Support for reporting the non-address bits during a synchronous MTE
     tag check fault (FEAT_MTE_TAGGED_FAR)

   - Optimise the TLBI when folding/unfolding contiguous PTEs on
     hardware with FEAT_BBM (break-before-make) level 2 and no TLB
     conflict aborts

  Software features:

   - Enable HAVE_LIVEPATCH after implementing arch_stack_walk_reliable()
     and using the text-poke API for late module relocations

   - Force VMAP_STACK always on and change arm64_efi_rt_init() to use
     arch_alloc_vmap_stack() in order to avoid KASAN false positives

  ACPI:

   - Improve SPCR handling and messaging on systems lacking an SPCR
     table

  Debug:

   - Simplify the debug exception entry path

   - Drop redundant DBG_MDSCR_* macros

  Kselftests:

   - Cleanups and improvements for SME, SVE and FPSIMD tests

  Miscellaneous:

   - Optimise loop to reduce redundant operations in contpte_ptep_get()

   - Remove ISB when resetting POR_EL0 during signal handling

   - Mark the kernel as tainted on SEA and SError panic

   - Remove redundant gcs_free() call"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits)
  arm64/gcs: task_gcs_el0_enable() should use passed task
  arm64: Kconfig: Keep selects somewhat alphabetically ordered
  arm64: signal: Remove ISB when resetting POR_EL0
  kselftest/arm64: Handle attempts to disable SM on SME only systems
  kselftest/arm64: Fix SVE write data generation for SME only systems
  kselftest/arm64: Test SME on SME only systems in fp-ptrace
  kselftest/arm64: Test FPSIMD format data writes via NT_ARM_SVE in fp-ptrace
  kselftest/arm64: Allow sve-ptrace to run on SME only systems
  arm64/mm: Drop redundant addr increment in set_huge_pte_at()
  kselftest/arm4: Provide local defines for AT_HWCAP3
  arm64: Mark kernel as tainted on SAE and SError panic
  arm64/gcs: Don't call gcs_free() when releasing task_struct
  drivers/perf: hisi: Support PMUs with no interrupt
  drivers/perf: hisi: Relax the event number check of v2 PMUs
  drivers/perf: hisi: Add support for HiSilicon SLLC v3 PMU driver
  drivers/perf: hisi: Use ACPI driver_data to retrieve SLLC PMU information
  drivers/perf: hisi: Add support for HiSilicon DDRC v3 PMU driver
  drivers/perf: hisi: Simplify the probe process for each DDRC version
  perf/arm-ni: Support sharing IRQs within an NI instance
  perf/arm-ni: Consolidate CPU affinity handling
  ...
2025-07-29 20:21:54 -07:00
Paolo Bonzini
314b40b3b6 KVM/arm64 changes for 6.17, round #1
- Host driver for GICv5, the next generation interrupt controller for
    arm64, including support for interrupt routing, MSIs, interrupt
    translation and wired interrupts.
 
  - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on
    GICv5 hardware, leveraging the legacy VGIC interface.
 
  - Userspace control of the 'nASSGIcap' GICv3 feature, allowing
    userspace to disable support for SGIs w/o an active state on hardware
    that previously advertised it unconditionally.
 
  - Map supporting endpoints with cacheable memory attributes on systems
    with FEAT_S2FWB and DIC where KVM no longer needs to perform cache
    maintenance on the address range.
 
  - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest
    hypervisor to inject external aborts into an L2 VM and take traps of
    masked external aborts to the hypervisor.
 
  - Convert more system register sanitization to the config-driven
    implementation.
 
  - Fixes to the visibility of EL2 registers, namely making VGICv3 system
    registers accessible through the VGIC device instead of the ONE_REG
    vCPU ioctls.
 
  - Various cleanups and minor fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iI0EABYIADUWIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCaIezbRccb2xpdmVyLnVw
 dG9uQGxpbnV4LmRldgAKCRCivnWIJHzdFr/eAQDY5NIG5cR6ZcAWnPQLmGWpz2ou
 pq4Jhn9E/mGR3n5L1AEAsJpfLLpOsmnLBdwfbjmW59gGsa8k3i5tjWEOJ6yzAwk=
 =r+sp
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-6.17' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 changes for 6.17, round #1

 - Host driver for GICv5, the next generation interrupt controller for
   arm64, including support for interrupt routing, MSIs, interrupt
   translation and wired interrupts.

 - Use FEAT_GCIE_LEGACY on GICv5 systems to virtualize GICv3 VMs on
   GICv5 hardware, leveraging the legacy VGIC interface.

 - Userspace control of the 'nASSGIcap' GICv3 feature, allowing
   userspace to disable support for SGIs w/o an active state on hardware
   that previously advertised it unconditionally.

 - Map supporting endpoints with cacheable memory attributes on systems
   with FEAT_S2FWB and DIC where KVM no longer needs to perform cache
   maintenance on the address range.

 - Nested support for FEAT_RAS and FEAT_DoubleFault2, allowing the guest
   hypervisor to inject external aborts into an L2 VM and take traps of
   masked external aborts to the hypervisor.

 - Convert more system register sanitization to the config-driven
   implementation.

 - Fixes to the visibility of EL2 registers, namely making VGICv3 system
   registers accessible through the VGIC device instead of the ONE_REG
   vCPU ioctls.

 - Various cleanups and minor fixes.
2025-07-29 12:27:40 -04:00
Oliver Upton
ccd73c5782 GICv5 initial host support
Add host kernel support for the new arm64 GICv5 architecture, which is
 quite a departure from the previous ones.
 
 Include support for the full gamut of the architecture (interrupt
 routing and delivery to CPUs, wired interrupts, MSIs, and interrupt
 translation).
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmh45MYACgkQI9DQutE9
 ekPa3w//b5FfQAXwSco2+zqfR80a914CkBchHWJ50S1XHxymikI0VWin+4nsFXz1
 90/k52hz4a1rhjpMA0Z0rnEpzTpvyPckrfKDzUqf2Q8aAmfHMRw91kYvl2BII39O
 iWqEQKFRIxK5QR3mRt6C7mV8xth8zUbk/jPBdFbuB7iS/s8+Ayrxul9H4gHQsZqL
 f8fFZmFMKIIoshnWSr604510j0/jhj2lTXyesXGoNa/bBpPYsjOZeZByPaw+3RLS
 wGluBhMsbRk3gPzplVuPzMtQYLMinf2i08bhg4113zVvF1nvi1cs8ah28+HRH33X
 ZFIzClvWmCOu1zsYes49X8A6U2iJ4BL5Ndh9W6M3E7iH+pnzmYPsSuKL69welyvz
 7qRJnoAkIooaWrgES+TVCDGqC4gBTClBWUZKMRa21GMwyyPLaPQZBnAmHzqbbFO1
 k8WMcOVtvStc/Hd4Jc8GgbdWn5IRI6YAqIOEht1vYP9bKka8oj0nEt4I275bUlJP
 K2Qife4C6If8oAG+5Qu0dD6pAh7Pp6wylPm0EQ9AE5KCR4wWONOluvrSvU0WaAw6
 2uk5H/lTl0l9onO84YKP2dkYNawkKLVWeYnKFtpT1HKRUt1OkF01NsGKYivE5xp3
 qdsgyOYXR6r/MKa0ymfQ58y0txqTY7IQ/GSl44Sjh2WVU94Sp8A=
 =pB67
 -----END PGP SIGNATURE-----

Merge tag 'irqchip-gic-v5-host' into kvmarm/next

GICv5 initial host support

Add host kernel support for the new arm64 GICv5 architecture, which is
quite a departure from the previous ones.

Include support for the full gamut of the architecture (interrupt
routing and delivery to CPUs, wired interrupts, MSIs, and interrupt
translation).

* tag 'irqchip-gic-v5-host': (32 commits)
  arm64: smp: Fix pNMI setup after GICv5 rework
  arm64: Kconfig: Enable GICv5
  docs: arm64: gic-v5: Document booting requirements for GICv5
  irqchip/gic-v5: Add GICv5 IWB support
  irqchip/gic-v5: Add GICv5 ITS support
  irqchip/msi-lib: Add IRQ_DOMAIN_FLAG_FWNODE_PARENT handling
  irqchip/gic-v3: Rename GICv3 ITS MSI parent
  PCI/MSI: Add pci_msi_map_rid_ctlr_node() helper function
  of/irq: Add of_msi_xlate() helper function
  irqchip/gic-v5: Enable GICv5 SMP booting
  irqchip/gic-v5: Add GICv5 LPI/IPI support
  irqchip/gic-v5: Add GICv5 IRS/SPI support
  irqchip/gic-v5: Add GICv5 PPI support
  arm64: Add support for GICv5 GSB barriers
  arm64: smp: Support non-SGIs for IPIs
  arm64: cpucaps: Add GICv5 CPU interface (GCIE) capability
  arm64: cpucaps: Rename GICv3 CPU interface capability
  arm64: Disable GICv5 read/write/instruction traps
  arm64/sysreg: Add ICH_HFGITR_EL2
  arm64/sysreg: Add ICH_HFGWTR_EL2
  ...

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-26 08:49:42 -07:00
Catalin Marinas
5b1ae9de71 Merge branch 'for-next/feat_mte_store_only' into for-next/core
* for-next/feat_mte_store_only:
  : MTE feature to restrict tag checking to store only operations
  kselftest/arm64/mte: Add MTE_STORE_ONLY testcases
  kselftest/arm64/mte: Preparation for mte store only test
  kselftest/arm64/abi: Add MTE_STORE_ONLY feature hwcap test
  KVM: arm64: Expose MTE_STORE_ONLY feature to guest
  arm64/hwcaps: Add MTE_STORE_ONLY hwcaps
  arm64/kernel: Support store-only mte tag check
  prctl: Introduce PR_MTE_STORE_ONLY
  arm64/cpufeature: Add MTE_STORE_ONLY feature
2025-07-24 16:03:34 +01:00
Catalin Marinas
3ae8cef210 Merge branches 'for-next/livepatch', 'for-next/user-contig-bbml2', 'for-next/misc', 'for-next/acpi', 'for-next/debug-entry', 'for-next/feat_mte_tagged_far', 'for-next/kselftest', 'for-next/mdscr-cleanup' and 'for-next/vmap-stack', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: (23 commits)
  drivers/perf: hisi: Support PMUs with no interrupt
  drivers/perf: hisi: Relax the event number check of v2 PMUs
  drivers/perf: hisi: Add support for HiSilicon SLLC v3 PMU driver
  drivers/perf: hisi: Use ACPI driver_data to retrieve SLLC PMU information
  drivers/perf: hisi: Add support for HiSilicon DDRC v3 PMU driver
  drivers/perf: hisi: Simplify the probe process for each DDRC version
  perf/arm-ni: Support sharing IRQs within an NI instance
  perf/arm-ni: Consolidate CPU affinity handling
  perf/cxlpmu: Fix typos in cxl_pmu.c comments and documentation
  perf/cxlpmu: Remove unintended newline from IRQ name format string
  perf/cxlpmu: Fix devm_kcalloc() argument order in cxl_pmu_probe()
  perf: arm_spe: Relax period restriction
  perf: arm_pmuv3: Add support for the Branch Record Buffer Extension (BRBE)
  KVM: arm64: nvhe: Disable branch generation in nVHE guests
  arm64: Handle BRBE booting requirements
  arm64/sysreg: Add BRBE registers and fields
  perf/arm: Add missing .suppress_bind_attrs
  perf/arm-cmn: Reduce stack usage during discovery
  perf: imx9_perf: make the read-only array mask static const
  perf/arm-cmn: Broaden module description for wider interconnect support
  ...

