mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
3 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
5a897531e0 |
perf bpf_skel: Do not use typedef to avoid error on old clang
When building bpf_skel with clang-10, typedef causes confusions like:
libbpf: map 'prev_readings': unexpected def kind var.
Fix this by removing the typedef.
Fixes:
|
||
![]() |
f7c4e85bcc |
perf bpf: Fix building perf with BUILD_BPF_SKEL=1 by default in more distros
Arnaldo reported that building all his containers with BUILD_BPF_SKEL=1 to then make this the default he found problems in some distros where the system linux/bpf.h file was being used and lacked this: util/bpf_skel/bperf_leader.bpf.c:13:20: error: use of undeclared identifier 'BPF_F_PRESERVE_ELEMS' __uint(map_flags, BPF_F_PRESERVE_ELEMS); So use instead the vmlinux.h file generated by bpftool from BTF info. This fixed these as well, getting the build back working on debian:11, debian:experimental and ubuntu:21.10: In file included from In file included from util/bpf_skel/bperf_leader.bpf.cutil/bpf_skel/bpf_prog_profiler.bpf.c::33: : In file included from In file included from /usr/include/linux/bpf.h/usr/include/linux/bpf.h::1111: : /usr/include/linux/types.h/usr/include/linux/types.h::55::1010:: In file included from util/bpf_skel/bperf_follower.bpf.c:3fatal errorfatal error: : : In file included from /usr/include/linux/bpf.h:'asm/types.h' file not found11'asm/types.h' file not found: /usr/include/linux/types.h:5:10: fatal error: 'asm/types.h' file not found #include <asm/types.h>#include <asm/types.h> ^~~~~~~~~~~~~ ^~~~~~~~~~~~~ #include <asm/types.h> ^~~~~~~~~~~~~ 1 error generated. Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Song Liu <song@kernel.org> Tested-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Link: http://lore.kernel.org/lkml/CF175681-8101-43D1-ABDB-449E644BE986@fb.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
![]() |
7fac83aaf2 |
perf stat: Introduce 'bperf' to share hardware PMCs with BPF
The perf tool uses performance monitoring counters (PMCs) to monitor
system performance. The PMCs are limited hardware resources. For
example, Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
Modern data center systems use these PMCs in many different ways: system
level monitoring, (maybe nested) container level monitoring, per process
monitoring, profiling (in sample mode), etc. In some cases, there are
more active perf_events than available hardware PMCs. To allow all
perf_events to have a chance to run, it is necessary to do expensive
time multiplexing of events.
On the other hand, many monitoring tools count the common metrics
(cycles, instructions). It is a waste to have multiple tools create
multiple perf_events of "cycles" and occupy multiple PMCs.
bperf tries to reduce such wastes by allowing multiple perf_events of
"cycles" or "instructions" (at different scopes) to share PMUs. Instead
of having each perf-stat session to read its own perf_events, bperf uses
BPF programs to read the perf_events and aggregate readings to BPF maps.
Then, the perf-stat session(s) reads the values from these BPF maps.
Please refer to the comment before the definition of bperf_ops for the
description of bperf architecture.
bperf is off by default. To enable it, pass --bpf-counters option to
perf-stat. bperf uses a BPF hashmap to share information about BPF
programs and maps used by bperf. This map is pinned to bpffs. The
default path is /sys/fs/bpf/perf_attr_map. The user could change the
path with option --bpf-attr-map.
Committer testing:
# dmesg|grep "Performance Events" -A5
[ 0.225277] Performance Events: Fam17h+ core perfctr, AMD PMU driver.
[ 0.225280] ... version: 0
[ 0.225280] ... bit width: 48
[ 0.225281] ... generic registers: 6
[ 0.225281] ... value mask: 0000ffffffffffff
[ 0.225281] ... max period: 00007fffffffffff
#
# for a in $(seq 6) ; do perf stat -a -e cycles,instructions sleep 100000 & done
[1] 2436231
[2] 2436232
[3] 2436233
[4] 2436234
[5] 2436235
[6] 2436236
# perf stat -a -e cycles,instructions sleep 0.1
Performance counter stats for 'system wide':
310,326,987 cycles (41.87%)
236,143,290 instructions # 0.76 insn per cycle (41.87%)
0.100800885 seconds time elapsed
#
We can see that the counters were enabled for this workload 41.87% of
the time.
Now with --bpf-counters:
# for a in $(seq 32) ; do perf stat --bpf-counters -a -e cycles,instructions sleep 100000 & done
[1] 2436514
[2] 2436515
[3] 2436516
[4] 2436517
[5] 2436518
[6] 2436519
[7] 2436520
[8] 2436521
[9] 2436522
[10] 2436523
[11] 2436524
[12] 2436525
[13] 2436526
[14] 2436527
[15] 2436528
[16] 2436529
[17] 2436530
[18] 2436531
[19] 2436532
[20] 2436533
[21] 2436534
[22] 2436535
[23] 2436536
[24] 2436537
[25] 2436538
[26]
|