Commit graph

655 commits

Author SHA1 Message Date
Jing Zhang
4733414690 KVM: arm64: Save ID registers' sanitized value per guest
Initialize the default ID register values upon the first call to
KVM_ARM_VCPU_INIT. The vCPU feature flags are finalized at that point,
so it is possible to determine the maximum feature set supported by a
particular VM configuration. Do nothing with these values for now, as we
need to rework the plumbing of what's already writable to be compatible
with the generic infrastructure.

Co-developed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-7-oliver.upton@linux.dev
[Oliver: Hoist everything into KVM_ARM_VCPU_INIT time, so the features
 are final]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-06-15 12:55:08 +00:00
Oliver Upton
f90f9360c3 KVM: arm64: Rewrite IMPDEF PMU version as NI
KVM allows userspace to write an IMPDEF PMU version to the corresponding
32bit and 64bit ID register fields for the sake of backwards
compatibility with kernels that lacked commit 3d0dba5764 ("KVM: arm64:
PMU: Move the ID_AA64DFR0_EL1.PMUver limit to VM creation"). Plumbing
that IMPDEF PMU version through to the gues is getting in the way of
progress, and really doesn't any sense in the first place.

Bite the bullet and reinterpret the IMPDEF PMU version as NI (0) for
userspace writes. Additionally, spill the dirty details into a comment.

Link: https://lore.kernel.org/r/20230609190054.1542113-5-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-06-12 23:08:33 +00:00
Oliver Upton
2251e9ff15 KVM: arm64: Make vCPU feature flags consistent VM-wide
To date KVM has allowed userspace to construct asymmetric VMs where
particular features may only be supported on a subset of vCPUs. This
wasn't really the intened usage pattern, and it is a total pain in the
ass to keep working in the kernel. What's more, this is at odds with CPU
features in host userspace, where asymmetric features are largely hidden
or disabled.

It's time to put an end to the whole game. Require all vCPUs in the VM
to have the same feature set, rejecting deviants in the
KVM_ARM_VCPU_INIT ioctl. Preserve some of the vestiges of per-vCPU
feature flags in case we need to reinstate the old behavior for some
limited configurations. Yes, this is a sign of cowardice around a
user-visibile change.

Hoist all of the 32-bit limitations into kvm_vcpu_init_check_features()
to avoid nested attempts to acquire the config_lock, which won't end
well.

Link: https://lore.kernel.org/r/20230609190054.1542113-4-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-06-12 23:08:33 +00:00
Oliver Upton
a7a2c72ae0 KVM: arm64: Separate out feature sanitisation and initialisation
kvm_vcpu_set_target() iteratively sanitises and copies feature flags in
one go. This is rather odd, especially considering the fact that bitmap
accessors can do the heavy lifting. A subsequent change will make vCPU
features VM-wide, and fitting that into the present implementation is
just a chore.

Rework the whole thing to use bitmap accessors to sanitise and copy
flags.

Link: https://lore.kernel.org/r/20230609190054.1542113-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-06-12 23:08:33 +00:00
Mark Brown
187de7c2aa arm64/sysreg: Standardise naming of bitfield constants in OSL[AS]R_EL1
Our standard scheme for naming the constants for bitfields in system
registers includes _ELx in the name but not the SYS_, update the
constants for OSL[AS]R_EL1 to follow this convention.

Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20230419-arm64-syreg-gen-v2-3-4c6add1f6257@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-06-06 17:43:08 +01:00
Joey Gouly
86f9de9db1 KVM: arm64: Save/restore PIE registers
Define the new system registers that PIE introduces and context switch them.
The PIE feature is still hidden from the ID register, and not exposed to a VM.

Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-10-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-06-06 16:52:40 +01:00
Joey Gouly
fbff560682 KVM: arm64: Save/restore TCR2_EL1
Define the new system register TCR2_EL1 and context switch it.

Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230606145859.697944-9-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-06-06 16:52:40 +01:00
Reiji Watanabe
0c2f9acf6a KVM: arm64: PMU: Don't overwrite PMUSERENR with vcpu loaded
Currently, with VHE, KVM sets ER, CR, SW and EN bits of
PMUSERENR_EL0 to 1 on vcpu_load(), and saves and restores
the register value for the host on vcpu_load() and vcpu_put().
If the value of those bits are cleared on a pCPU with a vCPU
loaded (armv8pmu_start() would do that when PMU counters are
programmed for the guest), PMU access from the guest EL0 might
be trapped to the guest EL1 directly regardless of the current
PMUSERENR_EL0 value of the vCPU.

Fix this by not letting armv8pmu_start() overwrite PMUSERENR_EL0
on the pCPU where PMUSERENR_EL0 for the guest is loaded, and
instead updating the saved shadow register value for the host
so that the value can be restored on vcpu_put() later.
While vcpu_{put,load}() are manipulating PMUSERENR_EL0, disable
IRQs to prevent a race condition between these processes and IPIs
that attempt to update PMUSERENR_EL0 for the host EL0.

Suggested-by: Mark Rutland <mark.rutland@arm.com>
Suggested-by: Marc Zyngier <maz@kernel.org>
Fixes: 83a7a4d643 ("arm64: perf: Enable PMU counter userspace access for perf event")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230603025035.3781797-3-reijiw@google.com
2023-06-04 17:19:36 +01:00
Will Deacon
12bdce4f41 KVM: arm64: Probe FF-A version and host/hyp partition ID during init
Probe FF-A during pKVM initialisation so that we can detect any
inconsistencies in the version or partition ID early on.

Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230523101828.7328-3-will@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-06-01 21:34:50 +00:00
Ricardo Koller
2f440b72e8 KVM: arm64: Add KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
Add a capability for userspace to specify the eager split chunk size.
The chunk size specifies how many pages to break at a time, using a
single allocation. Bigger the chunk size, more pages need to be
allocated ahead of time.

Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-6-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-05-16 17:39:18 +00:00
Linus Torvalds
c8c655c34e s390:
* More phys_to_virt conversions
 
 * Improvement of AP management for VSIE (nested virtualization)
 
 ARM64:
 
 * Numerous fixes for the pathological lock inversion issue that
   plagued KVM/arm64 since... forever.
 
 * New framework allowing SMCCC-compliant hypercalls to be forwarded
   to userspace, hopefully paving the way for some more features
   being moved to VMMs rather than be implemented in the kernel.
 
 * Large rework of the timer code to allow a VM-wide offset to be
   applied to both virtual and physical counters as well as a
   per-timer, per-vcpu offset that complements the global one.
   This last part allows the NV timer code to be implemented on
   top.
 
 * A small set of fixes to make sure that we don't change anything
   affecting the EL1&0 translation regime just after having having
   taken an exception to EL2 until we have executed a DSB. This
   ensures that speculative walks started in EL1&0 have completed.
 
 * The usual selftest fixes and improvements.
 
