* kvm-arm64/pkvm-fixed-features-prologue:
: Rework a bunch of common infrastructure as a prologue
: to Fuad Tabba's protected VM fixed feature series.
KVM: arm64: Upgrade trace_kvm_arm_set_dreg32() to 64bit
KVM: arm64: Add config register bit definitions
KVM: arm64: Add feature register flag definitions
KVM: arm64: Track value of cptr_el2 in struct kvm_vcpu_arch
KVM: arm64: Keep mdcr_el2's value as set by __init_el2_debug
KVM: arm64: Restore mdcr_el2 from vcpu
KVM: arm64: Refactor sys_regs.h,c for nVHE reuse
KVM: arm64: Fix names of config register fields
KVM: arm64: MDCR_EL2 is a 64-bit register
KVM: arm64: Remove trailing whitespace in comment
KVM: arm64: placeholder to check if VM is protected
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/mmu/vmid-cleanups:
: Cleanup the stage-2 configuration by providing a single helper,
: and tidy up some of the ordering requirements for the VMID
: allocator.
KVM: arm64: Upgrade VMID accesses to {READ,WRITE}_ONCE
KVM: arm64: Unify stage-2 programming behind __load_stage2()
KVM: arm64: Move kern_hyp_va() usage in __load_guest_stage2() into the callers
Signed-off-by: Marc Zyngier <maz@kernel.org>
Switch KVM/arm64 to the generic entry code, courtesy of Oliver Upton
* kvm-arm64/generic-entry:
KVM: arm64: Use generic KVM xfer to guest work function
entry: KVM: Allow use of generic KVM entry w/o full generic support
KVM: arm64: Record number of signal exits as a vCPU stat
Signed-off-by: Marc Zyngier <maz@kernel.org>
PSCI fixes from Oliver Upton:
- Plug race on reset
- Ensure that a pending reset is applied before userspace accesses
- Reject PSCI requests with illegal affinity bits
* kvm-arm64/psci/cpu_on:
selftests: KVM: Introduce psci_cpu_on_test
KVM: arm64: Enforce reserved bits for PSCI target affinities
KVM: arm64: Handle PSCI resets before userspace touches vCPU state
KVM: arm64: Fix read-side race on updates to vcpu reset state
Signed-off-by: Marc Zyngier <maz@kernel.org>
Prevent kmemleak from peeking into the HYP data, which is fatal
in protected mode.
* kvm-arm64/mmu/kmemleak-pkvm:
KVM: arm64: Unregister HYP sections from kmemleak in protected mode
arm64: Move .hyp.rodata outside of the _sdata.._edata range
Signed-off-by: Marc Zyngier <maz@kernel.org>
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmEWEsoPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD1IIQAIbZdNAIy68j2/H8sgaYT4GuYICLOvz3WhTI
Li/yRP2b0th4wT4LaKlATKJKQgliPxXZ0KCJMZxFr7aiKEyY1LZe+ddJBzetzgy2
S12v5V3cp/0DHQ6CEflUy0x8gM/BeudeYyZcHxSbLZcVB4bzFx9pBJeJ1WkLG+GC
Bx4zxdARNas+9zOUuHLCQbWfihMSrbj3CI6WIafpNeFOs3lLldT8WcRofgQfAsAx
V3FKETIOb5NUU6LKUHkYgyM3n1MZwAukaCsepDhayeeT5iEyIGXb1HkjcYOx6bfn
BhDvA7PH9oXBOFFL2sxlJKamXWZP3Bz7xyZ40MXDqC1lSMAUEh8TXJFptncEDxPb
OgXewTgCulKVSjT8YXnoTe1UNQ2dLqjw1TsqV5jXhVXIjeBcR8S4gM0hcqwvgWlO
BHaDt8BPd39rBzfC0gUkE5BHE04QuboK/Vz/+Qc6Slc3EUIdnuCtjefdRLvSxxgB
bEBW+s3zcZ7RhoSLvXgvTe3an11Os8BH921VCxgMyEnIvSDEbw3KypmPYuNCkSLc
t9GLAbPU139w7Gk7vp0oqhI8xIV7QoFk+b94JIHMvtS13yVaqBrZF33RrFzmAwVN
lXDiOdoR8mqbX2EPQVIn+BhSlebfvnJANm46tzgY1/u2mUgH//fu/cH3kpjgohco
kY+Ztnb9
=hL2s
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.14-2' into kvm-arm64/mmu/el2-tracking
KVM/arm64 fixes for 5.14, take #2
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
Signed-off-by: Marc Zyngier <maz@kernel.org>
Track the baseline guest value for cptr_el2 in struct
kvm_vcpu_arch, similar to the other registers that control traps.