* for-next/livepatch:
  : Support for HAVE_LIVEPATCH on arm64
  arm64: Kconfig: Keep selects somewhat alphabetically ordered
  arm64: Implement HAVE_LIVEPATCH
  arm64: stacktrace: Implement arch_stack_walk_reliable()
  arm64: stacktrace: Check kretprobe_find_ret_addr() return value
  arm64/module: Use text-poke API for late relocations.

* for-next/user-contig-bbml2:
  : Optimise the TLBI when folding/unfolding contigous PTEs on hardware with BBML2 and no TLB conflict aborts
  arm64/mm: Elide tlbi in contpte_convert() under BBML2
  iommu/arm: Add BBM Level 2 smmu feature
  arm64: Add BBM Level 2 cpu feature
  arm64: cpufeature: Introduce MATCH_ALL_EARLY_CPUS capability type

* for-next/misc:
  : Miscellaneous arm64 patches
  arm64/gcs: task_gcs_el0_enable() should use passed task
  arm64: signal: Remove ISB when resetting POR_EL0
  arm64/mm: Drop redundant addr increment in set_huge_pte_at()
  arm64: Mark kernel as tainted on SAE and SError panic
  arm64/gcs: Don't call gcs_free() when releasing task_struct
  arm64: fix unnecessary rebuilding when CONFIG_DEBUG_EFI=y
  arm64/mm: Optimize loop to reduce redundant operations of contpte_ptep_get
  arm64: pi: use 'targets' instead of extra-y in Makefile

* for-next/acpi:
  : Various ACPI arm64 changes
  ACPI: Suppress misleading SPCR console message when SPCR table is absent
  ACPI: Return -ENODEV from acpi_parse_spcr() when SPCR support is disabled

* for-next/debug-entry:
  : Simplify the debug exception entry path
  arm64: debug: remove debug exception registration infrastructure
  arm64: debug: split bkpt32 exception entry
  arm64: debug: split brk64 exception entry
  arm64: debug: split hardware watchpoint exception entry
  arm64: debug: split single stepping exception entry
  arm64: debug: refactor reinstall_suspended_bps()
  arm64: debug: split hardware breakpoint exception entry
  arm64: entry: Add entry and exit functions for debug exceptions
  arm64: debug: remove break/step handler registration infrastructure
  arm64: debug: call step handlers statically
  arm64: debug: call software breakpoint handlers statically
  arm64: refactor aarch32_break_handler()
  arm64: debug: clean up single_step_handler logic

* for-next/feat_mte_tagged_far:
  : Support for reporting the non-address bits during a synchronous MTE tag check fault
  kselftest/arm64/mte: Add mtefar tests on check_mmap_options
  kselftest/arm64/mte: Refactor check_mmap_option test
  kselftest/arm64/mte: Add verification for address tag in signal handler
  kselftest/arm64/mte: Add address tag related macro and function
  kselftest/arm64/mte: Check MTE_FAR feature is supported
  kselftest/arm64/mte: Register mte signal handler with SA_EXPOSE_TAGBITS
  kselftest/arm64: Add MTE_FAR hwcap test
  KVM: arm64: Expose FEAT_MTE_TAGGED_FAR feature to guest
  arm64: Report address tag when FEAT_MTE_TAGGED_FAR is supported
  arm64/cpufeature: Add FEAT_MTE_TAGGED_FAR feature

* for-next/kselftest:
  : Kselftest updates for arm64
  kselftest/arm64: Handle attempts to disable SM on SME only systems
  kselftest/arm64: Fix SVE write data generation for SME only systems
  kselftest/arm64: Test SME on SME only systems in fp-ptrace
  kselftest/arm64: Test FPSIMD format data writes via NT_ARM_SVE in fp-ptrace
  kselftest/arm64: Allow sve-ptrace to run on SME only systems
  kselftest/arm4: Provide local defines for AT_HWCAP3
  kselftest/arm64: Specify SVE data when testing VL set in sve-ptrace
  kselftest/arm64: Fix test for streaming FPSIMD write in sve-ptrace
  kselftest/arm64: Fix check for setting new VLs in sve-ptrace
  kselftest/arm64: Convert tpidr2 test to use kselftest.h

* for-next/mdscr-cleanup:
  : Drop redundant DBG_MDSCR_* macros
  KVM: selftests: Change MDSCR_EL1 register holding variables as uint64_t
  arm64/debug: Drop redundant DBG_MDSCR_* macros

* for-next/vmap-stack:
  : Force VMAP_STACK on arm64
  arm64: remove CONFIG_VMAP_STACK checks from entry code
  arm64: remove CONFIG_VMAP_STACK checks from SDEI stack handling
  arm64: remove CONFIG_VMAP_STACK checks from stacktrace overflow logic
  arm64: remove CONFIG_VMAP_STACK conditionals from traps overflow stack
  arm64: remove CONFIG_VMAP_STACK conditionals from irq stack setup
  arm64: Remove CONFIG_VMAP_STACK conditionals from THREAD_SHIFT and THREAD_ALIGN
  arm64: efi: Remove CONFIG_VMAP_STACK check
  arm64: Mandate VMAP_STACK
  arm64: efi: Fix KASAN false positive for EFI runtime stack
  arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth()
  arm64/gcs: Don't call gcs_free() during flush_gcs()
  arm64: Restrict pagetable teardown to avoid false warning
  docs: arm64: Fix ICC_SRE_EL2 register typo in booting.rst
2025-07-24 16:01:22 +01:00
Oliver Upton
e3fd66620f arm64: Detect FEAT_DoubleFault2
KVM will soon support FEAT_DoubleFault2. Add a descriptor for the
corresponding ID register field.

Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08 10:40:30 -07:00
Oliver Upton
bf49e73dde arm64: Detect FEAT_SCTLR2
KVM is about to pick up support for SCTLR2. Add cpucap for later use in
the guest/host context switch hot path.

Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250708172532.1699409-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-07-08 10:40:30 -07:00
Lorenzo Pieralisi
988699f9e6 arm64: cpucaps: Add GICv5 CPU interface (GCIE) capability
Implement the GCIE capability as a strict boot cpu capability to
detect whether architectural GICv5 support is available in HW.

Plug it in with a naming consistent with the existing GICv3
CPU interface capability.

Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-17-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-07-08 18:35:51 +01:00
Lorenzo Pieralisi
0bb5b6faa0 arm64: cpucaps: Rename GICv3 CPU interface capability
In preparation for adding a GICv5 CPU interface capability,
rework the existing GICv3 CPUIF capability - change its name and
description so that the subsequent GICv5 CPUIF capability
can be added with a more consistent naming on top.

Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-16-12e71f1b3528@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-07-08 18:35:51 +01:00
Mark Brown
a75ad2fc76 arm64: Filter out SME hwcaps when FEAT_SME isn't implemented
We have a number of hwcaps for various SME subfeatures enumerated via
ID_AA64SMFR0_EL1. Currently we advertise these without cross checking
against the main SME feature, advertised in ID_AA64PFR1_EL1.SME which
means that if the two are out of sync userspace can see a confusing
situation where SME subfeatures are advertised without the base SME
hwcap. This can be readily triggered by using the arm64.nosme override
which only masks out ID_AA64PFR1_EL1.SME, and there have also been
reports of VMMs which do the same thing.

Fix this as we did previously for SVE in 064737920b ("arm64: Filter
out SVE hwcaps when FEAT_SVE isn't implemented") by filtering out the
SME subfeature hwcaps when FEAT_SME is not present.

Fixes: 5e64b862c4 ("arm64/sme: Basic enumeration support")
Reported-by: Yury Khrustalev <yury.khrustalev@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250620-arm64-sme-filter-hwcaps-v1-1-02b9d3c2d8ef@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2025-07-04 16:35:30 +01:00
Yeoreum Yun
f620372209 arm64/hwcaps: Add MTE_STORE_ONLY hwcaps
Since ARMv8.9, FEAT_MTE_STORE_ONLY can be used to restrict raise of tag
check fault on store operation only.

add MTE_STORE_ONLY hwcaps so that user can use this feature.

Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Link: https://lore.kernel.org/r/20250618092957.2069907-5-yeoreum.yun@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-07-02 18:49:04 +01:00
Yeoreum Yun
33e943a228 arm64/cpufeature: Add MTE_STORE_ONLY feature
Since ARMv8.9, FEAT_MTE_STORE_ONLY can be used to restrict raise of tag
check fault on store operation only.

add MTE_STORE_ONLY feature.

Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250618092957.2069907-2-yeoreum.yun@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-07-02 18:49:03 +01:00
Yeoreum Yun
7c7f55039b arm64: Report address tag when FEAT_MTE_TAGGED_FAR is supported
If FEAT_MTE_TAGGED_FAR (Armv8.9) is supported, bits 63:60 of the fault address
are preserved in response to synchronous tag check faults (SEGV_MTESERR).

This patch modifies below to support this feature:
  - Use the original FAR_EL1 value when an MTE tag check fault occurs,
    if ARM64_MTE_FAR is supported so that not only logical tag
    (bits 59:56) but also address tag (bits 63:60] being reported too.

  - Add HWCAP for mtefar to let user know bits 63:60 includes
    address tag information when when FEAT_MTE_TAGGED_FAR is supported.

Applications that require this information should install
a signal handler with the SA_EXPOSE_TAGBITS flag.
While this introduces a minor ABI change,
most applications do not set this flag and therefore will not be affected.

Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Link: https://lore.kernel.org/r/20250618084513.1761345-3-yeoreum.yun@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-07-02 17:44:17 +01:00
Yeoreum Yun
6698453689 arm64/cpufeature: Add FEAT_MTE_TAGGED_FAR feature
Add FEAT_MTE_TAGGED_FAR cpucap which makes FAR_ELx report
all non-address bits on a synchronous MTE tag check fault since Armv8.9

Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Link: https://lore.kernel.org/r/20250618084513.1761345-2-yeoreum.yun@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-07-02 17:44:10 +01:00
Mikołaj Lenczewski
5aa4b62576 arm64: Add BBM Level 2 cpu feature
The Break-Before-Make cpu feature supports multiple levels (levels 0-2),
and this commit adds a dedicated BBML2 cpufeature to test against
support for.

To support BBML2 in as wide a range of contexts as we can, we want not
only the architectural guarantees that BBML2 makes, but additionally
want BBML2 to not create TLB conflict aborts. Not causing aborts avoids
us having to prove that no recursive faults can be induced in any path
that uses BBML2, allowing its use for arbitrary kernel mappings.

This feature builds on the previous ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
as all early cpus must support BBML2 for us to enable it (and any later
cpus must also support it to be onlined).

Not onlining late cpus that do not support BBML2 is unavoidable, as we
might currently be using BBML2 semantics for kernel memory regions. This
could cause faults in the late cpus, and would be difficult to unwind,
so let us avoid the case altogether.

Signed-off-by: Mikołaj Lenczewski <miko.lenczewski@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/r/20250625113435.26849-3-miko.lenczewski@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-06-30 18:09:05 +01:00
Catalin Marinas
3eb06f6ce3 arm64: cpufeature: Introduce MATCH_ALL_EARLY_CPUS capability type
For system-wide capabilities, the kernel has the SCOPE_SYSTEM type. Such
capabilities are checked once the SMP boot has completed using the
sanitised ID registers. However, there is a need for a new capability
type similar in scope to the system one but with checking performed
locally on each CPU during boot (e.g. based on MIDR_EL1 which is not a
sanitised register).