 KVM x86 changes for 6.4:
 
 * Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
   and by giving the guest control of CR0.WP when EPT is enabled on VMX
   (VMX-only because SVM doesn't support per-bit controls)
 
 * Add CR0/CR4 helpers to query single bits, and clean up related code
   where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
   as a bool
 
 * Move AMD_PSFD to cpufeatures.h and purge KVM's definition
 
 * Avoid unnecessary writes+flushes when the guest is only adding new PTEs
 
 * Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
   when emulating invalidations
 
 * Clean up the range-based flushing APIs
 
 * Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
   A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
   changed SPTE" overhead associated with writing the entire entry
 
 * Track the number of "tail" entries in a pte_list_desc to avoid having
   to walk (potentially) all descriptors during insertion and deletion,
   which gets quite expensive if the guest is spamming fork()
 
 * Disallow virtualizing legacy LBRs if architectural LBRs are available,
   the two are mutually exclusive in hardware
 
 * Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
   after KVM_RUN, similar to CPUID features
 
 * Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
 
 * Apply PMU filters to emulated events and add test coverage to the
   pmu_event_filter selftest
 
 x86 AMD:
 
 * Add support for virtual NMIs
 
 * Fixes for edge cases related to virtual interrupts
 
 x86 Intel:
 
 * Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
   not being reported due to userspace not opting in via prctl()
 
 * Fix a bug in emulation of ENCLS in compatibility mode
 
 * Allow emulation of NOP and PAUSE for L2
 
 * AMX selftests improvements
 
 * Misc cleanups
 
 MIPS:
 
 * Constify MIPS's internal callbacks (a leftover from the hardware enabling
   rework that landed in 6.3)
 
 Generic:
 
 * Drop unnecessary casts from "void *" throughout kvm_main.c
 
 * Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
   size by 8 bytes on 64-bit kernels by utilizing a padding hole
 
 Documentation:
 
 * Fix goof introduced by the conversion to rST
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
 Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
 WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
 huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
 XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
 j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
 =S2Hq
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "s390:

   - More phys_to_virt conversions

   - Improvement of AP management for VSIE (nested virtualization)

  ARM64:

   - Numerous fixes for the pathological lock inversion issue that
     plagued KVM/arm64 since... forever.

   - New framework allowing SMCCC-compliant hypercalls to be forwarded
     to userspace, hopefully paving the way for some more features being
     moved to VMMs rather than be implemented in the kernel.

   - Large rework of the timer code to allow a VM-wide offset to be
     applied to both virtual and physical counters as well as a
     per-timer, per-vcpu offset that complements the global one. This
     last part allows the NV timer code to be implemented on top.

   - A small set of fixes to make sure that we don't change anything
     affecting the EL1&0 translation regime just after having having
     taken an exception to EL2 until we have executed a DSB. This
     ensures that speculative walks started in EL1&0 have completed.

   - The usual selftest fixes and improvements.

  x86:

   - Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
     enabled, and by giving the guest control of CR0.WP when EPT is
     enabled on VMX (VMX-only because SVM doesn't support per-bit
     controls)

   - Add CR0/CR4 helpers to query single bits, and clean up related code
     where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
     return as a bool

   - Move AMD_PSFD to cpufeatures.h and purge KVM's definition

   - Avoid unnecessary writes+flushes when the guest is only adding new
     PTEs

   - Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
     optimizations when emulating invalidations

   - Clean up the range-based flushing APIs

   - Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
     single A/D bit using a LOCK AND instead of XCHG, and skip all of
     the "handle changed SPTE" overhead associated with writing the
     entire entry

   - Track the number of "tail" entries in a pte_list_desc to avoid
     having to walk (potentially) all descriptors during insertion and
     deletion, which gets quite expensive if the guest is spamming
     fork()

   - Disallow virtualizing legacy LBRs if architectural LBRs are
     available, the two are mutually exclusive in hardware

   - Disallow writes to immutable feature MSRs (notably
     PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features

   - Overhaul the vmx_pmu_caps selftest to better validate
     PERF_CAPABILITIES

   - Apply PMU filters to emulated events and add test coverage to the
     pmu_event_filter selftest

   - AMD SVM:
       - Add support for virtual NMIs
       - Fixes for edge cases related to virtual interrupts

   - Intel AMX:
       - Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
         XTILE_DATA is not being reported due to userspace not opting in
         via prctl()
       - Fix a bug in emulation of ENCLS in compatibility mode
       - Allow emulation of NOP and PAUSE for L2
       - AMX selftests improvements
       - Misc cleanups

  MIPS:

   - Constify MIPS's internal callbacks (a leftover from the hardware
     enabling rework that landed in 6.3)

  Generic:

   - Drop unnecessary casts from "void *" throughout kvm_main.c

   - Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
     struct size by 8 bytes on 64-bit kernels by utilizing a padding
     hole

  Documentation:

   - Fix goof introduced by the conversion to rST"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
  KVM: s390: pci: fix virtual-physical confusion on module unload/load
  KVM: s390: vsie: clarifications on setting the APCB
  KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
  KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
  KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
  KVM: selftests: Test the PMU event "Instructions retired"
  KVM: selftests: Copy full counter values from guest in PMU event filter test
  KVM: selftests: Use error codes to signal errors in PMU event filter test
  KVM: selftests: Print detailed info in PMU event filter asserts
  KVM: selftests: Add helpers for PMC asserts in PMU event filter test
  KVM: selftests: Add a common helper for the PMU event filter guest code
  KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
  KVM: arm64: vhe: Drop extra isb() on guest exit
  KVM: arm64: vhe: Synchronise with page table walker on MMU update
  KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
  KVM: arm64: nvhe: Synchronise with page table walker on TLBI
  KVM: arm64: Handle 32bit CNTPCTSS traps
  KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
  KVM: arm64: vgic: Don't acquire its_lock before config_lock
  KVM: selftests: Add test to verify KVM's supported XCR0
  ...
2023-05-01 12:06:20 -07:00
Paolo Bonzini
4f382a79a6 KVM/arm64 updates for 6.4
- Numerous fixes for the pathological lock inversion issue that
   plagued KVM/arm64 since... forever.
 
 - New framework allowing SMCCC-compliant hypercalls to be forwarded
   to userspace, hopefully paving the way for some more features
   being moved to VMMs rather than be implemented in the kernel.
 
 - Large rework of the timer code to allow a VM-wide offset to be
   applied to both virtual and physical counters as well as a
   per-timer, per-vcpu offset that complements the global one.
   This last part allows the NV timer code to be implemented on
   top.
 
 - A small set of fixes to make sure that we don't change anything
   affecting the EL1&0 translation regime just after having having
   taken an exception to EL2 until we have executed a DSB. This
   ensures that speculative walks started in EL1&0 have completed.
 
 - The usual selftest fixes and improvements.
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmRCZIwPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDoZ8P/ioXAdDbAE4hTuyD2YdKJ3IGWN3pg52Z7xc2
 rBXXFrbK9+n9FEc3AVdHoGsRPDP0Ynl+apj+aB0Klr/Fl0KKqac+W0ARX9rn1mI1
 HjeygFPaGnXjMUp0BjeSLS+g3b0gebELJ6R1QEe1/MIPb8Se7M1y3ZpMWdhe0PPL
 vyzw3LZq2OAlLgWKZhAfhh03qdr2kqJxypYs6nMrcexfn8dXT78dsYKW1nXmqKcE
 61Gg23MDPUoexYpUhm+ym5t8hltoI1di8faPmxEpaFzpSDyAg8V5vo6LiW9jn3cf
 RX0Sikk1laiRAhVbbIFCKC148vFyKxum3scpKyb91Qc+sK1kmIcxvEqlc6SfG9je
 +5ndZwAfXtW6SMSOyX8y5fXbee7M0sx3n3le9BNgwXfmLWg/GHXJ544dJgVIlf/e
 0Z+8QnP1IUDfARR/b2FlW7A7XLzNHQzO379ekcAdUptbGwlS9CrW6SJ83QR7K6fB
 bh0aSSELKsD7pX8wnNyNACvmz2zL12ITlDKdZWUr8MSxyTjgVy7s0BDsQT3sbrA1
 1sH++RvUWfC2k7tVT3vjZFzUDlPw3bnZmo5YMWRTMbXEdr1V5rDw5F5IXit13KeT
 8bk0hnJgnLmyoX2A17v5dkFMIKD7p13tqDRdfFcn0ru63HIKxgkS3ITkDmsAQELK
 DHT7RBE0
 =Bhta
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 updates for 6.4

- Numerous fixes for the pathological lock inversion issue that
  plagued KVM/arm64 since... forever.