Use this value when setting cptr_el2 for the guest.
Currently this value is unchanged (CPTR_EL2_DEFAULT), but future
patches will set trapping bits based on features supported for
the guest.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-9-tabba@google.com
Since TLB invalidation can run in parallel with VMID allocation,
we need to be careful and avoid any sort of load/store tearing.
Use {READ,WRITE}_ONCE consistently to avoid any surprise.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jade Alglave <jade.alglave@arm.com>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210806113109.2475-6-will@kernel.org
Clean up handling of checks for pending work by switching to the generic
infrastructure to do so.
We pick up handling for TIF_NOTIFY_RESUME from this switch, meaning that
task work will be correctly handled.
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210802192809.1851010-4-oupton@google.com
Most other architectures that implement KVM record a statistic
indicating the number of times a vCPU has exited due to a pending
signal. Add support for that stat to arm64.
Reviewed-by: Jing Zhang <jingzhangos@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210802192809.1851010-2-oupton@google.com
The CPU_ON PSCI call takes a payload that KVM uses to configure a
destination vCPU to run. This payload is non-architectural state and not
exposed through any existing UAPI. Effectively, we have a race between
CPU_ON and userspace saving/restoring a guest: if the target vCPU isn't
ran again before the VMM saves its state, the requested PC and context
ID are lost. When restored, the target vCPU will be runnable and start
executing at its old PC.
We can avoid this race by making sure the reset payload is serviced
before userspace can access a vCPU's state.
Fixes: 358b28f09f ("arm/arm64: KVM: Allow a VCPU to fully reset itself")
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210818202133.1106786-3-oupton@google.com
kvm_target_cpu() never returns a negative error code, so check_kvm_target()
would never have 'ret' filled with a negative error code. Hence the percpu
probe via check_kvm_target_cpu() does not make sense as its never going to
find an unsupported CPU, forcing kvm_arch_init() to exit early. Hence lets
just drop this percpu probe (and also check_kvm_target_cpu()) altogether.
While here, this also changes kvm_target_cpu() return type to a u32, making
it explicit that an error code will not be returned from this function.
Cc: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-kernel@vger.kernel.org
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/1628744994-16623-5-git-send-email-anshuman.khandual@arm.com
Now that we mark memory owned by the hypervisor in the host stage-2
during __pkvm_init(), we no longer need to rely on the host to
explicitly mark the hyp sections later on.
Remove the __pkvm_mark_hyp() hypercall altogether.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-19-qperret@google.com
Booting a KVM host in protected mode with kmemleak quickly results
in a pretty bad crash, as kmemleak doesn't know that the HYP sections
have been taken away. This is specially true for the BSS section,
which is part of the kernel BSS section and registered at boot time
by kmemleak itself.
Unregister the HYP part of the BSS before making that section
HYP-private. The rest of the HYP-specific data is obtained via
the page allocator or lives in other sections, none of which is
subjected to kmemleak.
Fixes: 90134ac9ca ("KVM: arm64: Protect the .hyp sections from the host")
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org # 5.13
Link: https://lore.kernel.org/r/20210802123830.2195174-3-maz@kernel.org
When enabling KVM_CAP_ARM_MTE the ioctl checks that there are no VCPUs
created to ensure that the capability is enabled before the VM is
running. However no locks are held at that point so it is
(theoretically) possible for another thread in the VMM to create VCPUs
between the check and actually setting mte_enabled. Close the race by
taking kvm->lock.
Reported-by: Alexandru Elisei <alexandru.elisei@arm.com>
Fixes: 673638f434 ("KVM: arm64: Expose KVM_ARM_CAP_MTE")
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210729160036.20433-1-steven.price@arm.com
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of live migration
- Support for initializing the PDPTRs without loading them from memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this has
been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
+/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
=NcRh
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This covers all architectures (except MIPS) so I don't expect any
other feature pull requests this merge window.