Introduce ARM64_CPUCAP_MATCH_ALL_EARLY_CPUS which, together with
ARM64_CPUCAP_SCOPE_LOCAL_CPU, ensures that such capability is enabled
only if all early CPUs have it. For ease of use, define
ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE which combines SCOPE_LOCAL_CPU,
PERMITTED_FOR_LATE_CPUS and MATCH_ALL_EARLY_CPUS.

Signed-off-by: Mikołaj Lenczewski <miko.lenczewski@arm.com>
Reviewed-by: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Link: https://lore.kernel.org/r/20250625113435.26849-2-miko.lenczewski@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-06-30 17:42:03 +01:00
Linus Torvalds
e9e668cd27 arm64 fixes for -rc1
- Disable problematic linker assertions for broken versions of LLD.
 
 - Work around sporadic link failure with LLD and various randconfig
   builds.
 
 - Fix missing invalidation in the TLB batching code when reclaim races
   with mprotect() and friends.
 
 - Add a command-line override for MPAM to allow booting on systems with
   broken firmware.
 -----BEGIN PGP SIGNATURE-----
 
 iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmhBcycQHHdpbGxAa2Vy
 bmVsLm9yZwAKCRC3rHDchMFjNDwWCACtc4Jw3wwkmaiiP9Ner1/7wKq8xRLC2WRU
 tJjWLSkeoTthxf0DZILc61rNpOalfaRK774/Xo0OiYOBpKeAi5cSaUYMyabVJGcK
 k1R0KXDUu8oS6xKXmXyeuBV2pK4v4aET3E6lzUQZfvamhzuZfCvvKKrF5K8vv5Ph
 eowBMWKugMrwXMOBkRgVopppobdneFuVvnoMlNNYWOy70wDekoPV3qizoVJG/ulQ
 BTFunXX8Otufrm48Ye2bYalfwoiGdUQaJz/gRuHko0o3SOhqR3qZp2DWxQgBwJ+g
 VI6/dRLnVQpdg6toTvS9jzPczVfLt4/5VhLevbBcJuaUOER4SOZl
 =cfnk
 -----END PGP SIGNATURE-----

Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 fixes from Will Deacon:
 "We've got a couple of build fixes when using LLD, a missing TLB
  invalidation and a workaround for broken firmware on SoCs with CPUs
  that implement MPAM:

   - Disable problematic linker assertions for broken versions of LLD

   - Work around sporadic link failure with LLD and various randconfig
     builds

   - Fix missing invalidation in the TLB batching code when reclaim
     races with mprotect() and friends

   - Add a command-line override for MPAM to allow booting on systems
     with broken firmware"

* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  arm64: Add override for MPAM
  arm64/mm: Close theoretical race where stale TLB entry remains valid
  arm64: Work around convergence issue with LLD linker
  arm64: Disable LLD linker ASSERT()s for the time being
2025-06-05 11:39:17 -07:00
Xi Ruoyao
10f885d63a arm64: Add override for MPAM
As the message of the commit 09e6b306f3 ("arm64: cpufeature: discover
CPU support for MPAM") already states, if a buggy firmware fails to
either enable MPAM or emulate the trap as if it were disabled, the
kernel will just fail to boot.  While upgrading the firmware should be
the best solution, we have some hardware of which the vendor have made
no response 2 months after we requested a firmware update.  Allow
overriding it so our devices don't become some e-waste.

Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Cc: Mingcong Bai <jeffbai@aosc.io>
Cc: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Cc: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Xi Ruoyao <xry111@xry111.site>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250602043723.216338-1-xry111@xry111.site
Signed-off-by: Will Deacon <will@kernel.org>
2025-06-02 13:49:09 +01:00
Linus Torvalds
43db111107 ARM:
* Add large stage-2 mapping (THP) support for non-protected guests when
   pKVM is enabled, clawing back some performance.
 
 * Enable nested virtualisation support on systems that support it,
   though it is disabled by default.
 
 * Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and
   protected modes.
 
 * Large rework of the way KVM tracks architecture features and links
   them with the effects of control bits. While this has no functional
   impact, it ensures correctness of emulation (the data is automatically
   extracted from the published JSON files), and helps dealing with the
   evolution of the architecture.
 
 * Significant changes to the way pKVM tracks ownership of pages,
   avoiding page table walks by storing the state in the hypervisor's
   vmemmap. This in turn enables the THP support described above.
 
 * New selftest checking the pKVM ownership transition rules
 
 * Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests
   even if the host didn't have it.
 
 * Fixes for the address translation emulation, which happened to be
   rather buggy in some specific contexts.
 
 * Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N
   from the number of counters exposed to a guest and addressing a
   number of issues in the process.
 
 * Add a new selftest for the SVE host state being corrupted by a
   guest.
 
 * Keep HCR_EL2.xMO set at all times for systems running with the
   kernel at EL2, ensuring that the window for interrupts is slightly
   bigger, and avoiding a pretty bad erratum on the AmpereOne HW.
 
 * Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers
   from a pretty bad case of TLB corruption unless accesses to HCR_EL2
   are heavily synchronised.
 
 * Add a per-VM, per-ITS debugfs entry to dump the state of the ITS
   tables in a human-friendly fashion.
 
 * and the usual random cleanups.
 
 LoongArch:
 
 * Don't flush tlb if the host supports hardware page table walks.
 
 * Add KVM selftests support.
 
 RISC-V:
 
 * Add vector registers to get-reg-list selftest
 
 * VCPU reset related improvements
 
 * Remove scounteren initialization from VCPU reset
 
 * Support VCPU reset from userspace using set_mpstate() ioctl
 
 x86:
 
 * Initial support for TDX in KVM.  This finally makes it possible to use the
   TDX module to run confidential guests on Intel processors.  This is quite a
   large series, including support for private page tables (managed by the
   TDX module and mirrored in KVM for efficiency), forwarding some TDVMCALLs
   to userspace, and handling several special VM exits from the TDX module.
 
   This has been in the works for literally years and it's not really possible
   to describe everything here, so I'll defer to the various merge commits
   up to and including commit 7bcf7246c4 ("Merge branch 'kvm-tdx-finish-initial'
   into HEAD").
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmg02hwUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNnkwf/db4xeWKSMseCIvBVR+ObDn3LXhwT
 hAgmTkDkP1zq9RfbfJSbUA1DXRwfP+f1sWySLMWECkFEQW9fGIJF9fOQRDSXKmhX
 158U3+FEt+3jxLRCGFd4zyXAqyY3C8JSkPUyJZxCpUbXtB5tdDNac4rZAXKDULwe
 sUi0OW/kFDM2yt369pBGQAGdN+75/oOrYISGOSvMXHxjccNqvveX8MUhpBjYIuuj
 73iBWmsfv3vCtam56Racz3C3v44ie498PmWFtnB0R+CVfWfrnUAaRiGWx+egLiBW
 dBPDiZywMn++prmphEUFgaStDTQy23JBLJ8+RvHkp+o5GaTISKJB3nedZQ==
 =adZU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "As far as x86 goes this pull request "only" includes TDX host support.

  Quotes are appropriate because (at 6k lines and 100+ commits) it is
  much bigger than the rest, which will come later this week and
  consists mostly of bugfixes and selftests. s390 changes will also come
  in the second batch.

  ARM:

   - Add large stage-2 mapping (THP) support for non-protected guests
     when pKVM is enabled, clawing back some performance.

   - Enable nested virtualisation support on systems that support it,
     though it is disabled by default.

   - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE
     and protected modes.

   - Large rework of the way KVM tracks architecture features and links
     them with the effects of control bits. While this has no functional
     impact, it ensures correctness of emulation (the data is
     automatically extracted from the published JSON files), and helps
     dealing with the evolution of the architecture.

   - Significant changes to the way pKVM tracks ownership of pages,
     avoiding page table walks by storing the state in the hypervisor's
     vmemmap. This in turn enables the THP support described above.

   - New selftest checking the pKVM ownership transition rules

   - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests
     even if the host didn't have it.

   - Fixes for the address translation emulation, which happened to be
     rather buggy in some specific contexts.

   - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N
     from the number of counters exposed to a guest and addressing a
     number of issues in the process.

   - Add a new selftest for the SVE host state being corrupted by a
     guest.

   - Keep HCR_EL2.xMO set at all times for systems running with the
     kernel at EL2, ensuring that the window for interrupts is slightly
     bigger, and avoiding a pretty bad erratum on the AmpereOne HW.

   - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers
     from a pretty bad case of TLB corruption unless accesses to HCR_EL2
     are heavily synchronised.

   - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS
     tables in a human-friendly fashion.

   - and the usual random cleanups.

  LoongArch:

   - Don't flush tlb if the host supports hardware page table walks.

   - Add KVM selftests support.

  RISC-V:

   - Add vector registers to get-reg-list selftest

   - VCPU reset related improvements

   - Remove scounteren initialization from VCPU reset

   - Support VCPU reset from userspace using set_mpstate() ioctl

  x86:

   - Initial support for TDX in KVM.

     This finally makes it possible to use the TDX module to run
     confidential guests on Intel processors. This is quite a large
     series, including support for private page tables (managed by the
     TDX module and mirrored in KVM for efficiency), forwarding some
     TDVMCALLs to userspace, and handling several special VM exits from
     the TDX module.

     This has been in the works for literally years and it's not really
     possible to describe everything here, so I'll defer to the various
     merge commits up to and including commit 7bcf7246c4 ('Merge
     branch 'kvm-tdx-finish-initial' into HEAD')"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (248 commits)
  x86/tdx: mark tdh_vp_enter() as __flatten
  Documentation: virt/kvm: remove unreferenced footnote
  RISC-V: KVM: lock the correct mp_state during reset
  KVM: arm64: Fix documentation for vgic_its_iter_next()
  KVM: arm64: np-guest CMOs with PMD_SIZE fixmap
  KVM: arm64: Stage-2 huge mappings for np-guests
  KVM: arm64: Add a range to pkvm_mappings
  KVM: arm64: Convert pkvm_mappings to interval tree
  KVM: arm64: Add a range to __pkvm_host_test_clear_young_guest()
  KVM: arm64: Add a range to __pkvm_host_wrprotect_guest()
  KVM: arm64: Add a range to __pkvm_host_unshare_guest()
  KVM: arm64: Add a range to __pkvm_host_share_guest()
  KVM: arm64: Introduce for_each_hyp_page
  KVM: arm64: Handle huge mappings for np-guest CMOs
  KVM: arm64: nv: Release faulted-in VNCR page from mmu_lock critical section
  KVM: arm64: nv: Handle TLBI S1E2 for VNCR invalidation with mmu_lock held
  KVM: arm64: nv: Hold mmu_lock when invalidating VNCR SW-TLB before translating
  RISC-V: KVM: add KVM_CAP_RISCV_MP_STATE_RESET
  RISC-V: KVM: Remove scounteren initialization
  KVM: RISC-V: remove unnecessary SBI reset state
  ...
2025-05-29 08:10:01 -07:00
Will Deacon
c73497194a Merge branch 'for-next/mm' into for-next/core
* for-next/mm:
  arm64/boot: Disallow BSS exports to startup code
  arm64/boot: Move global CPU override variables out of BSS
  arm64/boot: Move init_pgdir[] and init_idmap_pgdir[] into __pi_ namespace
  arm64: mm: Drop redundant check in pmd_trans_huge()
  arm64/mm: Permit lazy_mmu_mode to be nested
  arm64/mm: Disable barrier batching in interrupt contexts
  arm64/mm: Batch barriers when updating kernel mappings
  mm/vmalloc: Enter lazy mmu mode while manipulating vmalloc ptes
  arm64/mm: Support huge pte-mapped pages in vmap
  mm/vmalloc: Gracefully unmap huge ptes
  mm/vmalloc: Warn on improper use of vunmap_range()
  arm64/mm: Hoist barriers out of set_ptes_anysz() loop
  arm64: hugetlb: Use __set_ptes_anysz() and __ptep_get_and_clear_anysz()
  arm64/mm: Refactor __set_ptes() and __ptep_get_and_clear()
  mm/page_table_check: Batch-check pmds/puds just like ptes
  arm64: hugetlb: Refine tlb maintenance scope
  arm64: hugetlb: Cleanup huge_pte size discovery mechanisms
  arm64: pageattr: Explicitly bail out when changing permissions for vmalloc_huge mappings
  arm64: Support ARM64_VA_BITS=52 when setting ARCH_MMAP_RND_BITS_MAX
  arm64/mm: Remove randomization of the linear map
2025-05-27 12:26:06 +01:00
Will Deacon
dc64de4033 Merge branch 'for-next/fixes' into for-next/core
Merge in for-next/fixes, as subsequent improvements to our early PI
code that disallow BSS exports depend on the 'arm64_use_ng_mappings'
fix here.