- New framework allowing SMCCC-compliant hypercalls to be forwarded
  to userspace, hopefully paving the way for some more features
  being moved to VMMs rather than be implemented in the kernel.

- Large rework of the timer code to allow a VM-wide offset to be
  applied to both virtual and physical counters as well as a
  per-timer, per-vcpu offset that complements the global one.
  This last part allows the NV timer code to be implemented on
  top.

- A small set of fixes to make sure that we don't change anything
  affecting the EL1&0 translation regime just after having having
  taken an exception to EL2 until we have executed a DSB. This
  ensures that speculative walks started in EL1&0 have completed.

- The usual selftest fixes and improvements.
2023-04-26 15:46:52 -04:00
Marc Zyngier
6dcf7316e0 Merge branch kvm-arm64/smccc-filtering into kvmarm-master/next
* kvm-arm64/smccc-filtering:
  : .
  : SMCCC call filtering and forwarding to userspace, courtesy of
  : Oliver Upton. From the cover letter:
  :
  : "The Arm SMCCC is rather prescriptive in regards to the allocation of
  : SMCCC function ID ranges. Many of the hypercall ranges have an
  : associated specification from Arm (FF-A, PSCI, SDEI, etc.) with some
  : room for vendor-specific implementations.
  :
  : The ever-expanding SMCCC surface leaves a lot of work within KVM for
  : providing new features. Furthermore, KVM implements its own
  : vendor-specific ABI, with little room for other implementations (like
  : Hyper-V, for example). Rather than cramming it all into the kernel we
  : should provide a way for userspace to handle hypercalls."
  : .
  KVM: selftests: Fix spelling mistake "KVM_HYPERCAL_EXIT_SMC" -> "KVM_HYPERCALL_EXIT_SMC"
  KVM: arm64: Test that SMC64 arch calls are reserved
  KVM: arm64: Prevent userspace from handling SMC64 arch range
  KVM: arm64: Expose SMC/HVC width to userspace
  KVM: selftests: Add test for SMCCC filter
  KVM: selftests: Add a helper for SMCCC calls with SMC instruction
  KVM: arm64: Let errors from SMCCC emulation to reach userspace
  KVM: arm64: Return NOT_SUPPORTED to guest for unknown PSCI version
  KVM: arm64: Introduce support for userspace SMCCC filtering
  KVM: arm64: Add support for KVM_EXIT_HYPERCALL
  KVM: arm64: Use a maple tree to represent the SMCCC filter
  KVM: arm64: Refactor hvc filtering to support different actions
  KVM: arm64: Start handling SMCs from EL1
  KVM: arm64: Rename SMC/HVC call handler to reflect reality
  KVM: arm64: Add vm fd device attribute accessors
  KVM: arm64: Add a helper to check if a VM has ran once
  KVM: x86: Redefine 'longmode' as a flag for KVM_EXIT_HYPERCALL

Signed-off-by: Marc Zyngier <maz@kernel.org>
2023-04-21 09:44:32 +01:00
Marc Zyngier
b22498c484 Merge branch kvm-arm64/timer-vm-offsets into kvmarm-master/next
* kvm-arm64/timer-vm-offsets: (21 commits)
  : .
  : This series aims at satisfying multiple goals:
  :
  : - allow a VMM to atomically restore a timer offset for a whole VM
  :   instead of updating the offset each time a vcpu get its counter
  :   written
  :
  : - allow a VMM to save/restore the physical timer context, something
  :   that we cannot do at the moment due to the lack of offsetting
  :
  : - provide a framework that is suitable for NV support, where we get
  :   both global and per timer, per vcpu offsetting, and manage
  :   interrupts in a less braindead way.
  :
  : Conflict resolution involves using the new per-vcpu config lock instead
  : of the home-grown timer lock.
  : .
  KVM: arm64: Handle 32bit CNTPCTSS traps
  KVM: arm64: selftests: Augment existing timer test to handle variable offset
  KVM: arm64: selftests: Deal with spurious timer interrupts
  KVM: arm64: selftests: Add physical timer registers to the sysreg list
  KVM: arm64: nv: timers: Support hyp timer emulation
  KVM: arm64: nv: timers: Add a per-timer, per-vcpu offset
  KVM: arm64: Document KVM_ARM_SET_CNT_OFFSETS and co
  KVM: arm64: timers: Abstract the number of valid timers per vcpu
  KVM: arm64: timers: Fast-track CNTPCT_EL0 trap handling
  KVM: arm64: Elide kern_hyp_va() in VHE-specific parts of the hypervisor
  KVM: arm64: timers: Move the timer IRQs into arch_timer_vm_data
  KVM: arm64: timers: Abstract per-timer IRQ access
  KVM: arm64: timers: Rationalise per-vcpu timer init
  KVM: arm64: timers: Allow save/restoring of the physical timer
  KVM: arm64: timers: Allow userspace to set the global counter offset
  KVM: arm64: Expose {un,}lock_all_vcpus() to the rest of KVM
  KVM: arm64: timers: Allow physical offset without CNTPOFF_EL2
  KVM: arm64: timers: Use CNTPOFF_EL2 to offset the physical timer
  arm64: Add HAS_ECV_CNTPOFF capability
  arm64: Add CNTPOFF_EL2 register definition
  ...

Signed-off-by: Marc Zyngier <maz@kernel.org>
2023-04-21 09:36:40 +01:00
Marc Zyngier
35dcb3ac66 KVM: arm64: Make vcpu flag updates non-preemptible
Per-vcpu flags are updated using a non-atomic RMW operation.
Which means it is possible to get preempted between the read and
write operations.

Another interesting thing to note is that preemption also updates
flags, as we have some flag manipulation in both the load and put
operations.

It is thus possible to lose information communicated by either
load or put, as the preempted flag update will overwrite the flags
when the thread is resumed. This is specially critical if either
load or put has stored information which depends on the physical
CPU the vcpu runs on.

This results in really elusive bugs, and kudos must be given to
Mostafa for the long hours of debugging, and finally spotting
the problem.

Fix it by disabling preemption during the RMW operation, which
ensures that the state stays consistent. Also upgrade vcpu_get_flag
path to use READ_ONCE() to make sure the field is always atomically
accessed.

Fixes: e87abb73e5 ("KVM: arm64: Add helpers to manipulate vcpu flags among a set")
Reported-by: Mostafa Saleh <smostafa@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230418125737.2327972-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-04-18 17:08:09 +00:00
Oliver Upton
fb88707dd3 KVM: arm64: Use a maple tree to represent the SMCCC filter
Maple tree is an efficient B-tree implementation that is intended for
storing non-overlapping intervals. Such a data structure is a good fit
for the SMCCC filter as it is desirable to sparsely allocate the 32 bit
function ID space.

To that end, add a maple tree to kvm_arch and correctly init/teardown
along with the VM. Wire in a test against the hypercall filter for HVCs
which does nothing until the controls are exposed to userspace.

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-8-oliver.upton@linux.dev
2023-04-05 12:07:41 +01:00
Oliver Upton
de40bb8abb KVM: arm64: Add a helper to check if a VM has ran once
The test_bit(...) pattern is quite a lot of keystrokes. Replace
existing callsites with a helper.

No functional change intended.

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-3-oliver.upton@linux.dev
2023-04-05 12:07:41 +01:00
Marc Zyngier
81dc9504a7 KVM: arm64: nv: timers: Support hyp timer emulation
Emulating EL2 also means emulating the EL2 timers. To do so, we expand
our timer framework to deal with at most 4 timers. At any given time,
two timers are using the HW timers, and the two others are purely
emulated.