ARM:
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration and
apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical
address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of
live migration
- Support for initializing the PDPTRs without loading them from
memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this
has been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM
registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
on AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
kvm: x86: disable the narrow guest module parameter on unload
selftests: kvm: Allows userspace to handle emulation errors.
kvm: x86: Allow userspace to handle emulation errors
KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
KVM: x86: Enhance comments for MMU roles and nested transition trickiness
KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
KVM: x86/mmu: Use MMU's role to determine PTTYPE
KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
KVM: x86/mmu: Add a helper to calculate root from role_regs
KVM: x86/mmu: Add helper to update paging metadata
KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
KVM: x86/mmu: Get nested MMU's root level from the MMU's role
...
- Optimise SVE switching for CPUs with 128-bit implementations.
- Fix output format from SVE selftest.
- Add support for versions v1.2 and 1.3 of the SMC calling convention.
- Allow Pointer Authentication to be configured independently for
kernel and userspace.
- PMU driver cleanups for managing IRQ affinity and exposing event
attributes via sysfs.
- KASAN optimisations for both hardware tagging (MTE) and out-of-line
software tagging implementations.
- Relax frame record alignment requirements to facilitate 8-byte
alignment with KASAN and Clang.
- Cleanup of page-table definitions and removal of unused memory types.
- Reduction of ARCH_DMA_MINALIGN back to 64 bytes.
- Refactoring of our instruction decoding routines and addition of some
missing encodings.
- Move entry code moved into C and hardened against harmful compiler
instrumentation.
- Update booting requirements for the FEAT_HCX feature, added to v8.7
of the architecture.
- Fix resume from idle when pNMI is being used.
- Additional CPU sanity checks for MTE and preparatory changes for
systems where not all of the CPUs support 32-bit EL0.
- Update our kernel string routines to the latest Cortex Strings
implementation.
- Big cleanup of our cache maintenance routines, which were confusingly
named and inconsistent in their implementations.
- Tweak linker flags so that GDB can understand vmlinux when using RELR
relocations.
- Boot path cleanups to enable early initialisation of per-cpu
operations needed by KCSAN.
- Non-critical fixes and miscellaneous cleanup.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmDUh1YQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNDaUCAC+2Jy2Yopd94uBPYajGybM0rqCUgE7b5n1
A7UzmQ6fia2hwqCPmxGG+sRabovwN7C1bKrUCc03RIbErIa7wum1edeyqmF/Aw44
DUDY1MAOSZaFmX8L62QCvxG1hfdLPtGmHMd1hdXvxYK7PCaigEFnzbLRWTtgE+Ok
JhdvNfsoeITJObHnvYPF3rV3NAbyYni9aNJ5AC/qb3dlf6XigEraXaMj29XHKfwc
+vmn+25oqFkLHyFeguqIoK+vUQAy/8TjFfjX83eN3LZknNhDJgWS1Iq1Nm+Vxt62
RvDUUecWJjAooCWgmil6pt0enI+q6E8LcX3A3cWWrM6psbxnYzkU
=I6KS
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"There's a reasonable amount here and the juicy details are all below.
It's worth noting that the MTE/KASAN changes strayed outside of our
usual directories due to core mm changes and some associated changes
to some other architectures; Andrew asked for us to carry these [1]
rather that take them via the -mm tree.
Summary:
- Optimise SVE switching for CPUs with 128-bit implementations.
- Fix output format from SVE selftest.
- Add support for versions v1.2 and 1.3 of the SMC calling
convention.
- Allow Pointer Authentication to be configured independently for
kernel and userspace.
- PMU driver cleanups for managing IRQ affinity and exposing event
attributes via sysfs.
- KASAN optimisations for both hardware tagging (MTE) and out-of-line
software tagging implementations.
- Relax frame record alignment requirements to facilitate 8-byte
alignment with KASAN and Clang.
- Cleanup of page-table definitions and removal of unused memory
types.
- Reduction of ARCH_DMA_MINALIGN back to 64 bytes.
- Refactoring of our instruction decoding routines and addition of
some missing encodings.
- Move entry code moved into C and hardened against harmful compiler
instrumentation.