* for-next/fixes:
  arm64: cpufeature: Move arm64_use_ng_mappings to the .data section to prevent wrong idmap generation
  arm64: errata: Add missing sentinels to Spectre-BHB MIDR arrays
2025-05-27 12:24:18 +01:00
Paolo Bonzini
4d526b02df KVM/arm64 updates for 6.16
* New features:
 
   - Add large stage-2 mapping support for non-protected pKVM guests,
     clawing back some performance.
 
   - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and
     protected modes.
 
   - Enable nested virtualisation support on systems that support it
     (yes, it has been a long time coming), though it is disabled by
     default.
 
 * Improvements, fixes and cleanups:
 
   - Large rework of the way KVM tracks architecture features and links
     them with the effects of control bits. This ensures correctness of
     emulation (the data is automatically extracted from the published
     JSON files), and helps dealing with the evolution of the
     architecture.
 
   - Significant changes to the way pKVM tracks ownership of pages,
     avoiding page table walks by storing the state in the hypervisor's
     vmemmap. This in turn enables the THP support described above.
 
   - New selftest checking the pKVM ownership transition rules
 
   - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests
     even if the host didn't have it.
 
   - Fixes for the address translation emulation, which happened to be
     rather buggy in some specific contexts.
 
   - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N
     from the number of counters exposed to a guest and addressing a
     number of issues in the process.
 
   - Add a new selftest for the SVE host state being corrupted by a
     guest.
 
   - Keep HCR_EL2.xMO set at all times for systems running with the
     kernel at EL2, ensuring that the window for interrupts is slightly
     bigger, and avoiding a pretty bad erratum on the AmpereOne HW.
 
   - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers
     from a pretty bad case of TLB corruption unless accesses to HCR_EL2
     are heavily synchronised.
 
   - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS
     tables in a human-friendly fashion.
 
   - and the usual random cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmgwU7UACgkQI9DQutE9
 ekN93g//fNnejxf01dBFIbuylzYEyHZSEH0iTGLeM+ES9zvntCzciTYVzb27oqNG
 RDLShlQYp3w4rAe6ORzyePyHptOmKXCxfj/VXUFp3A7H9QYOxt1nacD3WxI9fCOo
 LzaSLquvgwFBaeTdDE0KdeTUKQHluId+w1Azh0lnHGeUP+lOHNZ8FqoP1/la0q04
 GvVL+l3wz/IhPP8r1YA0Q1bzJ5SLfSpjIw/0F5H/xgI4lyYdHzgFL8sKuSyFeCyM
 2STQi+ZnTCsAs4bkXkw2Pp9CFYrfQgZi+sf7Om+noAKhbJo3vb7/RHpgjv+QCjJy
 Kx4g9CbxHfaM03cH6uSLBoFzsACR1iAuUz8BCSRvvVNH4RVT6H+34nzjLZXLncrP
 gm1uYs9aMTLr91caeAx0aYIMWGYa1uqV0rum3WxyIHezN9Q/NuQoZyfprUufr8oX
 wCYE+ot4VT3DwG0UFZKKwj0BiCbYcbph9nBLVyZJsg8OKxpvspkCtPriFp1kb6BP
 dTTGSXd9JJqwSgP9qJLxijcv6Nfgp2gT42TWwh/dJRZXhnTCvr9IyclFIhoIIq3G
 Q2BkFCXOoEoNQhBA1tiWzJ9nDHf52P72Z2K1gPyyMZwF49HGa2BZBCJGkqX06wSs
 Riolf1/cjFhDno1ThiHKsHT0sG1D4oc9k/1NLq5dyNAEGcgATIA=
 =Jju3
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-6.16' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 updates for 6.16

* New features:

  - Add large stage-2 mapping support for non-protected pKVM guests,
    clawing back some performance.

  - Add UBSAN support to the standalone EL2 object used in nVHE/hVHE and
    protected modes.

  - Enable nested virtualisation support on systems that support it
    (yes, it has been a long time coming), though it is disabled by
    default.

* Improvements, fixes and cleanups:

  - Large rework of the way KVM tracks architecture features and links
    them with the effects of control bits. This ensures correctness of
    emulation (the data is automatically extracted from the published
    JSON files), and helps dealing with the evolution of the
    architecture.

  - Significant changes to the way pKVM tracks ownership of pages,
    avoiding page table walks by storing the state in the hypervisor's
    vmemmap. This in turn enables the THP support described above.

  - New selftest checking the pKVM ownership transition rules

  - Fixes for FEAT_MTE_ASYNC being accidentally advertised to guests
    even if the host didn't have it.

  - Fixes for the address translation emulation, which happened to be
    rather buggy in some specific contexts.

  - Fixes for the PMU emulation in NV contexts, decoupling PMCR_EL0.N
    from the number of counters exposed to a guest and addressing a
    number of issues in the process.

  - Add a new selftest for the SVE host state being corrupted by a
    guest.

  - Keep HCR_EL2.xMO set at all times for systems running with the
    kernel at EL2, ensuring that the window for interrupts is slightly
    bigger, and avoiding a pretty bad erratum on the AmpereOne HW.

  - Add workaround for AmpereOne's erratum AC04_CPU_23, which suffers
    from a pretty bad case of TLB corruption unless accesses to HCR_EL2
    are heavily synchronised.

  - Add a per-VM, per-ITS debugfs entry to dump the state of the ITS
    tables in a human-friendly fashion.

  - and the usual random cleanups.
2025-05-26 16:19:46 -04:00
Marc Zyngier
fef3acf5ae Merge branch kvm-arm64/fgt-masks into kvmarm-master/next
* kvm-arm64/fgt-masks: (43 commits)
  : .
  : Large rework of the way KVM deals with trap bits in conjunction with
  : the CPU feature registers. It now draws a direct link between which
  : the feature set, the system registers that need to UNDEF to match
  : the configuration and bits that need to behave as RES0 or RES1 in
  : the trap registers that are visible to the guest.
  :
  : Best of all, these definitions are mostly automatically generated
  : from the JSON description published by ARM under a permissive
  : license.
  : .
  KVM: arm64: Handle TSB CSYNC traps
  KVM: arm64: Add FGT descriptors for FEAT_FGT2
  KVM: arm64: Allow sysreg ranges for FGT descriptors
  KVM: arm64: Add context-switch for FEAT_FGT2 registers
  KVM: arm64: Add trap routing for FEAT_FGT2 registers
  KVM: arm64: Add sanitisation for FEAT_FGT2 registers
  KVM: arm64: Add FEAT_FGT2 registers to the VNCR page
  KVM: arm64: Use HCR_EL2 feature map to drive fixed-value bits
  KVM: arm64: Use HCRX_EL2 feature map to drive fixed-value bits
  KVM: arm64: Allow kvm_has_feat() to take variable arguments
  KVM: arm64: Use FGT feature maps to drive RES0 bits
  KVM: arm64: Validate FGT register descriptions against RES0 masks
  KVM: arm64: Switch to table-driven FGU configuration
  KVM: arm64: Handle PSB CSYNC traps
  KVM: arm64: Use KVM-specific HCRX_EL2 RES0 mask
  KVM: arm64: Remove hand-crafted masks for FGT registers
  KVM: arm64: Use computed FGT masks to setup FGT registers
  KVM: arm64: Propagate FGT masks to the nVHE hypervisor
  KVM: arm64: Unconditionally configure fine-grain traps
  KVM: arm64: Use computed masks as sanitisers for FGT registers
  ...

Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-23 10:58:15 +01:00
Ard Biesheuvel
4afff6cc9a arm64/boot: Move global CPU override variables out of BSS
Accessing BSS will no longer be permitted from the startup code in
arch/arm64/kernel/pi, as some of it executes before BSS is cleared.
Clearing BSS earlier would involve managing cache coherency explicitly
in software, which is a hassle we prefer to avoid.

So move some variables that are assigned by the startup code out of BSS
and into .data.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Yeoreum Yun <yeoreum.yun@arm.com>
Reviewed-by: Yeoreum Yun <yeoreum.yun@arm.com>
Link: https://lore.kernel.org/r/20250508114328.2460610-7-ardb+git@google.com
Signed-off-by: Will Deacon <will@kernel.org>
2025-05-16 16:05:21 +01:00
Ben Horgan
5799a2983f arm64/sysreg: Expose MTE_frac so that it is visible to KVM
KVM exposes the sanitised ID registers to guests. Currently these ignore
the ID_AA64PFR1_EL1.MTE_frac field, meaning guests always see a value of
zero.

This is a problem for platforms without the MTE_ASYNC feature where
ID_AA64PFR1_EL1.MTE==0x2 and ID_AA64PFR1_EL1.MTE_frac==0xf. KVM forces
MTE_frac to zero, meaning the guest believes MTE_ASYNC is supported, when
no async fault will ever occur.

Before KVM can fix this, the architecture needs to sanitise the ID
register field for MTE_frac.

Linux itself does not use MTE_frac field and just assumes MTE async faults
can be generated if MTE is supported.

Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Link: https://lore.kernel.org/r/20250512114112.359087-2-ben.horgan@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-16 13:01:18 +01:00
Marc Zyngier
fbc8a4e137 arm64: Add FEAT_FGT2 capability
As we will eventually have to context-switch the FEAT_FGT2 registers
in KVM (something that has been completely ignored so far), add
a new cap that we will be able to check for.

Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-05-06 17:35:09 +01:00
Yeoreum Yun
363cd2b81c arm64: cpufeature: Move arm64_use_ng_mappings to the .data section to prevent wrong idmap generation
The PTE_MAYBE_NG macro sets the nG page table bit according to the value
of "arm64_use_ng_mappings". This variable is currently placed in the
.bss section. create_init_idmap() is called before the .bss section
initialisation which is done in early_map_kernel(). Therefore,
data/test_prot in create_init_idmap() could be set incorrectly through
the PAGE_KERNEL -> PROT_DEFAULT -> PTE_MAYBE_NG macros.