The role of deciding which is which at any given time is left to a
mapping function which is called every time we need to make such a
decision.

Reviewed-by: Colton Lewis <coltonlewis@google.com>
Co-developed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-18-maz@kernel.org
2023-03-30 19:01:10 +01:00
Marc Zyngier
8a5eb2d210 KVM: arm64: timers: Move the timer IRQs into arch_timer_vm_data
Having the timer IRQs duplicated into each vcpu isn't great, and
becomes absolutely awful with NV. So let's move these into
the per-VM arch_timer_vm_data structure.

This simplifies a lot of code, but requires us to introduce a
mutex so that we can reason about userspace trying to change
an interrupt number while another vcpu is running, something
that wasn't really well handled so far.

Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-12-maz@kernel.org
2023-03-30 19:01:10 +01:00
Marc Zyngier
30ec7997d1 KVM: arm64: timers: Allow userspace to set the global counter offset
And this is the moment you have all been waiting for: setting the
counter offset from userspace.

We expose a brand new capability that reports the ability to set
the offset for both the virtual and physical sides.

In keeping with the architecture, the offset is expressed as
a delta that is substracted from the physical counter value.

Once this new API is used, there is no going back, and the counters
cannot be written to to set the offsets implicitly (the writes
are instead ignored).

Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-8-maz@kernel.org
2023-03-30 19:01:10 +01:00
Marc Zyngier
96906a9150 KVM: arm64: Expose {un,}lock_all_vcpus() to the rest of KVM
Being able to lock/unlock all vcpus in one go is a feature that
only the vgic has enjoyed so far. Let's be brave and expose it
to the world.

Reviewed-by: Colton Lewis <coltonlewis@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230330174800.2677007-7-maz@kernel.org
2023-03-30 19:01:09 +01:00
Oliver Upton
c43120afb5 KVM: arm64: Avoid lock inversion when setting the VM register width
kvm->lock must be taken outside of the vcpu->mutex. Of course, the
locking documentation for KVM makes this abundantly clear. Nonetheless,
the locking order in KVM/arm64 has been wrong for quite a while; we
acquire the kvm->lock while holding the vcpu->mutex all over the shop.

All was seemingly fine until commit 42a90008f8 ("KVM: Ensure lockdep
knows about kvm->lock vs. vcpu->mutex ordering rule") caught us with our
pants down, leading to lockdep barfing:

 ======================================================
 WARNING: possible circular locking dependency detected
 6.2.0-rc7+ #19 Not tainted
 ------------------------------------------------------
 qemu-system-aar/859 is trying to acquire lock:
 ffff5aa69269eba0 (&host_kvm->lock){+.+.}-{3:3}, at: kvm_reset_vcpu+0x34/0x274

 but task is already holding lock:
 ffff5aa68768c0b8 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x8c/0xba0

 which lock already depends on the new lock.

Add a dedicated lock to serialize writes to VM-scoped configuration from
the context of a vCPU. Protect the register width flags with the new
lock, thus avoiding the need to grab the kvm->lock while holding
vcpu->mutex in kvm_reset_vcpu().

Cc: stable@vger.kernel.org
Reported-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/kvmarm/f6452cdd-65ff-34b8-bab0-5c06416da5f6@arm.com/
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230327164747.2466958-3-oliver.upton@linux.dev
2023-03-29 14:08:31 +01:00
Oliver Upton
0acc7239c2 KVM: arm64: Avoid vcpu->mutex v. kvm->lock inversion in CPU_ON
KVM/arm64 had the lock ordering backwards on vcpu->mutex and kvm->lock
from the very beginning. One such example is the way vCPU resets are
handled: the kvm->lock is acquired while handling a guest CPU_ON PSCI
call.

Add a dedicated lock to serialize writes to kvm_vcpu_arch::{mp_state,
reset_state}. Promote all accessors of mp_state to {READ,WRITE}_ONCE()
as readers do not acquire the mp_state_lock. While at it, plug yet
another race by taking the mp_state_lock in the KVM_SET_MP_STATE ioctl
handler.

As changes to MP state are now guarded with a dedicated lock, drop the
kvm->lock acquisition from the PSCI CPU_ON path. Similarly, move the
reader of reset_state outside of the kvm->lock and instead protect it
with the mp_state_lock. Note that writes to reset_state::reset have been
demoted to regular stores as both readers and writers acquire the
mp_state_lock.

While the kvm->lock inversion still exists in kvm_reset_vcpu(), at least
now PSCI CPU_ON no longer depends on it for serializing vCPU reset.

Cc: stable@vger.kernel.org
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230327164747.2466958-2-oliver.upton@linux.dev
2023-03-29 14:08:31 +01:00
Thomas Huth
2def950c63 KVM: arm64: Limit length in kvm_vm_ioctl_mte_copy_tags() to INT_MAX
In case of success, this function returns the amount of handled bytes.
However, this does not work for large values: The function is called
from kvm_arch_vm_ioctl() (which still returns a long), which in turn
is called from kvm_vm_ioctl() in virt/kvm/kvm_main.c. And that function
stores the return value in an "int r" variable. So the upper 32-bits
of the "long" return value are lost there.

KVM ioctl functions should only return "int" values, so let's limit
the amount of bytes that can be requested here to INT_MAX to avoid
the problem with the truncated return value. We can then also change
the return type of the function to "int" to make it clearer that it
is not possible to return a "long" here.

Fixes: f0376edb1d ("KVM: arm64: Add ioctl to fetch/store tags in a guest")
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Message-Id: <20230208140105.655814-5-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-03-16 10:18:06 -04:00
Marc Zyngier
47053904e1 KVM: arm64: timers: Convert per-vcpu virtual offset to a global value
Having a per-vcpu virtual offset is a pain. It needs to be synchronized
on each update, and expands badly to a setup where different timers can
have different offsets, or have composite offsets (as with NV).

So let's start by replacing the use of the CNTVOFF_EL2 shadow register
(which we want to reclaim for NV anyway), and make the virtual timer
carry a pointer to a VM-wide offset.

This simplifies the code significantly. It also addresses two terrible bugs:

- The use of CNTVOFF_EL2 leads to some nice offset corruption
  when the sysreg gets reset, as reported by Joey.

- The kvm mutex is taken from a vcpu ioctl, which goes against
  the locking rules...

Reported-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230224173915.GA17407@e124191.cambridge.arm.com
Tested-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/r/20230224191640.3396734-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-03-11 02:00:40 -08:00
Oliver Upton
0d3b2b4d23 Merge branch kvm-arm64/nv-prefix into kvmarm/next
* kvm-arm64/nv-prefix:
  : Preamble to NV support, courtesy of Marc Zyngier.
  :
  : This brings in a set of prerequisite patches for supporting nested
  : virtualization in KVM/arm64. Of course, there is a long way to go until
  : NV is actually enabled in KVM.
  :
  :  - Introduce cpucap / vCPU feature flag to pivot the NV code on
  :
  :  - Add support for EL2 vCPU register state
  :
  :  - Basic nested exception handling
  :
  :  - Hide unsupported features from the ID registers for NV-capable VMs
  KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
  KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
  KVM: arm64: nv: Filter out unsupported features from ID regs
  KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
  KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
  KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
  KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
  KVM: arm64: nv: Handle SMCs taken from virtual EL2
  KVM: arm64: nv: Handle trapped ERET from virtual EL2
  KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
  KVM: arm64: nv: Support virtual EL2 exceptions
  KVM: arm64: nv: Handle HCR_EL2.NV system register traps
  KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
  KVM: arm64: nv: Add EL2 system registers to vcpu context
  KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
  KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
  KVM: arm64: nv: Introduce nested virtualization VCPU feature
  KVM: arm64: Use the S2 MMU context to iterate over S2 table
  arm64: Add ARM64_HAS_NESTED_VIRT cpufeature