- Update booting requirements for the FEAT_HCX feature, added to v8.7
of the architecture.
- Fix resume from idle when pNMI is being used.
- Additional CPU sanity checks for MTE and preparatory changes for
systems where not all of the CPUs support 32-bit EL0.
- Update our kernel string routines to the latest Cortex Strings
implementation.
- Big cleanup of our cache maintenance routines, which were
confusingly named and inconsistent in their implementations.
- Tweak linker flags so that GDB can understand vmlinux when using
RELR relocations.
- Boot path cleanups to enable early initialisation of per-cpu
operations needed by KCSAN.
- Non-critical fixes and miscellaneous cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (150 commits)
arm64: tlb: fix the TTL value of tlb_get_level
arm64: Restrict undef hook for cpufeature registers
arm64/mm: Rename ARM64_SWAPPER_USES_SECTION_MAPS
arm64: insn: avoid circular include dependency
arm64: smp: Bump debugging information print down to KERN_DEBUG
drivers/perf: fix the missed ida_simple_remove() in ddr_perf_probe()
perf/arm-cmn: Fix invalid pointer when access dtc object sharing the same IRQ number
arm64: suspend: Use cpuidle context helpers in cpu_suspend()
PSCI: Use cpuidle context helpers in psci_cpu_suspend_enter()
arm64: Convert cpu_do_idle() to using cpuidle context helpers
arm64: Add cpuidle context save/restore helpers
arm64: head: fix code comments in set_cpu_boot_mode_flag
arm64: mm: drop unused __pa(__idmap_text_start)
arm64: mm: fix the count comments in compute_indices
arm64/mm: Fix ttbr0 values stored in struct thread_info for software-pan
arm64: mm: Pass original fault address to handle_mm_fault()
arm64/mm: Drop SECTION_[SHIFT|SIZE|MASK]
arm64/mm: Use CONT_PMD_SHIFT for ARM64_MEMSTART_SHIFT
arm64/mm: Drop SWAPPER_INIT_MAP_SIZE
arm64: Conditionally configure PTR_AUTH key of the kernel.
...
Additional CPU sanity checks for MTE and preparatory changes for systems
where not all of the CPUs support 32-bit EL0.
* for-next/cpufeature:
arm64: Restrict undef hook for cpufeature registers
arm64: Kill 32-bit applications scheduled on 64-bit-only CPUs
KVM: arm64: Kill 32-bit vCPUs on systems with mismatched EL0 support
arm64: Allow mismatched 32-bit EL0 support
arm64: cpuinfo: Split AArch32 registers out into a separate struct
arm64: Check if GMID_EL1.BS is the same on all CPUs
arm64: Change the cpuinfo_arm64 member type for some sysregs to u64
KVM/arm64 support for MTE, courtesy of Steven Price.
It allows the guest to use memory tagging, and offers
a new userspace API to save/restore the tags.
* kvm-arm64/mmu/mte:
KVM: arm64: Document MTE capability and ioctl
KVM: arm64: Add ioctl to fetch/store tags in a guest
KVM: arm64: Expose KVM_ARM_CAP_MTE
KVM: arm64: Save/restore MTE registers
KVM: arm64: Introduce MTE VM feature
arm64: mte: Sync tags for pages where PTE is untagged
Signed-off-by: Marc Zyngier <maz@kernel.org>
The VMM may not wish to have it's own mapping of guest memory mapped
with PROT_MTE because this causes problems if the VMM has tag checking
enabled (the guest controls the tags in physical RAM and it's unlikely
the tags are correct for the VMM).
Instead add a new ioctl which allows the VMM to easily read/write the
tags from guest memory, allowing the VMM's mapping to be non-PROT_MTE
while the VMM can still read/write the tags for the purpose of
migration.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210621111716.37157-6-steven.price@arm.com
It's now safe for the VMM to enable MTE in a guest, so expose the
capability to user space.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210621111716.37157-5-steven.price@arm.com
arm64 cache management function cleanup from Fuad Tabba,
shared with the arm64 tree.