   # llvm-objdump-21 --syms vmlinux-gcc | grep arm64_use_ng_mappings
     ffff800082f242a8 g     O .bss    0000000000000001 arm64_use_ng_mappings

The create_init_idmap() function disassembly compiled with llvm-21:

  // create_init_idmap()
  ffff80008255c058: d10103ff     	sub	sp, sp, #0x40
  ffff80008255c05c: a9017bfd     	stp	x29, x30, [sp, #0x10]
  ffff80008255c060: a90257f6     	stp	x22, x21, [sp, #0x20]
  ffff80008255c064: a9034ff4     	stp	x20, x19, [sp, #0x30]
  ffff80008255c068: 910043fd     	add	x29, sp, #0x10
  ffff80008255c06c: 90003fc8     	adrp	x8, 0xffff800082d54000
  ffff80008255c070: d280e06a     	mov	x10, #0x703     // =1795
  ffff80008255c074: 91400409     	add	x9, x0, #0x1, lsl #12 // =0x1000
  ffff80008255c078: 394a4108     	ldrb	w8, [x8, #0x290] ------------- (1)
  ffff80008255c07c: f2e00d0a     	movk	x10, #0x68, lsl #48
  ffff80008255c080: f90007e9     	str	x9, [sp, #0x8]
  ffff80008255c084: aa0103f3     	mov	x19, x1
  ffff80008255c088: aa0003f4     	mov	x20, x0
  ffff80008255c08c: 14000000     	b	0xffff80008255c08c <__pi_create_init_idmap+0x34>
  ffff80008255c090: aa082d56     	orr	x22, x10, x8, lsl #11 -------- (2)

Note (1) is loading the arm64_use_ng_mappings value in w8 and (2) is set
the text or data prot with the w8 value to set PTE_NG bit. If the .bss
section isn't initialized, x8 could include a garbage value and generate
an incorrect mapping.

Annotate arm64_use_ng_mappings as __read_mostly so that it is placed in
the .data section.

Fixes: 84b04d3e6b ("arm64: kernel: Create initial ID map from C code")
Cc: stable@vger.kernel.org # 6.9.x
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Link: https://lore.kernel.org/r/20250502180412.3774883-1-yeoreum.yun@arm.com
[catalin.marinas@arm.com: use __read_mostly instead of __ro_after_init]
[catalin.marinas@arm.com: slight tweaking of the code comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-05-06 11:43:44 +01:00
Yicong Yang
35382a3646 arm64/cpufeature: Add missing id_aa64mmfr4 feature reg update
Add missing id_aa64mmfr4 feature register check and update in
update_cpu_features(). Update the taint status as well.

Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lore.kernel.org/r/20250329034409.21354-2-yangyicong@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
2025-04-29 13:36:37 +01:00
Oliver Upton
1b1d1b17b8 Merge branch 'kvm-arm64/pmuv3-asahi' into kvmarm/next
* kvm-arm64/pmuv3-asahi:
  : Support PMUv3 for KVM guests on Apple silicon
  :
  : Take advantage of some IMPLEMENTATION DEFINED traps available on Apple
  : parts to trap-and-emulate the PMUv3 registers on behalf of a KVM guest.
  : Constrain the vPMU to a cycle counter and single event counter, as the
  : Apple PMU has events that cannot be counted on every counter.
  :
  : There is a small new interface between the ARM PMU driver and KVM, where
  : the PMU driver owns the PMUv3 -> hardware event mappings.
  arm64: Enable IMP DEF PMUv3 traps on Apple M*
  KVM: arm64: Provide 1 event counter on IMPDEF hardware
  drivers/perf: apple_m1: Provide helper for mapping PMUv3 events
  KVM: arm64: Remap PMUv3 events onto hardware
  KVM: arm64: Advertise PMUv3 if IMPDEF traps are present
  KVM: arm64: Compute synthetic sysreg ESR for Apple PMUv3 traps
  KVM: arm64: Move PMUVer filtering into KVM code
  KVM: arm64: Use guard() to cleanup usage of arm_pmus_lock
  KVM: arm64: Drop kvm_arm_pmu_available static key
  KVM: arm64: Use a cpucap to determine if system supports FEAT_PMUv3
  KVM: arm64: Always support SW_INCR PMU event
  KVM: arm64: Compute PMCEID from arm_pmu's event bitmaps
  drivers/perf: apple_m1: Support host/guest event filtering
  drivers/perf: apple_m1: Refactor event select/filter configuration

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-03-19 14:54:23 -07:00
Oliver Upton
d300b0168e Merge branch 'kvm-arm64/pv-cpuid' into kvmarm/next
* kvm-arm64/pv-cpuid:
  : Paravirtualized implementation ID, courtesy of Shameer Kolothum
  :
  : Big-little has historically been a pain in the ass to virtualize. The
  : implementation ID (MIDR, REVIDR, AIDR) of a vCPU can change at the whim
  : of vCPU scheduling. This can be particularly annoying when the guest
  : needs to know the underlying implementation to mitigate errata.
  :
  : "Hyperscalers" face a similar scheduling problem, where VMs may freely
  : migrate between hosts in a pool of heterogenous hardware. And yes, our
  : server-class friends are equally riddled with errata too.
  :
  : In absence of an architected solution to this wart on the ecosystem,
  : introduce support for paravirtualizing the implementation exposed
  : to a VM, allowing the VMM to describe the pool of implementations that a
  : VM may be exposed to due to scheduling/migration.
  :
  : Userspace is expected to intercept and handle these hypercalls using the
  : SMCCC filter UAPI, should it choose to do so.
  smccc: kvm_guest: Fix kernel builds for 32 bit arm
  KVM: selftests: Add test for KVM_REG_ARM_VENDOR_HYP_BMAP_2
  smccc/kvm_guest: Enable errata based on implementation CPUs
  arm64: Make  _midr_in_range_list() an exported function
  KVM: arm64: Introduce KVM_REG_ARM_VENDOR_HYP_BMAP_2
  KVM: arm64: Specify hypercall ABI for retrieving target implementations
  arm64: Modify _midr_range() functions to read MIDR/REVIDR internally

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-03-19 14:53:16 -07:00
Oliver Upton
6f34024d18 KVM: arm64: Use a cpucap to determine if system supports FEAT_PMUv3
KVM is about to learn some new tricks to virtualize PMUv3 on IMPDEF
hardware. As part of that, we now need to differentiate host support
from guest support for PMUv3.

Add a cpucap to determine if an architectural PMUv3 is present to guard
host usage of PMUv3 controls.

Tested-by: Janne Grunau <j@jannau.net>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250305202641.428114-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-03-11 12:54:23 -07:00
Shameer Kolothum
86edf6bdcf smccc/kvm_guest: Enable errata based on implementation CPUs
Retrieve any migration target implementation CPUs using the hypercall
and enable associated errata.

Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Sebastian Ott <sebott@redhat.com>
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250221140229.12588-6-shameerali.kolothum.thodi@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-02-26 13:30:37 -08:00
Shameer Kolothum
e3121298c7 arm64: Modify _midr_range() functions to read MIDR/REVIDR internally
These changes lay the groundwork for adding support for guest kernels,
allowing them to leverage target CPU implementations provided by the
VMM.

No functional changes intended.

Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Sebastian Ott <sebott@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20250221140229.12588-2-shameerali.kolothum.thodi@huawei.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-02-26 13:29:44 -08:00
Marc Zyngier
88aea41b9b arm64: cpufeature: Handle NV_frac as a synonym of NV2
With ARMv9.5, an implementation supporting Nested Virtualization
is allowed to only support NV2, and to avoid supporting the old
(and useless) ARMv8.3 variant.

This is indicated by ID_AA64MMFR2_EL1.NV being 0 (as if NV wasn't
implemented) and ID_AA64MMFR4_EL1.NV_frac being 1 (indicating that
NV2 is actually supported).

Given that KVM only deals with NV2 and refuses to use the old NV,
detecting NV2 or NV_frac is what we need to enable it.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/r/20250220134907.554085-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2025-02-24 11:03:51 -08:00
Mark Brown
a4cc8494f1 arm64: Add missing registrations of hwcaps
Commit 819935464c ("arm64/hwcap: Describe 2024 dpISA extensions to
userspace") added definitions for HWCAP_FPRCVT, HWCAP_F8MM8 and
HWCAP_F8MM4 but did not include the crucial registration in
arm64_elf_hwcaps.  Add it.

Fixes: 819935464c ("arm64/hwcap: Describe 2024 dpISA extensions to userspace")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20250212-arm64-fix-2024-dpisa-v2-1-67a1c11d6001@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2025-02-13 11:13:09 +00:00
Mark Brown
21fed7c223 arm64/hwcap: Remove stray references to SF8MMx
Due to SME currently being disabled when removing the SF8MMx support it
wasn't noticed that there were some stray references in the hwcap table,
delete them.

Fixes: 819935464c ("arm64/hwcap: Describe 2024 dpISA extensions to userspace")
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250203-arm64-remove-sf8mmx-v1-1-6f1da3dbff82@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2025-02-04 12:28:18 +00:00
Linus Torvalds
1d6d399223 Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never execute
    relevant code on any other CPU. This is currently handled by smpboot
    code which takes care of CPU-hotplug operations. Affinity here is
    a correctness constraint.
 
 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't
    run anywhere else. The affinity is set through kthread_bind_mask()
    and the subsystem takes care by itself to handle CPU-hotplug
    operations. Affinity here is assumed to be a correctness constraint.
 
 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This
    is not a correctness constraint but merely a preference in terms of
    memory locality. kswapd and kcompactd both fall into this category.
    The affinity is set manually like for any other task and CPU-hotplug
    is supposed to be handled by the relevant subsystem so that the task
    is properly reaffined whenever a given CPU from the node comes up.
    Also care should be taken so that the node affinity doesn't cross
    isolated (nohz_full) cpumask boundaries.
 
 4) Similar to the previous point except kthreads have a _preferred_
    affinity different than a node. Both RCU boost kthreads and RCU
    exp kworkers fall into this category as they refer to "RCU nodes"
    from a distinctly distributed tree.
 
 Currently the preferred affinity patterns (3 and 4) have at least 4
 identified users, with more or less success when it comes to handle
 CPU-hotplug operations and CPU isolation. Each of which do it in its own
 ad-hoc way.
 
 This is an infrastructure proposal to handle this with the following API
 changes:
 
 _ kthread_create_on_node() automatically affines the created kthread to
   its target node unless it has been set as per-cpu or bound with
   kthread_bind[_mask]() before the first wake-up.
 
 - kthread_affine_preferred() is a new function that can be called right
   after kthread_create_on_node() to specify a preferred affinity
   different than the specified node.
 
 When the preferred affinity can't be applied because the possible
 targets are offline or isolated (nohz_full), the kthread is affine
 to the housekeeping CPUs (which means to all online CPUs most of the
 time or only the non-nohz_full CPUs when nohz_full= is set).
 
 kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been
 converted, along with a few old drivers.
 
 Summary of the changes:
 
 * Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu()
 
 * Introduce task_cpu_fallback_mask() that defines the default last
   resort affinity of a task to become nohz_full aware
 
 * Add some correctness check to ensure kthread_bind() is always called
   before the first kthread wake up.
 