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-13 23:33:41 +00:00
Oliver Upton
022d3f0800 Merge branch kvm-arm64/misc into kvmarm/next
* kvm-arm64/misc:
  : Miscellaneous updates
  :
  :  - Convert CPACR_EL1_TTA to the new, generated system register
  :    definitions.
  :
  :  - Serialize toggling CPACR_EL1.SMEN to avoid unexpected exceptions when
  :    accessing SVCR in the host.
  :
  :  - Avoid quiescing the guest if a vCPU accesses its own redistributor's
  :    SGIs/PPIs, eliminating the need to IPI. Largely an optimization for
  :    nested virtualization, as the L1 accesses the affected registers
  :    rather often.
  :
  :  - Conversion to kstrtobool()
  :
  :  - Common definition of INVALID_GPA across architectures
  :
  :  - Enable CONFIG_USERFAULTFD for CI runs of KVM selftests
  KVM: arm64: Fix non-kerneldoc comments
  KVM: selftests: Enable USERFAULTFD
  KVM: selftests: Remove redundant setbuf()
  arm64/sysreg: clean up some inconsistent indenting
  KVM: MMU: Make the definition of 'INVALID_GPA' common
  KVM: arm64: vgic-v3: Use kstrtobool() instead of strtobool()
  KVM: arm64: vgic-v3: Limit IPI-ing when accessing GICR_{C,S}ACTIVER0
  KVM: arm64: Synchronize SMEN on vcpu schedule out
  KVM: arm64: Kill CPACR_EL1_TTA definition

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-13 23:33:25 +00:00
Oliver Upton
e8789ab704 Merge branch kvm-arm64/virtual-cache-geometry into kvmarm/next
* kvm-arm64/virtual-cache-geometry:
  : Virtualized cache geometry for KVM guests, courtesy of Akihiko Odaki.
  :
  : KVM/arm64 has always exposed the host cache geometry directly to the
  : guest, even though non-secure software should never perform CMOs by
  : Set/Way. This was slightly wrong, as the cache geometry was derived from
  : the PE on which the vCPU thread was running and not a sanitized value.
  :
  : All together this leads to issues migrating VMs on heterogeneous
  : systems, as the cache geometry saved/restored could be inconsistent.
  :
  : KVM/arm64 now presents 1 level of cache with 1 set and 1 way. The cache
  : geometry is entirely controlled by userspace, such that migrations from
  : older kernels continue to work.
  KVM: arm64: Mark some VM-scoped allocations as __GFP_ACCOUNT
  KVM: arm64: Normalize cache configuration
  KVM: arm64: Mask FEAT_CCIDX
  KVM: arm64: Always set HCR_TID2
  arm64/cache: Move CLIDR macro definitions
  arm64/sysreg: Add CCSIDR2_EL1
  arm64/sysreg: Convert CCSIDR_EL1 to automatic generation
  arm64: Allow the definition of UNKNOWN system register fields

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-13 22:32:40 +00:00
Marc Zyngier
d9552fe133 KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
We can no longer blindly copy the VCPU's PSTATE into SPSR_EL2 and return
to the guest and vice versa when taking an exception to the hypervisor,
because we emulate virtual EL2 in EL1 and therefore have to translate
the mode field from EL2 to EL1 and vice versa.

This requires keeping track of the state we enter the guest, for which
we transiently use a dedicated flag.

Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-15-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-11 10:13:29 +00:00
Jintack Lim
47f3a2fc76 KVM: arm64: nv: Support virtual EL2 exceptions
Support injecting exceptions and performing exception returns to and
from virtual EL2.  This must be done entirely in software except when
taking an exception from vEL0 to vEL2 when the virtual HCR_EL2.{E2H,TGE}
== {1,1}  (a VHE guest hypervisor).

[maz: switch to common exception injection framework, illegal exeption
 return handling]

Reviewed-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-10-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-11 09:16:11 +00:00
Marc Zyngier
5305cc2c34 KVM: arm64: nv: Add EL2 system registers to vcpu context
Add the minimal set of EL2 system registers to the vcpu context.
Nothing uses them just yet.

Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-7-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-11 09:16:11 +00:00
Jintack Lim
675cabc899 arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Add a new ARM64_HAS_NESTED_VIRT feature to indicate that the
CPU has the ARMv8.3 nested virtualization capability, together
with the 'kvm-arm.mode=nested' command line option.

This will be used to support nested virtualization in KVM.

Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: moved the command-line option to kvm-arm.mode]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-11 09:16:11 +00:00
Akihiko Odaki
7af0c2534f KVM: arm64: Normalize cache configuration
Before this change, the cache configuration of the physical CPU was
exposed to vcpus. This is problematic because the cache configuration a
vcpu sees varies when it migrates between vcpus with different cache
configurations.

Fabricate cache configuration from the sanitized value, which holds the
CTR_EL0 value the userspace sees regardless of which physical CPU it
resides on.

CLIDR_EL1 and CCSIDR_EL1 are now writable from the userspace so that
the VMM can restore the values saved with the old kernel.

Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Link: https://lore.kernel.org/r/20230112023852.42012-8-akihiko.odaki@daynix.com
[ Oliver: Squash Marc's fix for CCSIDR_EL1.LineSize when set from userspace ]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-01-21 18:09:23 +00:00
Yu Zhang
cecafc0a83 KVM: MMU: Make the definition of 'INVALID_GPA' common
KVM already has a 'GPA_INVALID' defined as (~(gpa_t)0) in kvm_types.h,
and it is used by ARM code. We do not need another definition of
'INVALID_GPA' for X86 specifically.

Instead of using the common 'GPA_INVALID' for X86, replace it with
'INVALID_GPA', and change the users of 'GPA_INVALID' so that the diff
can be smaller. Also because the name 'INVALID_GPA' tells the user we
are using an invalid GPA, while the name 'GPA_INVALID' is emphasizing
the GPA is an invalid one.

No functional change intended.

Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230105130127.866171-1-yu.c.zhang@linux.intel.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-01-19 21:48:38 +00:00
Akihiko Odaki
8cc6dedaff KVM: arm64: Always set HCR_TID2
Always set HCR_TID2 to trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and
CSSELR_EL1. This saves a few lines of code and allows to employ their
access trap handlers for more purposes anticipated by the old
condition for setting HCR_TID2.

Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Link: https://lore.kernel.org/r/20230112023852.42012-6-akihiko.odaki@daynix.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-01-12 21:07:43 +00:00
Sean Christopherson
8d20bd6381 KVM: x86: Unify pr_fmt to use module name for all KVM modules
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code.  In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.

Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.

Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.

Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl().  But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29 15:47:35 -05:00
Sean Christopherson
63a1bd8ad1 KVM: Drop arch hardware (un)setup hooks
Drop kvm_arch_hardware_setup() and kvm_arch_hardware_unsetup() now that
all implementations are nops.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Eric Farman <farman@linux.ibm.com>	# s390
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29 15:40:54 -05:00
Linus Torvalds
8fa590bf34 ARM64:
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
   option to keep the good old dirty log around for pages that are
   dirtied by something other than a vcpu.
 
 * Switch to the relaxed parallel fault handling, using RCU to delay
   page table reclaim and giving better performance under load.
 
 * Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
   which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a9:
   "Fix a number of issues with MTE, such as races on the tags being
   initialised vs the PG_mte_tagged flag as well as the lack of support
   for VM_SHARED when KVM is involved.  Patches from Catalin Marinas and
   Peter Collingbourne").
 