* arm64/for-next/caches:
arm64: Rename arm64-internal cache maintenance functions
arm64: Fix cache maintenance function comments
arm64: sync_icache_aliases to take end parameter instead of size
arm64: __clean_dcache_area_pou to take end parameter instead of size
arm64: __clean_dcache_area_pop to take end parameter instead of size
arm64: __clean_dcache_area_poc to take end parameter instead of size
arm64: __flush_dcache_area to take end parameter instead of size
arm64: dcache_by_line_op to take end parameter instead of size
arm64: __inval_dcache_area to take end parameter instead of size
arm64: Fix comments to refer to correct function __flush_icache_range
arm64: Move documentation of dcache_by_line_op
arm64: assembler: remove user_alt
arm64: Downgrade flush_icache_range to invalidate
arm64: Do not enable uaccess for invalidate_icache_range
arm64: Do not enable uaccess for flush_icache_range
arm64: Apply errata to swsusp_arch_suspend_exit
arm64: assembler: add conditional cache fixups
arm64: assembler: replace `kaddr` with `addr`
Signed-off-by: Marc Zyngier <maz@kernel.org>
Restoring a guest with an active virtual PMU results in no perf
counters being instanciated on the host side. Not quite what
you'd expect from a restore.
In order to fix this, force a writeback of PMCR_EL0 on the first
run of a vcpu (using a new request so that it happens once the
vcpu has been loaded). This will in turn create all the host-side
counters that were missing.
Reported-by: Jinank Jain <jinankj@amazon.de>
Tested-by: Jinank Jain <jinankj@amazon.de>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/87wnrbylxv.wl-maz@kernel.org
Link: https://lore.kernel.org/r/b53dfcf9bbc4db7f96154b1cd5188d72b9766358.camel@amazon.de
If a vCPU is caught running 32-bit code on a system with mismatched
support at EL0, then we should kill it.
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210608180313.11502-4-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Commit 26778aaa13 ("KVM: arm64: Commit pending PC adjustemnts before
returning to userspace") fixed the PC updating issue by forcing an explicit
synchronisation of the exception state on vcpu exit to userspace.
However, we forgot to take into account the case where immediate_exit is
set by userspace and KVM_RUN will exit immediately. Fix it by resolving all
pending PC updates before returning to userspace.
Since __kvm_adjust_pc() relies on a loaded vcpu context, I moved the
immediate_exit checking right after vcpu_load(). We will get some overhead
if immediate_exit is true (which should hopefully be rare).
Fixes: 26778aaa13 ("KVM: arm64: Commit pending PC adjustemnts before returning to userspace")
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210526141831.1662-1-yuzenghui@huawei.com
Cc: stable@vger.kernel.org # 5.11
Although naming across the codebase isn't that consistent, it
tends to follow certain patterns. Moreover, the term "flush"
isn't defined in the Arm Architecture reference manual, and might
be interpreted to mean clean, invalidate, or both for a cache.
Rename arm64-internal functions to make the naming internally
consistent, as well as making it consistent with the Arm ARM, by
specifying whether it applies to the instruction, data, or both
caches, whether the operation is a clean, invalidate, or both.
Also specify which point the operation applies to, i.e., to the
point of unification (PoU), coherency (PoC), or persistence
(PoP).
This commit applies the following sed transformation to all files
under arch/arm64:
"s/\b__flush_cache_range\b/caches_clean_inval_pou_macro/g;"\
"s/\b__flush_icache_range\b/caches_clean_inval_pou/g;"\
"s/\binvalidate_icache_range\b/icache_inval_pou/g;"\
"s/\b__flush_dcache_area\b/dcache_clean_inval_poc/g;"\
"s/\b__inval_dcache_area\b/dcache_inval_poc/g;"\
"s/__clean_dcache_area_poc\b/dcache_clean_poc/g;"\
"s/\b__clean_dcache_area_pop\b/dcache_clean_pop/g;"\
"s/\b__clean_dcache_area_pou\b/dcache_clean_pou/g;"\
"s/\b__flush_cache_user_range\b/caches_clean_inval_user_pou/g;"\
"s/\b__flush_icache_all\b/icache_inval_all_pou/g;"
Note that __clean_dcache_area_poc is deliberately missing a word
boundary check at the beginning in order to match the efistub
symbols in image-vars.h.
Also note that, despite its name, __flush_icache_range operates
on both instruction and data caches. The name change here
reflects that.