 * Default affine kthread to its preferred node.
 
 * Convert kswapd / kcompactd and remove their halfway working ad-hoc
   affinity implementation
 
 * Implement kthreads preferred affinity
 
 * Unify kthread worker and kthread API's style
 
 * Convert RCU kthreads to the new API and remove the ad-hoc affinity
   implementation.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmeNf8gACgkQhSRUR1CO
 jHedQQ/+IxTjjqQiItzrq41TES2S0desHDq8lNJFb7rsR/DtKFyLx3s67cOYV+cM
 Yx54QHg2m/Fz4nXMQ7Po5ygOtJGCKBc5C5QQy7y0lVKeTQK+daDfEtBSa3oG7j3C
 u+E3tTY6qxkbCzymUyaKkHN4/ay2vLvjFS50luV7KMyI3x47Aji+t7VdCX4LCPP2
 eAwOALWD0+7qLJ/VF6gsmQLKA4Qx7PQAzBa3KSBmUN9UcN8Gk1bQHCTIQKDHP9LQ
 v8BXrNZtYX1o2+snNYpX2z6/ECjxkdwriOgqqZY5306hd9RAQ1u46Dx3byrIqjGn
 ULG/XQ2istPyhTqb/h+RbrobdOcwEUIeqk8hRRbBXE8bPpqUz9EMuaCMxWDbQjgH
 NTuKG4ifKJ/IqstkkuDkdOiByE/ysMmwqrTXgSnu2ITNL9yY3BEgFbvA95hgo42s
 f7QCxEfZb1MHcNEMENSMwM3xw5lLMGMpxVZcMQ3gLwyotMBRrhFZm1qZJG7TITYW
 IDIeCbH4JOMdQwLs3CcWTXio0N5/85NhRNFV+IDn96OrgxObgnMtV8QwNgjXBAJ5
 wGeJWt8s34W1Zo3qS9gEuVzEhW4XaxISQQMkHe8faKkK6iHmIB/VjSQikDwwUNQ/
 AspYj82RyWBCDZsqhiYh71kpxjvS6Xp0bj39Ce1sNsOnuksxKkQ=
 =g8In
 -----END PGP SIGNATURE-----

Merge tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks

Pull kthread updates from Frederic Weisbecker:
 "Kthreads affinity follow either of 4 existing different patterns:

   1) Per-CPU kthreads must stay affine to a single CPU and never
      execute relevant code on any other CPU. This is currently handled
      by smpboot code which takes care of CPU-hotplug operations.
      Affinity here is a correctness constraint.

   2) Some kthreads _have_ to be affine to a specific set of CPUs and
      can't run anywhere else. The affinity is set through
      kthread_bind_mask() and the subsystem takes care by itself to
      handle CPU-hotplug operations. Affinity here is assumed to be a
      correctness constraint.

   3) Per-node kthreads _prefer_ to be affine to a specific NUMA node.
      This is not a correctness constraint but merely a preference in
      terms of memory locality. kswapd and kcompactd both fall into this
      category. The affinity is set manually like for any other task and
      CPU-hotplug is supposed to be handled by the relevant subsystem so
      that the task is properly reaffined whenever a given CPU from the
      node comes up. Also care should be taken so that the node affinity
      doesn't cross isolated (nohz_full) cpumask boundaries.

   4) Similar to the previous point except kthreads have a _preferred_
      affinity different than a node. Both RCU boost kthreads and RCU
      exp kworkers fall into this category as they refer to "RCU nodes"
      from a distinctly distributed tree.

  Currently the preferred affinity patterns (3 and 4) have at least 4
  identified users, with more or less success when it comes to handle
  CPU-hotplug operations and CPU isolation. Each of which do it in its
  own ad-hoc way.

  This is an infrastructure proposal to handle this with the following
  API changes:

   - kthread_create_on_node() automatically affines the created kthread
     to its target node unless it has been set as per-cpu or bound with
     kthread_bind[_mask]() before the first wake-up.

   - kthread_affine_preferred() is a new function that can be called
     right after kthread_create_on_node() to specify a preferred
     affinity different than the specified node.

  When the preferred affinity can't be applied because the possible
  targets are offline or isolated (nohz_full), the kthread is affine to
  the housekeeping CPUs (which means to all online CPUs most of the time
  or only the non-nohz_full CPUs when nohz_full= is set).

  kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been
  converted, along with a few old drivers.

  Summary of the changes:

   - Consolidate a bunch of ad-hoc implementations of
     kthread_run_on_cpu()

   - Introduce task_cpu_fallback_mask() that defines the default last
     resort affinity of a task to become nohz_full aware

   - Add some correctness check to ensure kthread_bind() is always
     called before the first kthread wake up.

   - Default affine kthread to its preferred node.

   - Convert kswapd / kcompactd and remove their halfway working ad-hoc
     affinity implementation

   - Implement kthreads preferred affinity

   - Unify kthread worker and kthread API's style

   - Convert RCU kthreads to the new API and remove the ad-hoc affinity
     implementation"

* tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks:
  kthread: modify kernel-doc function name to match code
  rcu: Use kthread preferred affinity for RCU exp kworkers
  treewide: Introduce kthread_run_worker[_on_cpu]()
  kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format
  rcu: Use kthread preferred affinity for RCU boost
  kthread: Implement preferred affinity
  mm: Create/affine kswapd to its preferred node
  mm: Create/affine kcompactd to its preferred node
  kthread: Default affine kthread to its preferred NUMA node
  kthread: Make sure kthread hasn't started while binding it
  sched,arm64: Handle CPU isolation on last resort fallback rq selection
  arm64: Exclude nohz_full CPUs from 32bits el0 support
  lib: test_objpool: Use kthread_run_on_cpu()
  kallsyms: Use kthread_run_on_cpu()
  soc/qman: test: Use kthread_run_on_cpu()
  arm/bL_switcher: Use kthread_run_on_cpu()
2025-01-21 17:10:05 -08:00
Will Deacon
602ffd4ce3 Merge branch 'for-next/mm' into for-next/core
* for-next/mm:
  arm64: mm: Test for pmd_sect() in vmemmap_check_pmd()
  arm64/mm: Replace open encodings with PXD_TABLE_BIT
  arm64/mm: Rename pte_mkpresent() as pte_mkvalid()
  arm64: Kconfig: force ARM64_PAN=y when enabling TTBR0 sw PAN
  arm64/kvm: Avoid invalid physical addresses to signal owner updates
  arm64/kvm: Configure HYP TCR.PS/DS based on host stage1
  arm64/mm: Override PARange for !LPA2 and use it consistently
  arm64/mm: Reduce PA space to 48 bits when LPA2 is not enabled
2025-01-17 13:52:33 +00:00
Frederic Weisbecker
3a5446612a sched,arm64: Handle CPU isolation on last resort fallback rq selection
When a kthread or any other task has an affinity mask that is fully
offline or unallowed, the scheduler reaffines the task to all possible
CPUs as a last resort.

This default decision doesn't mix up very well with nohz_full CPUs that
are part of the possible cpumask but don't want to be disturbed by
unbound kthreads or even detached pinned user tasks.

Make the fallback affinity setting aware of nohz_full.

Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2025-01-08 18:14:23 +01:00
Frederic Weisbecker
4a1567b466 arm64: Exclude nohz_full CPUs from 32bits el0 support
Nohz full CPUs are not a desirable fallback target to run 32bits el0
applications. If present, prefer a set of housekeeping CPUs that can do
the job instead. Otherwise just don't support el0 32 bits. Should the
need arise, appropriate support can be introduced in the future.

Suggested-by: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2025-01-08 18:13:29 +01:00
Mark Brown
819935464c arm64/hwcap: Describe 2024 dpISA extensions to userspace
The 2024 dpISA introduces a number of architecture features all of which
only add new instructions so only require the addition of hwcaps and ID
register visibility.

Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-3-7578da51fc3d@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2025-01-08 13:41:06 +00:00
Marc Zyngier
064737920b arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented
The hwcaps code that exposes SVE features to userspace only
considers ID_AA64ZFR0_EL1, while this is only valid when
ID_AA64PFR0_EL1.SVE advertises that SVE is actually supported.

The expectations are that when ID_AA64PFR0_EL1.SVE is 0, the
ID_AA64ZFR0_EL1 register is also 0. So far, so good.

Things become a bit more interesting if the HW implements SME.
In this case, a few ID_AA64ZFR0_EL1 fields indicate *SME*
features. And these fields overlap with their SVE interpretations.
But the architecture says that the SME and SVE feature sets must
match, so we're still hunky-dory.

This goes wrong if the HW implements SME, but not SVE. In this
case, we end-up advertising some SVE features to userspace, even
if the HW has none. That's because we never consider whether SVE
is actually implemented. Oh well.

Fix it by restricting all SVE capabilities to ID_AA64PFR0_EL1.SVE
being non-zero. The HWCAPS documentation is amended to reflect the
actually checks performed by the kernel.

Fixes: 06a916feca ("arm64: Expose SVE2 features for userspace")
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: stable@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-1-7578da51fc3d@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2025-01-08 13:41:06 +00:00
Mark Brown
d3c7c48d00 arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu()
In commit 892f7237b3 ("arm64: Delay initialisation of
cpuinfo_arm64::reg_{zcr,smcr}") we moved access to ZCR, SMCR and SMIDR
later in the boot process in order to ensure that we don't attempt to
interact with them if SVE or SME is disabled on the command line.
Unfortunately when initialising the boot CPU in init_cpu_features() we work
on a copy of the struct cpuinfo_arm64 for the boot CPU used only during
boot, not the percpu copy used by the sysfs code. The expectation of the
feature identification code was that the ID registers would be read in
__cpuinfo_store_cpu() and the values not modified by init_cpu_features().

The main reason for the original change was to avoid early accesses to
ZCR on practical systems that were seen shipping with SVE reported in ID
registers but traps enabled at EL3 and handled as fatal errors, SME was
rolled in due to the similarity with SVE. Since then we have removed the
early accesses to ZCR and SMCR in commits:

  abef0695f9 ("arm64/sve: Remove ZCR pseudo register from cpufeature code")
  391208485c ("arm64/sve: Remove SMCR pseudo register from cpufeature code")

so only the SMIDR_EL1 part of the change remains. Since SMIDR_EL1 is
only trapped via FEAT_IDST and not the SME trap it is less likely to be
affected by similar issues, and the factors that lead to issues with SVE
are less likely to apply to SME.

Since we have not yet seen practical SME systems that need to use a
command line override (and are only just beginning to see SME systems at
all) and the ID register read is much more likely to be safe let's just
store SMIDR_EL1 along with all the other ID register reads in
__cpuinfo_store_cpu().

This issue wasn't apparent when testing on emulated platforms that do not
report values in SMIDR_EL1.

Fixes: 892f7237b3 ("arm64: Delay initialisation of cpuinfo_arm64::reg_{zcr,smcr}")
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20241217-arm64-fix-boot-cpu-smidr-v3-1-7be278a85623@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2025-01-07 17:15:55 +00:00
Marc Zyngier
e5ecedcd7c arm64/sysreg: Get rid of CPACR_ELx SysregFields
There is no such thing as CPACR_ELx in the architecture.
What we have is CPACR_EL1, for which CPTR_EL12 is an accessor.

Rename CPACR_ELx_* to CPACR_EL1_*, and fix the bit of code using
these names.

Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241219173351.1123087-5-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2024-12-19 18:00:58 +00:00
Marc Zyngier
7052e808c4 arm64/sysreg: Get rid of the TCR2_EL1x SysregFields
TCR2_EL1x is a pretty bizarre construct, as it is shared between
TCR2_EL1 and TCR2_EL12. But the latter is obviously only an
accessor to the former.

In order to make things more consistent, upgrade TCR2_EL1x to
a full-blown sysreg definition for TCR2_EL1, and describe TCR2_EL12
as a mapping to TCR2_EL1.

This results in a couple of minor changes to the actual code.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241219173351.1123087-3-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2024-12-19 18:00:58 +00:00
Ard Biesheuvel
62cffa496a arm64/mm: Override PARange for !LPA2 and use it consistently
When FEAT_LPA{,2} are not implemented, the ID_AA64MMFR0_EL1.PARange and
TCR.IPS values corresponding with 52-bit physical addressing are
reserved.

Setting the TCR.IPS field to 0b110 (52-bit physical addressing) has side
effects, such as how the TTBRn_ELx.BADDR fields are interpreted, and so
it is important that disabling FEAT_LPA2 (by overriding the
ID_AA64MMFR0.TGran fields) also presents a PARange field consistent with
that.

So limit the field to 48 bits unless LPA2 is enabled, and update
existing references to use the override consistently.

Fixes: 352b0395b5 ("arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs")
Cc: stable@vger.kernel.org
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241212081841.2168124-10-ardb+git@google.com
Signed-off-by: Will Deacon <will@kernel.org>
2024-12-19 17:23:52 +00:00
Hardevsinh Palaniya
e52163df77 arm64/cpufeature: Refactor conditional logic in init_cpu_ftr_reg()
Unnecessarily checks ftr_ovr == tmp in an extra else if, which is not
needed because that condition would already be true by default if the
previous conditions are not satisfied.

		if (ftr_ovr != tmp) {
		} else if (ftr_new != tmp) {
		} else if (ftr_ovr == tmp) {

Logic: The first and last conditions are inverses of each other, so
the last condition must be true if the first two conditions are false.

Additionally, all branches set the variable str, making the subsequent
"if (str)" check redundant

Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Hardevsinh Palaniya <hardevsinh.palaniya@siliconsignals.io>
Link: https://lore.kernel.org/r/20241115053740.20523-1-hardevsinh.palaniya@siliconsignals.io
Signed-off-by: Will Deacon <will@kernel.org>
2024-12-10 12:16:19 +00:00
Linus Torvalds
9f16d5e6f2 The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages.  The reason to
 do so was that KVM needs to map both non-refcounted pages (for example
 BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain
 refcounted pages.  However, the result was security issues in the past,
 and more recently the inability to map VM_IO and VM_PFNMAP memory
 that _is_ backed by struct page but is not refcounted.  In particular
 this broke virtio-gpu blob resources (which directly map host graphics
 buffers into the guest as "vram" for the virtio-gpu device) with the
 amdgpu driver, because amdgpu allocates non-compound higher order pages
 and the tail pages could not be mapped into KVM.
 
 This requires adjusting all uses of struct page in the per-architecture
 code, to always work on the pfn whenever possible.  The large series that
 did this, from David Stevens and Sean Christopherson, also cleaned up
 substantially the set of functions that provided arch code with the
 pfn for a host virtual addresses.  The previous maze of twisty little
 passages, all different, is replaced by five functions (__gfn_to_page,
 __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages)
 saving almost 200 lines of code.
 
 ARM:
 
 * Support for stage-1 permission indirection (FEAT_S1PIE) and
   permission overlays (FEAT_S1POE), including nested virt + the
   emulated page table walker
 
 * Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call
   was introduced in PSCIv1.3 as a mechanism to request hibernation,
   similar to the S4 state in ACPI
 
 * Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
   part of it, introduce trivial initialization of the host's MPAM
   context so KVM can use the corresponding traps
 
 * PMU support under nested virtualization, honoring the guest
   hypervisor's trap configuration and event filtering when running a
   nested guest
 
 * Fixes to vgic ITS serialization where stale device/interrupt table
   entries are not zeroed when the mapping is invalidated by the VM
 
 * Avoid emulated MMIO completion if userspace has requested synchronous
   external abort injection
 
 * Various fixes and cleanups affecting pKVM, vCPU initialization, and
   selftests
 
 LoongArch:
 
 * Add iocsr and mmio bus simulation in kernel.
 
 * Add in-kernel interrupt controller emulation.
 
 * Add support for virtualization extensions to the eiointc irqchip.
 
 PPC:
 
 * Drop lingering and utterly obsolete references to PPC970 KVM, which was
   removed 10 years ago.
 
 * Fix incorrect documentation references to non-existing ioctls
 
 RISC-V:
 
 * Accelerate KVM RISC-V when running as a guest
 
 * Perf support to collect KVM guest statistics from host side
 
 s390:
 
 * New selftests: more ucontrol selftests and CPU model sanity checks
 
 * Support for the gen17 CPU model
 
 * List registers supported by KVM_GET/SET_ONE_REG in the documentation
 
 x86:
 
 * Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve
   documentation, harden against unexpected changes.  Even if the hardware
   A/D tracking is disabled, it is possible to use the hardware-defined A/D
   bits to track if a PFN is Accessed and/or Dirty, and that removes a lot
   of special cases.
 
 * Elide TLB flushes when aging secondary PTEs, as has been done in x86's
   primary MMU for over 10 years.
 
 * Recover huge pages in-place in the TDP MMU when dirty page logging is
   toggled off, instead of zapping them and waiting until the page is
   re-accessed to create a huge mapping.  This reduces vCPU jitter.
 
 * Batch TLB flushes when dirty page logging is toggled off.  This reduces
   the time it takes to disable dirty logging by ~3x.
 
 * Remove the shrinker that was (poorly) attempting to reclaim shadow page
   tables in low-memory situations.
 
 * Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE.
 
 * Advertise CPUIDs for new instructions in Clearwater Forest
 
 * Quirk KVM's misguided behavior of initialized certain feature MSRs to
   their maximum supported feature set, which can result in KVM creating
   invalid vCPU state.  E.g. initializing PERF_CAPABILITIES to a non-zero
   value results in the vCPU having invalid state if userspace hides PDCM
   from the guest, which in turn can lead to save/restore failures.
 
 * Fix KVM's handling of non-canonical checks for vCPUs that support LA57
   to better follow the "architecture", in quotes because the actual
   behavior is poorly documented.  E.g. most MSR writes and descriptor
   table loads ignore CR4.LA57 and operate purely on whether the CPU
   supports LA57.
 
 * Bypass the register cache when querying CPL from kvm_sched_out(), as
   filling the cache from IRQ context is generally unsafe; harden the
   cache accessors to try to prevent similar issues from occuring in the
   future.  The issue that triggered this change was already fixed in 6.12,
   but was still kinda latent.
 
 * Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM
   over-advertises SPEC_CTRL when trying to support cross-vendor VMs.
 
 * Minor cleanups
 
 * Switch hugepage recovery thread to use vhost_task.  These kthreads can
   consume significant amounts of CPU time on behalf of a VM or in response
   to how the VM behaves (for example how it accesses its memory); therefore
   KVM tried to place the thread in the VM's cgroups and charge the CPU
   time consumed by that work to the VM's container.  However the kthreads
   did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM
   instances inside could not complete freezing.  Fix this by replacing the
   kthread with a PF_USER_WORKER thread, via the vhost_task abstraction.
   Another 100+ lines removed, with generally better behavior too like
   having these threads properly parented in the process tree.
 
 * Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't
   really work; there was really nothing to work around anyway: the broken
   patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL
   MSR is virtualized and therefore unaffected by the erratum.
 
 * Fix 6.12 regression where CONFIG_KVM will be built as a module even
   if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'.
 
 x86 selftests:
 
 * x86 selftests can now use AVX.
 
 Documentation:
 
 * Use rST internal links
 
 * Reorganize the introduction to the API document
 
 Generic:
 
 * Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead
   of RCU, so that running a vCPU on a different task doesn't encounter long
   due to having to wait for all CPUs become quiescent.  In general both reads
   and writes are rare, but userspace that supports confidential computing is
   introducing the use of "helper" vCPUs that may jump from one host processor
   to another.  Those will be very happy to trigger a synchronize_rcu(), and
   the effect on performance is quite the disaster.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4
 dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS
 letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI
 1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+
 t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW
 ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig==
 =lWpE
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "The biggest change here is eliminating the awful idea that KVM had of
  essentially guessing which pfns are refcounted pages.

  The reason to do so was that KVM needs to map both non-refcounted
  pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
  VMAs that contain refcounted pages.

  However, the result was security issues in the past, and more recently
  the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
  struct page but is not refcounted. In particular this broke virtio-gpu
  blob resources (which directly map host graphics buffers into the
  guest as "vram" for the virtio-gpu device) with the amdgpu driver,
  because amdgpu allocates non-compound higher order pages and the tail
  pages could not be mapped into KVM.

  This requires adjusting all uses of struct page in the
  per-architecture code, to always work on the pfn whenever possible.
  The large series that did this, from David Stevens and Sean
  Christopherson, also cleaned up substantially the set of functions
  that provided arch code with the pfn for a host virtual addresses.

  The previous maze of twisty little passages, all different, is
  replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
  non-__ versions of these two, and kvm_prefetch_pages) saving almost
  200 lines of code.

  ARM:

   - Support for stage-1 permission indirection (FEAT_S1PIE) and
     permission overlays (FEAT_S1POE), including nested virt + the
     emulated page table walker

   - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
     call was introduced in PSCIv1.3 as a mechanism to request
     hibernation, similar to the S4 state in ACPI

   - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
     part of it, introduce trivial initialization of the host's MPAM
     context so KVM can use the corresponding traps

   - PMU support under nested virtualization, honoring the guest
     hypervisor's trap configuration and event filtering when running a
     nested guest

   - Fixes to vgic ITS serialization where stale device/interrupt table
     entries are not zeroed when the mapping is invalidated by the VM

   - Avoid emulated MMIO completion if userspace has requested
     synchronous external abort injection

   - Various fixes and cleanups affecting pKVM, vCPU initialization, and
     selftests

  LoongArch:

   - Add iocsr and mmio bus simulation in kernel.

   - Add in-kernel interrupt controller emulation.

   - Add support for virtualization extensions to the eiointc irqchip.

  PPC:

   - Drop lingering and utterly obsolete references to PPC970 KVM, which
     was removed 10 years ago.

   - Fix incorrect documentation references to non-existing ioctls

  RISC-V:

   - Accelerate KVM RISC-V when running as a guest

   - Perf support to collect KVM guest statistics from host side

  s390:

   - New selftests: more ucontrol selftests and CPU model sanity checks

   - Support for the gen17 CPU model

   - List registers supported by KVM_GET/SET_ONE_REG in the
     documentation

  x86:

   - Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
     improve documentation, harden against unexpected changes.

     Even if the hardware A/D tracking is disabled, it is possible to
     use the hardware-defined A/D bits to track if a PFN is Accessed
     and/or Dirty, and that removes a lot of special cases.

   - Elide TLB flushes when aging secondary PTEs, as has been done in
     x86's primary MMU for over 10 years.

   - Recover huge pages in-place in the TDP MMU when dirty page logging
     is toggled off, instead of zapping them and waiting until the page
     is re-accessed to create a huge mapping. This reduces vCPU jitter.