 * Merge the pKVM shadow vcpu state tracking that allows the hypervisor
   to have its own view of a vcpu, keeping that state private.
 
 * Add support for the PMUv3p5 architecture revision, bringing support
   for 64bit counters on systems that support it, and fix the
   no-quite-compliant CHAIN-ed counter support for the machines that
   actually exist out there.
 
 * Fix a handful of minor issues around 52bit VA/PA support (64kB pages
   only) as a prefix of the oncoming support for 4kB and 16kB pages.
 
 * Pick a small set of documentation and spelling fixes, because no
   good merge window would be complete without those.
 
 s390:
 
 * Second batch of the lazy destroy patches
 
 * First batch of KVM changes for kernel virtual != physical address support
 
 * Removal of a unused function
 
 x86:
 
 * Allow compiling out SMM support
 
 * Cleanup and documentation of SMM state save area format
 
 * Preserve interrupt shadow in SMM state save area
 
 * Respond to generic signals during slow page faults
 
 * Fixes and optimizations for the non-executable huge page errata fix.
 
 * Reprogram all performance counters on PMU filter change
 
 * Cleanups to Hyper-V emulation and tests
 
 * Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
   running on top of a L1 Hyper-V hypervisor)
 
 * Advertise several new Intel features
 
 * x86 Xen-for-KVM:
 
 ** Allow the Xen runstate information to cross a page boundary
 
 ** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
 
 ** Add support for 32-bit guests in SCHEDOP_poll
 
 * Notable x86 fixes and cleanups:
 
 ** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
 
 ** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
    years back when eliminating unnecessary barriers when switching between
    vmcs01 and vmcs02.
 
 ** Clean up vmread_error_trampoline() to make it more obvious that params
    must be passed on the stack, even for x86-64.
 
 ** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
    of the current guest CPUID.
 
 ** Fudge around a race with TSC refinement that results in KVM incorrectly
    thinking a guest needs TSC scaling when running on a CPU with a
    constant TSC, but no hardware-enumerated TSC frequency.
 
 ** Advertise (on AMD) that the SMM_CTL MSR is not supported
 
 ** Remove unnecessary exports
 
 Generic:
 
 * Support for responding to signals during page faults; introduces
   new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
 
 Selftests:
 
 * Fix an inverted check in the access tracking perf test, and restore
   support for asserting that there aren't too many idle pages when
   running on bare metal.
 
 * Fix build errors that occur in certain setups (unsure exactly what is
   unique about the problematic setup) due to glibc overriding
   static_assert() to a variant that requires a custom message.
 
 * Introduce actual atomics for clear/set_bit() in selftests
 
 * Add support for pinning vCPUs in dirty_log_perf_test.
 
 * Rename the so called "perf_util" framework to "memstress".
 
 * Add a lightweight psuedo RNG for guest use, and use it to randomize
   the access pattern and write vs. read percentage in the memstress tests.
 
 * Add a common ucall implementation; code dedup and pre-work for running
   SEV (and beyond) guests in selftests.
 
 * Provide a common constructor and arch hook, which will eventually be
   used by x86 to automatically select the right hypercall (AMD vs. Intel).
 
 * A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
   breakpoints, stage-2 faults and access tracking.
 
 * x86-specific selftest changes:
 
 ** Clean up x86's page table management.
 
 ** Clean up and enhance the "smaller maxphyaddr" test, and add a related
    test to cover generic emulation failure.
 
 ** Clean up the nEPT support checks.
 
 ** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
 
 ** Fix an ordering issue in the AMX test introduced by recent conversions
    to use kvm_cpu_has(), and harden the code to guard against similar bugs
    in the future.  Anything that tiggers caching of KVM's supported CPUID,
    kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
    the caching occurs before the test opts in via prctl().
 
 Documentation:
 
 * Remove deleted ioctls from documentation
 
 * Clean up the docs for the x86 MSR filter.
 
 * Various fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
 KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
 mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
 yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
 Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
 MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
 =QAYX
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM64:

   - Enable the per-vcpu dirty-ring tracking mechanism, together with an
     option to keep the good old dirty log around for pages that are
     dirtied by something other than a vcpu.

   - Switch to the relaxed parallel fault handling, using RCU to delay
     page table reclaim and giving better performance under load.

   - Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
     option, which multi-process VMMs such as crosvm rely on (see merge
     commit 382b5b87a9: "Fix a number of issues with MTE, such as
     races on the tags being initialised vs the PG_mte_tagged flag as
     well as the lack of support for VM_SHARED when KVM is involved.
     Patches from Catalin Marinas and Peter Collingbourne").

   - Merge the pKVM shadow vcpu state tracking that allows the
     hypervisor to have its own view of a vcpu, keeping that state
     private.

   - Add support for the PMUv3p5 architecture revision, bringing support
     for 64bit counters on systems that support it, and fix the
     no-quite-compliant CHAIN-ed counter support for the machines that
     actually exist out there.

   - Fix a handful of minor issues around 52bit VA/PA support (64kB
     pages only) as a prefix of the oncoming support for 4kB and 16kB
     pages.

   - Pick a small set of documentation and spelling fixes, because no
     good merge window would be complete without those.

  s390:

   - Second batch of the lazy destroy patches

   - First batch of KVM changes for kernel virtual != physical address
     support

   - Removal of a unused function

  x86:

   - Allow compiling out SMM support

   - Cleanup and documentation of SMM state save area format

   - Preserve interrupt shadow in SMM state save area

   - Respond to generic signals during slow page faults

   - Fixes and optimizations for the non-executable huge page errata
     fix.

   - Reprogram all performance counters on PMU filter change

   - Cleanups to Hyper-V emulation and tests

   - Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
     guest running on top of a L1 Hyper-V hypervisor)

   - Advertise several new Intel features

   - x86 Xen-for-KVM:

      - Allow the Xen runstate information to cross a page boundary

      - Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured

      - Add support for 32-bit guests in SCHEDOP_poll

   - Notable x86 fixes and cleanups:

      - One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).

      - Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
        a few years back when eliminating unnecessary barriers when
        switching between vmcs01 and vmcs02.

      - Clean up vmread_error_trampoline() to make it more obvious that
        params must be passed on the stack, even for x86-64.

      - Let userspace set all supported bits in MSR_IA32_FEAT_CTL
        irrespective of the current guest CPUID.

      - Fudge around a race with TSC refinement that results in KVM
        incorrectly thinking a guest needs TSC scaling when running on a
        CPU with a constant TSC, but no hardware-enumerated TSC
        frequency.

      - Advertise (on AMD) that the SMM_CTL MSR is not supported

      - Remove unnecessary exports

  Generic:

   - Support for responding to signals during page faults; introduces
     new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks

  Selftests:

   - Fix an inverted check in the access tracking perf test, and restore
     support for asserting that there aren't too many idle pages when
     running on bare metal.

   - Fix build errors that occur in certain setups (unsure exactly what
     is unique about the problematic setup) due to glibc overriding
     static_assert() to a variant that requires a custom message.

   - Introduce actual atomics for clear/set_bit() in selftests

   - Add support for pinning vCPUs in dirty_log_perf_test.

   - Rename the so called "perf_util" framework to "memstress".

   - Add a lightweight psuedo RNG for guest use, and use it to randomize
     the access pattern and write vs. read percentage in the memstress
     tests.

   - Add a common ucall implementation; code dedup and pre-work for
     running SEV (and beyond) guests in selftests.

   - Provide a common constructor and arch hook, which will eventually
     be used by x86 to automatically select the right hypercall (AMD vs.
     Intel).