No functional change intended.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210524083001.2586635-19-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
KVM currently updates PC (and the corresponding exception state)
using a two phase approach: first by setting a set of flags,
then by converting these flags into a state update when the vcpu
is about to enter the guest.
However, this creates a disconnect with userspace if the vcpu thread
returns there with any exception/PC flag set. In this case, the exposed
context is wrong, as userspace doesn't have access to these flags
(they aren't architectural). It also means that these flags are
preserved across a reset, which isn't expected.
To solve this problem, force an explicit synchronisation of the
exception state on vcpu exit to userspace. As an optimisation
for nVHE systems, only perform this when there is something pending.
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Tested-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org # 5.11
New features:
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
- Alexandru is now a reviewer (not really a new feature...)
Fixes:
- Proper emulation of the GICR_TYPER register
- Handle the complete set of relocation in the nVHE EL2 object
- Get rid of the oprofile dependency in the PMU code (and of the
oprofile body parts at the same time)
- Debug and SPE fixes
- Fix vcpu reset
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmCCpuAPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD2G8QALWQYeBggKnNmAJfuihzZ2WariBmgcENs2R2
qNZ/Py6dIF+b69P68nmgrEV1x2Kp35cPJbBwXnnrS4FCB5tk0b8YMaj00QbiRIYV
UXbPxQTmYO1KbevpoEcw8NmR4bZJ/hRYPuzcQG7CCMKIZw0zj2cMcBofzQpTOAp/
CgItdcv7at3iwamQatfU9vUmC0nDdnjdIwSxTAJOYMVV1ENwtnYSNgZVo4XLTg7n
xR/5Qx27PKBJw7GyTRAIIxKAzNXG2tDL+GVIHe4AnRp3z3La8sr6PJf7nz9MCmco
ISgeY7EGQINzmm4LahpnV+2xwwxOWo8QotxRFGNuRTOBazfARyAbp97yJ6eXJUpa
j0qlg3xK9neyIIn9BQKkKx4sY9V45yqkuVDsK6odmqPq3EE01IMTRh1N/XQi+sTF
iGrlM3ZW4AjlT5zgtT9US/FRXeDKoYuqVCObJeXZdm3sJSwEqTAs0JScnc0YTsh7
m30CODnomfR2y5X6GoaubbQ0wcZ2I20K1qtIm+2F6yzD5P1/3Yi8HbXMxsSWyYWZ
1ldoSa+ZUQlzV9Ot0S3iJ4PkphLKmmO96VlxE2+B5gQG50PZkLzsr8bVyYOuJC8p
T83xT9xd07cy+FcGgF9veZL99Y6BLHMa6ZwFUolYNbzJxqrmqyR1aiJMEBIcX+aP
ACeKW1w5
=fpey
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 5.13
New features:
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
- Alexandru is now a reviewer (not really a new feature...)
Fixes:
- Proper emulation of the GICR_TYPER register
- Handle the complete set of relocation in the nVHE EL2 object
- Get rid of the oprofile dependency in the PMU code (and of the
oprofile body parts at the same time)
- Debug and SPE fixes
- Fix vcpu reset
Move KVM_GUESTDBG_VALID_MASK to kvm_host.h
and use it to return the value of this capability.
Compile tested only.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401135451.1004564-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a VCPU is created, the kvm_vcpu struct is initialized to zero in
kvm_vm_ioctl_create_vcpu(). On VHE systems, the first time
vcpu.arch.mdcr_el2 is loaded on hardware is in vcpu_load(), before it is
set to a sensible value in kvm_arm_setup_debug() later in the run loop. The
result is that KVM executes for a short time with MDCR_EL2 set to zero.
This has several unintended consequences:
* Setting MDCR_EL2.HPMN to 0 is constrained unpredictable according to ARM
DDI 0487G.a, page D13-3820. The behavior specified by the architecture
in this case is for the PE to behave as if MDCR_EL2.HPMN is set to a
value less than or equal to PMCR_EL0.N, which means that an unknown
number of counters are now disabled by MDCR_EL2.HPME, which is zero.
* The host configuration for the other debug features controlled by
MDCR_EL2 is temporarily lost. This has been harmless so far, as Linux
doesn't use the other fields, but that might change in the future.