   - Batch TLB flushes when dirty page logging is toggled off. This
     reduces the time it takes to disable dirty logging by ~3x.

   - Remove the shrinker that was (poorly) attempting to reclaim shadow
     page tables in low-memory situations.

   - Clean up and optimize KVM's handling of writes to
     MSR_IA32_APICBASE.

   - Advertise CPUIDs for new instructions in Clearwater Forest

   - Quirk KVM's misguided behavior of initialized certain feature MSRs
     to their maximum supported feature set, which can result in KVM
     creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
     a non-zero value results in the vCPU having invalid state if
     userspace hides PDCM from the guest, which in turn can lead to
     save/restore failures.

   - Fix KVM's handling of non-canonical checks for vCPUs that support
     LA57 to better follow the "architecture", in quotes because the
     actual behavior is poorly documented. E.g. most MSR writes and
     descriptor table loads ignore CR4.LA57 and operate purely on
     whether the CPU supports LA57.

   - Bypass the register cache when querying CPL from kvm_sched_out(),
     as filling the cache from IRQ context is generally unsafe; harden
     the cache accessors to try to prevent similar issues from occuring
     in the future. The issue that triggered this change was already
     fixed in 6.12, but was still kinda latent.

   - Advertise AMD_IBPB_RET to userspace, and fix a related bug where
     KVM over-advertises SPEC_CTRL when trying to support cross-vendor
     VMs.

   - Minor cleanups

   - Switch hugepage recovery thread to use vhost_task.

     These kthreads can consume significant amounts of CPU time on
     behalf of a VM or in response to how the VM behaves (for example
     how it accesses its memory); therefore KVM tried to place the
     thread in the VM's cgroups and charge the CPU time consumed by that
     work to the VM's container.

     However the kthreads did not process SIGSTOP/SIGCONT, and therefore
     cgroups which had KVM instances inside could not complete freezing.

     Fix this by replacing the kthread with a PF_USER_WORKER thread, via
     the vhost_task abstraction. Another 100+ lines removed, with
     generally better behavior too like having these threads properly
     parented in the process tree.

   - Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
     didn't really work; there was really nothing to work around anyway:
     the broken patch was meant to fix nested virtualization, but the
     PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
     erratum.

   - Fix 6.12 regression where CONFIG_KVM will be built as a module even
     if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
     'y'.

  x86 selftests:

   - x86 selftests can now use AVX.

  Documentation:

   - Use rST internal links

   - Reorganize the introduction to the API document

  Generic:

   - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
     instead of RCU, so that running a vCPU on a different task doesn't
     encounter long due to having to wait for all CPUs become quiescent.

     In general both reads and writes are rare, but userspace that
     supports confidential computing is introducing the use of "helper"
     vCPUs that may jump from one host processor to another. Those will
     be very happy to trigger a synchronize_rcu(), and the effect on
     performance is quite the disaster"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
  KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
  KVM: x86: add back X86_LOCAL_APIC dependency
  Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
  KVM: x86: switch hugepage recovery thread to vhost_task
  KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
  x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
  Documentation: KVM: fix malformed table
  irqchip/loongson-eiointc: Add virt extension support
  LoongArch: KVM: Add irqfd support
  LoongArch: KVM: Add PCHPIC user mode read and write functions
  LoongArch: KVM: Add PCHPIC read and write functions
  LoongArch: KVM: Add PCHPIC device support
  LoongArch: KVM: Add EIOINTC user mode read and write functions
  LoongArch: KVM: Add EIOINTC read and write functions
  LoongArch: KVM: Add EIOINTC device support
  LoongArch: KVM: Add IPI user mode read and write function
  LoongArch: KVM: Add IPI read and write function
  LoongArch: KVM: Add IPI device support
  LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
  KVM: arm64: Pass on SVE mapping failures
  ...
2024-11-23 16:00:50 -08:00
Catalin Marinas
5a4332062e Merge branches 'for-next/gcs', 'for-next/probes', 'for-next/asm-offsets', 'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
  perf: Switch back to struct platform_driver::remove()
  perf: arm_pmuv3: Add support for Samsung Mongoose PMU
  dt-bindings: arm: pmu: Add Samsung Mongoose core compatible
  perf/dwc_pcie: Fix typos in event names
  perf/dwc_pcie: Add support for Ampere SoCs
  ARM: pmuv3: Add missing write_pmuacr()
  perf/marvell: Marvell PEM performance monitor support
  perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control
  perf/dwc_pcie: Convert the events with mixed case to lowercase
  perf/cxlpmu: Support missing events in 3.1 spec
  perf: imx_perf: add support for i.MX91 platform
  dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible
  drivers perf: remove unused field pmu_node

* for-next/gcs: (42 commits)
  : arm64 Guarded Control Stack user-space support
  kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
  arm64/gcs: Fix outdated ptrace documentation
  kselftest/arm64: Ensure stable names for GCS stress test results
  kselftest/arm64: Validate that GCS push and write permissions work
  kselftest/arm64: Enable GCS for the FP stress tests
  kselftest/arm64: Add a GCS stress test
  kselftest/arm64: Add GCS signal tests
  kselftest/arm64: Add test coverage for GCS mode locking
  kselftest/arm64: Add a GCS test program built with the system libc
  kselftest/arm64: Add very basic GCS test program
  kselftest/arm64: Always run signals tests with GCS enabled
  kselftest/arm64: Allow signals tests to specify an expected si_code
  kselftest/arm64: Add framework support for GCS to signal handling tests
  kselftest/arm64: Add GCS as a detected feature in the signal tests
  kselftest/arm64: Verify the GCS hwcap
  arm64: Add Kconfig for Guarded Control Stack (GCS)
  arm64/ptrace: Expose GCS via ptrace and core files
  arm64/signal: Expose GCS state in signal frames
  arm64/signal: Set up and restore the GCS context for signal handlers
  arm64/mm: Implement map_shadow_stack()
  ...

* for-next/probes:
  : Various arm64 uprobes/kprobes cleanups
  arm64: insn: Simulate nop instruction for better uprobe performance
  arm64: probes: Remove probe_opcode_t
  arm64: probes: Cleanup kprobes endianness conversions
  arm64: probes: Move kprobes-specific fields
  arm64: probes: Fix uprobes for big-endian kernels
  arm64: probes: Fix simulate_ldr*_literal()
  arm64: probes: Remove broken LDR (literal) uprobe support

* for-next/asm-offsets:
  : arm64 asm-offsets.c cleanup (remove unused offsets)
  arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET
  arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE
  arm64: asm-offsets: remove VM_EXEC and PAGE_SZ
  arm64: asm-offsets: remove MM_CONTEXT_ID
  arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET
  arm64: asm-offsets: remove VMA_VM_*
  arm64: asm-offsets: remove TSK_ACTIVE_MM

* for-next/tlb:
  : TLB flushing optimisations
  arm64: optimize flush tlb kernel range
  arm64: tlbflush: add __flush_tlb_range_limit_excess()

* for-next/misc:
  : Miscellaneous patches
  arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
  arm64/ptrace: Clarify documentation of VL configuration via ptrace
  acpi/arm64: remove unnecessary cast
  arm64/mm: Change protval as 'pteval_t' in map_range()
  arm64: uprobes: Optimize cache flushes for xol slot
  acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block()
  arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG
  arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings
  arm64/mm: Sanity check PTE address before runtime P4D/PUD folding
  arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont()
  ACPI: GTDT: Tighten the check for the array of platform timer structures
  arm64/fpsimd: Fix a typo
  arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers
  arm64: Return early when break handler is found on linked-list
  arm64/mm: Re-organize arch_make_huge_pte()
  arm64/mm: Drop _PROT_SECT_DEFAULT
  arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV
  arm64: head: Drop SWAPPER_TABLE_SHIFT
  arm64: cpufeature: add POE to cpucap_is_possible()
  arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t

* for-next/mte:
  : Various MTE improvements
  selftests: arm64: add hugetlb mte tests
  hugetlb: arm64: add mte support

* for-next/sysreg:
  : arm64 sysreg updates
  arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09

* for-next/stacktrace:
  : arm64 stacktrace improvements
  arm64: preserve pt_regs::stackframe during exec*()
  arm64: stacktrace: unwind exception boundaries
  arm64: stacktrace: split unwind_consume_stack()
  arm64: stacktrace: report recovered PCs
  arm64: stacktrace: report source of unwind data
  arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk()
  arm64: use a common struct frame_record
  arm64: pt_regs: swap 'unused' and 'pmr' fields
  arm64: pt_regs: rename "pmr_save" -> "pmr"
  arm64: pt_regs: remove stale big-endian layout
  arm64: pt_regs: assert pt_regs is a multiple of 16 bytes

* for-next/hwcap3:
  : Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4)
  arm64: Support AT_HWCAP3
  binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4

* for-next/kselftest: (30 commits)
  : arm64 kselftest fixes/cleanups
  kselftest/arm64: Try harder to generate different keys during PAC tests
  kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
  kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
  kselftest/arm64: Add FPMR coverage to fp-ptrace
  kselftest/arm64: Expand the set of ZA writes fp-ptrace does
  kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
  kselftest/arm64: Enable build of PAC tests with LLVM=1
  kselftest/arm64: Check that SVCR is 0 in signal handlers
  kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
  kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
  kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
  kselftest/arm64: Fix build with stricter assemblers
  kselftest/arm64: Test signal handler state modification in fp-stress
  kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test
  kselftest/arm64: Implement irritators for ZA and ZT
  kselftest/arm64: Remove unused ADRs from irritator handlers
  kselftest/arm64: Correct misleading comments on fp-stress irritators
  kselftest/arm64: Poll less often while waiting for fp-stress children
  kselftest/arm64: Increase frequency of signal delivery in fp-stress
  kselftest/arm64: Fix encoding for SVE B16B16 test
  ...

* for-next/crc32:
  : Optimise CRC32 using PMULL instructions
  arm64/crc32: Implement 4-way interleave using PMULL
  arm64/crc32: Reorganize bit/byte ordering macros
  arm64/lib: Handle CRC-32 alternative in C code

* for-next/guest-cca:
  : Support for running Linux as a guest in Arm CCA
  arm64: Document Arm Confidential Compute
  virt: arm-cca-guest: TSM_REPORT support for realms
  arm64: Enable memory encrypt for Realms
  arm64: mm: Avoid TLBI when marking pages as valid
  arm64: Enforce bounce buffers for realm DMA
  efi: arm64: Map Device with Prot Shared
  arm64: rsi: Map unprotected MMIO as decrypted
  arm64: rsi: Add support for checking whether an MMIO is protected
  arm64: realm: Query IPA size from the RMM
  arm64: Detect if in a realm and set RIPAS RAM
  arm64: rsi: Add RSI definitions

* for-next/haft:
  : Support for arm64 FEAT_HAFT
  arm64: pgtable: Warn unexpected pmdp_test_and_clear_young()
  arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG
  arm64: Add support for FEAT_HAFT
  arm64: setup: name 'tcr2' register
  arm64/sysreg: Update ID_AA64MMFR1_EL1 register

* for-next/scs:
  : Dynamic shadow call stack fixes
  arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
  arm64/scs: Deal with 64-bit relative offsets in FDE frames
  arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames
2024-11-14 12:07:16 +00:00