   - A bunch of added/enabled/fixed selftests for ARM64, covering
     memslots, breakpoints, stage-2 faults and access tracking.

   - x86-specific selftest changes:

      - Clean up x86's page table management.

      - Clean up and enhance the "smaller maxphyaddr" test, and add a
        related test to cover generic emulation failure.

      - Clean up the nEPT support checks.

      - Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.

      - Fix an ordering issue in the AMX test introduced by recent
        conversions to use kvm_cpu_has(), and harden the code to guard
        against similar bugs in the future. Anything that tiggers
        caching of KVM's supported CPUID, kvm_cpu_has() in this case,
        effectively hides opt-in XSAVE features if the caching occurs
        before the test opts in via prctl().

  Documentation:

   - Remove deleted ioctls from documentation

   - Clean up the docs for the x86 MSR filter.

   - Various fixes"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
  KVM: x86: Add proper ReST tables for userspace MSR exits/flags
  KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
  KVM: arm64: selftests: Align VA space allocator with TTBR0
  KVM: arm64: Fix benign bug with incorrect use of VA_BITS
  KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
  KVM: x86: Advertise that the SMM_CTL MSR is not supported
  KVM: x86: remove unnecessary exports
  KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
  tools: KVM: selftests: Convert clear/set_bit() to actual atomics
  tools: Drop "atomic_" prefix from atomic test_and_set_bit()
  tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
  KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
  perf tools: Use dedicated non-atomic clear/set bit helpers
  tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
  KVM: arm64: selftests: Enable single-step without a "full" ucall()
  KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
  KVM: Remove stale comment about KVM_REQ_UNHALT
  KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
  KVM: Reference to kvm_userspace_memory_region in doc and comments
  KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
  ...
2022-12-15 11:12:21 -08:00
Marc Zyngier
118bc846d4 Merge branch kvm-arm64/pmu-unchained into kvmarm-master/next
* kvm-arm64/pmu-unchained:
  : .
  : PMUv3 fixes and improvements:
  :
  : - Make the CHAIN event handling strictly follow the architecture
  :
  : - Add support for PMUv3p5 (64bit counters all the way)
  :
  : - Various fixes and cleanups
  : .
  KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
  KVM: arm64: PMU: Sanitise PMCR_EL0.LP on first vcpu run
  KVM: arm64: PMU: Simplify PMCR_EL0 reset handling
  KVM: arm64: PMU: Replace version number '0' with ID_AA64DFR0_EL1_PMUVer_NI
  KVM: arm64: PMU: Make kvm_pmc the main data structure
  KVM: arm64: PMU: Simplify vcpu computation on perf overflow notification
  KVM: arm64: PMU: Allow PMUv3p5 to be exposed to the guest
  KVM: arm64: PMU: Implement PMUv3p5 long counter support
  KVM: arm64: PMU: Allow ID_DFR0_EL1.PerfMon to be set from userspace
  KVM: arm64: PMU: Allow ID_AA64DFR0_EL1.PMUver to be set from userspace
  KVM: arm64: PMU: Move the ID_AA64DFR0_EL1.PMUver limit to VM creation
  KVM: arm64: PMU: Do not let AArch32 change the counters' top 32 bits
  KVM: arm64: PMU: Simplify setting a counter to a specific value
  KVM: arm64: PMU: Add counter_index_to_*reg() helpers
  KVM: arm64: PMU: Only narrow counters that are not 64bit wide
  KVM: arm64: PMU: Narrow the overflow checking when required
  KVM: arm64: PMU: Distinguish between 64bit counter and 64bit overflow
  KVM: arm64: PMU: Always advertise the CHAIN event
  KVM: arm64: PMU: Align chained counter implementation with architecture pseudocode
  arm64: Add ID_DFR0_EL1.PerfMon values for PMUv3p7 and IMP_DEF

Signed-off-by: Marc Zyngier <maz@kernel.org>
2022-12-05 14:38:44 +00:00
Mark Brown
baa8515281 arm64/fpsimd: Track the saved FPSIMD state type separately to TIF_SVE
When we save the state for the floating point registers this can be done
in the form visible through either the FPSIMD V registers or the SVE Z and
P registers. At present we track which format is currently used based on
TIF_SVE and the SME streaming mode state but particularly in the SVE case
this limits our options for optimising things, especially around syscalls.
Introduce a new enum which we place together with saved floating point
state in both thread_struct and the KVM guest state which explicitly
states which format is active and keep it up to date when we change it.

At present we do not use this state except to verify that it has the
expected value when loading the state, future patches will introduce
functional changes.

Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221115094640.112848-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2022-11-29 15:01:56 +00:00
Marc Zyngier
3d0dba5764 KVM: arm64: PMU: Move the ID_AA64DFR0_EL1.PMUver limit to VM creation
As further patches will enable the selection of a PMU revision
from userspace, sample the supported PMU revision at VM creation
time, rather than building each time the ID_AA64DFR0_EL1 register
is accessed.

This shouldn't result in any change in behaviour.

Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221113163832.3154370-11-maz@kernel.org
2022-11-19 12:56:39 +00:00
Quentin Perret
f41dff4efb KVM: arm64: Return guest memory from EL2 via dedicated teardown memcache
Rather than relying on the host to free the previously-donated pKVM
hypervisor VM pages explicitly on teardown, introduce a dedicated
teardown memcache which allows the host to reclaim guest memory
resources without having to keep track of all of the allocations made by
the pKVM hypervisor at EL2.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Co-developed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
[maz: dropped __maybe_unused from unmap_donated_memory_noclear()]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-21-will@kernel.org
2022-11-11 17:18:58 +00:00
Quentin Perret
315775ff7c KVM: arm64: Consolidate stage-2 initialisation into a single function
The initialisation of guest stage-2 page-tables is currently split
across two functions: kvm_init_stage2_mmu() and kvm_arm_setup_stage2().
That is presumably for historical reasons as kvm_arm_setup_stage2()
originates from the (now defunct) KVM port for 32-bit Arm.

Simplify this code path by merging both functions into one, taking care
to map the 'struct kvm' into the hypervisor stage-1 early on in order to
simplify the failure path.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Co-developed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-19-will@kernel.org
2022-11-11 17:16:25 +00:00
Quentin Perret
717a7eebac KVM: arm64: Add generic hyp_memcache helpers
The host at EL1 and the pKVM hypervisor at EL2 will soon need to
exchange memory pages dynamically for creating and destroying VM state.

Indeed, the hypervisor will rely on the host to donate memory pages it
can use to create guest stage-2 page-tables and to store VM and vCPU
metadata. In order to ease this process, introduce a
'struct hyp_memcache' which is essentially a linked list of available
pages, indexed by physical addresses so that it can be passed
meaningfully between the different virtual address spaces configured at
EL1 and EL2.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-18-will@kernel.org
2022-11-11 17:16:25 +00:00
Fuad Tabba
9d0c063a4d KVM: arm64: Instantiate pKVM hypervisor VM and vCPU structures from EL1
With the pKVM hypervisor at EL2 now offering hypercalls to the host for
creating and destroying VM and vCPU structures, plumb these in to the
existing arm64 KVM backend to ensure that the hypervisor data structures
are allocated and initialised on first vCPU run for a pKVM guest.