Let's avoid both issues by initializing the VCPU's mdcr_el2 field in
kvm_vcpu_vcpu_first_run_init(), thus making sure that the MDCR_EL2 register
has a consistent value after each vcpu_load().
Fixes: d5a21bcc29 ("KVM: arm64: Move common VHE/non-VHE trap config in separate functions")
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210407144857.199746-3-alexandru.elisei@arm.com
Implement the hypervisor side of the KVM PTP interface.
The service offers wall time and cycle count from host to guest.
The caller must specify whether they want the host's view of
either the virtual or physical counter.
Signed-off-by: Jianyong Wu <jianyong.wu@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201209060932.212364-7-jianyong.wu@arm.com
At the moment, we check the availability of SPE on the given
CPU (i.e, SPE is implemented and is allowed at the host) during
every guest entry. This can be optimized a bit by moving the
check to vcpu_load time and recording the availability of the
feature on the current CPU via a new flag. This will also be useful
for adding the TRBE support.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Alexandru Elisei <Alexandru.Elisei@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210405164307.1720226-7-suzuki.poulose@arm.com
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Fix to return a negative error code from the error handling
case instead of 0, as done elsewhere in this function.
Fixes: eeeee7193d ("KVM: arm64: Bootstrap PSCI SMC handler in nVHE EL2")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210406121759.5407-1-wangwensheng4@huawei.com
The sparse tool complains as follows:
arch/arm64/kvm/arm.c:1900:6: warning:
symbol '_kvm_host_prot_finalize' was not declared. Should it be static?
This symbol is not used outside of arm.c, so this
commit marks it static.
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Xu Jia <xujia39@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/1617176179-31931-1-git-send-email-xujia39@huawei.com
Now that the read_ctr macro has been specialised for nVHE,
the whole CPU_FTR_REG_HYP_COPY infrastrcture looks completely
overengineered.
Simplify it by populating the two u64 quantities (MMFR0 and 1)
that the hypervisor need.
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
When KVM runs in nVHE protected mode, use the host stage 2 to unmap the
hypervisor sections by marking them as owned by the hypervisor itself.
The long-term goal is to ensure the EL2 code can remain robust
regardless of the host's state, so this starts by making sure the host
cannot e.g. write to the .hyp sections directly.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-39-qperret@google.com
When KVM runs in protected nVHE mode, make use of a stage 2 page-table
to give the hypervisor some control over the host memory accesses. The
host stage 2 is created lazily using large block mappings if possible,
and will default to page mappings in absence of a better solution.
>From this point on, memory accesses from the host to protected memory
regions (e.g. not 'owned' by the host) are fatal and lead to hyp_panic().
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-36-qperret@google.com
Move the registers relevant to host stage 2 enablement to
kvm_nvhe_init_params to prepare the ground for enabling it in later
patches.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-22-qperret@google.com
Previous commits have introduced infrastructure to enable the EL2 code
to manage its own stage 1 mappings. However, this was preliminary work,
and none of it is currently in use.
Put all of this together by elevating the mapping creation at EL2 when
memory protection is enabled. In this case, the host kernel running
at EL1 still creates _temporary_ EL2 mappings, only used while
initializing the hypervisor, but frees them right after.
As such, all calls to create_hyp_mappings() after kvm init has finished
turn into hypercalls, as the host now has no 'legal' way to modify the
hypevisor page tables directly.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-19-qperret@google.com
In order to re-map the guest vectors at EL2 when pKVM is enabled,
refactor __kvm_vector_slot2idx() and kvm_init_vector_slot() to move all
the address calculation logic in a static inline function.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-16-qperret@google.com
Currently, the hyp code cannot make full use of a bss, as the kernel
section is mapped read-only.
While this mapping could simply be changed to read-write, it would
intermingle even more the hyp and kernel state than they currently are.
Instead, introduce a __hyp_bss section, that uses reserved pages, and
create the appropriate RW hyp mappings during KVM init.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-8-qperret@google.com
Move the initialization of kvm_nvhe_init_params in a dedicated function
that is run early, and only once during KVM init, rather than every time
the KVM vectors are set and reset.
This also opens the opportunity for the hypervisor to change the init
structs during boot, hence simplifying the replacement of host-provided
page-table by the one the hypervisor will create for itself.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-5-qperret@google.com