In the host, 'struct kvm_protected_vm' is introduced to hold the handle
of the pKVM VM instance as well as to track references to the memory
donated to the hypervisor so that it can be freed back to the host
allocator following VM teardown. The stage-2 page-table, hypervisor VM
and vCPU structures are allocated separately so as to avoid the need for
a large physically-contiguous allocation in the host at run-time.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-14-will@kernel.org
2022-11-11 17:16:24 +00:00
Fuad Tabba
a1ec5c70d3 KVM: arm64: Add infrastructure to create and track pKVM instances at EL2
Introduce a global table (and lock) to track pKVM instances at EL2, and
provide hypercalls that can be used by the untrusted host to create and
destroy pKVM VMs and their vCPUs. pKVM VM/vCPU state is directly
accessible only by the trusted hypervisor (EL2).

Each pKVM VM is directly associated with an untrusted host KVM instance,
and is referenced by the host using an opaque handle. Future patches
will provide hypercalls to allow the host to initialize/set/get pKVM
VM/vCPU state using the opaque handle.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Co-developed-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
[maz: silence warning on unmap_donated_memory_noclear()]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-13-will@kernel.org
2022-11-11 17:16:05 +00:00
Reiji Watanabe
370531d1e9 KVM: arm64: Clear PSTATE.SS when the Software Step state was Active-pending
While userspace enables single-step, if the Software Step state at the
last guest exit was "Active-pending", clear PSTATE.SS on guest entry
to restore the state.

Currently, KVM sets PSTATE.SS to 1 on every guest entry while userspace
enables single-step for the vCPU (with KVM_GUESTDBG_SINGLESTEP).
It means KVM always makes the vCPU's Software Step state
"Active-not-pending" on the guest entry, which lets the VCPU perform
single-step (then Software Step exception is taken). This could cause
extra single-step (without returning to userspace) if the Software Step
state at the last guest exit was "Active-pending" (i.e. the last
exit was triggered by an asynchronous exception after the single-step
is performed, but before the Software Step exception is taken.
See "Figure D2-3 Software step state machine" and "D2.12.7 Behavior
in the active-pending state" in ARM DDI 0487I.a for more info about
this behavior).

Fix this by clearing PSTATE.SS on guest entry if the Software Step state
at the last exit was "Active-pending" so that KVM restore the state (and
the exception is taken before further single-step is performed).

Fixes: 337b99bf7e ("KVM: arm64: guest debug, add support for single-step")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220917010600.532642-3-reijiw@google.com
2022-09-19 10:48:53 +01:00
Reiji Watanabe
34fbdee086 KVM: arm64: Preserve PSTATE.SS for the guest while single-step is enabled
Preserve the PSTATE.SS value for the guest while userspace enables
single-step (i.e. while KVM manipulates the PSTATE.SS) for the vCPU.

Currently, while userspace enables single-step for the vCPU
(with KVM_GUESTDBG_SINGLESTEP), KVM sets PSTATE.SS to 1 on every
guest entry, not saving its original value.
When userspace disables single-step, KVM doesn't restore the original
value for the subsequent guest entry (use the current value instead).
Exception return instructions copy PSTATE.SS from SPSR_ELx.SS
only in certain cases when single-step is enabled (and set it to 0
in other cases). So, the value matters only when the guest enables
single-step (and when the guest's Software step state isn't affected
by single-step enabled by userspace, practically), though.

Fix this by preserving the original PSTATE.SS value while userspace
enables single-step, and restoring the value once it is disabled.

This fix modifies the behavior of GET_ONE_REG/SET_ONE_REG for the
PSTATE.SS while single-step is enabled by userspace.
Presently, GET_ONE_REG/SET_ONE_REG gets/sets the current PSTATE.SS
value, which KVM will override on the next guest entry (i.e. the
value userspace gets/sets is not used for the next guest entry).
With this patch, GET_ONE_REG/SET_ONE_REG will get/set the guest's
preserved value, which KVM will preserve and try to restore after
single-step is disabled.

Fixes: 337b99bf7e ("KVM: arm64: guest debug, add support for single-step")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220917010600.532642-2-reijiw@google.com
2022-09-19 10:48:53 +01:00
Oliver Upton
f3c6efc72f KVM: arm64: Treat PMCR_EL1.LC as RES1 on asymmetric systems
KVM does not support AArch32 on asymmetric systems. To that end, enforce
AArch64-only behavior on PMCR_EL1.LC when on an asymmetric system.

Fixes: 2122a83331 ("arm64: Allow mismatched 32-bit EL0 support")
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220816192554.1455559-2-oliver.upton@linux.dev
2022-08-17 10:29:07 +01:00
Marc Zyngier
ae98a4a989 Merge branch kvm-arm64/sysreg-cleanup-5.20 into kvmarm-master/next
* kvm-arm64/sysreg-cleanup-5.20:
  : .
  : Long overdue cleanup of the sysreg userspace access,
  : with extra scrubbing on the vgic side of things.
  : From the cover letter:
  :
  : "Schspa Shi recently reported[1] that some of the vgic code interacting
  : with userspace was reading uninitialised stack memory, and although
  : that read wasn't used any further, it prompted me to revisit this part
  : of the code.
  :
  : Needless to say, this area of the kernel is pretty crufty, and shows a
  : bunch of issues in other parts of the KVM/arm64 infrastructure. This
  : series tries to remedy a bunch of them:
  :
  : - Sanitise the way we deal with sysregs from userspace: at the moment,
  :   each and every .set_user/.get_user callback has to implement its own
  :   userspace accesses (directly or indirectly). It'd be much better if
  :   that was centralised so that we can reason about it.
  :
  : - Enforce that all AArch64 sysregs are 64bit. Always. This was sort of
  :   implied by the code, but it took some effort to convince myself that
  :   this was actually the case.
  :
  : - Move the vgic-v3 sysreg userspace accessors to the userspace
  :   callbacks instead of hijacking the vcpu trap callback. This allows
  :   us to reuse the sysreg infrastructure.
  :
  : - Consolidate userspace accesses for both GICv2, GICv3 and common code
  :   as much as possible.
  :
  : - Cleanup a bunch of not-very-useful helpers, tidy up some of the code
  :   as we touch it.
  :
  : [1] https://lore.kernel.org/r/m2h740zz1i.fsf@gmail.com"
  : .
  KVM: arm64: Get rid or outdated comments
  KVM: arm64: Descope kvm_arm_sys_reg_{get,set}_reg()
  KVM: arm64: Get rid of find_reg_by_id()
  KVM: arm64: vgic: Tidy-up calls to vgic_{get,set}_common_attr()
  KVM: arm64: vgic: Consolidate userspace access for base address setting
  KVM: arm64: vgic-v2: Add helper for legacy dist/cpuif base address setting
  KVM: arm64: vgic: Use {get,put}_user() instead of copy_{from.to}_user
  KVM: arm64: vgic-v2: Consolidate userspace access for MMIO registers
  KVM: arm64: vgic-v3: Consolidate userspace access for MMIO registers
  KVM: arm64: vgic-v3: Use u32 to manage the line level from userspace
  KVM: arm64: vgic-v3: Convert userspace accessors over to FIELD_GET/FIELD_PREP
  KVM: arm64: vgic-v3: Make the userspace accessors use sysreg API
  KVM: arm64: vgic-v3: Push user access into vgic_v3_cpu_sysregs_uaccess()
  KVM: arm64: vgic-v3: Simplify vgic_v3_has_cpu_sysregs_attr()
  KVM: arm64: Get rid of reg_from/to_user()
  KVM: arm64: Consolidate sysreg userspace accesses
  KVM: arm64: Rely on index_to_param() for size checks on userspace access
  KVM: arm64: Introduce generic get_user/set_user helpers for system registers
  KVM: arm64: Reorder handling of invariant sysregs from userspace
  KVM: arm64: Add get_reg_by_id() as a sys_reg_desc retrieving helper

Signed-off-by: Marc Zyngier <maz@kernel.org>
2022-07-17 11:55:58 +01:00