crypto: zstd - convert to acomp

Convert the implementation to a native acomp interface using zstd
streaming APIs, eliminating the need for buffer linearization.

This includes:
   - Removal of the scomp interface in favor of acomp
   - Refactoring of stream allocation, initialization, and handling for
     both compression and decompression using Zstandard streaming APIs
   - Replacement of crypto_register_scomp() with crypto_register_acomp()
     for module registration

Signed-off-by: Suman Kumar Chakraborty <suman.kumar.chakraborty@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Suman Kumar Chakraborty 2025-06-16 04:19:44 +01:00 committed by Herbert Xu
parent 1adaaeeb90
commit f5ad93ffb5

View file

@ -12,188 +12,300 @@
#include <linux/net.h>
#include <linux/vmalloc.h>
#include <linux/zstd.h>
#include <crypto/internal/scompress.h>
#include <crypto/internal/acompress.h>
#include <crypto/scatterwalk.h>
#define ZSTD_DEF_LEVEL 3
#define ZSTD_DEF_LEVEL 3
#define ZSTD_MAX_WINDOWLOG 18
#define ZSTD_MAX_SIZE BIT(ZSTD_MAX_WINDOWLOG)
struct zstd_ctx {
zstd_cctx *cctx;
zstd_dctx *dctx;
void *cwksp;
void *dwksp;
size_t wksp_size;
zstd_parameters params;
u8 wksp[0] __aligned(8);
};
static zstd_parameters zstd_params(void)
static DEFINE_MUTEX(zstd_stream_lock);
static void *zstd_alloc_stream(void)
{
return zstd_get_params(ZSTD_DEF_LEVEL, 0);
}
static int zstd_comp_init(struct zstd_ctx *ctx)
{
int ret = 0;
const zstd_parameters params = zstd_params();
const size_t wksp_size = zstd_cctx_workspace_bound(&params.cParams);
ctx->cwksp = vzalloc(wksp_size);
if (!ctx->cwksp) {
ret = -ENOMEM;
goto out;
}
ctx->cctx = zstd_init_cctx(ctx->cwksp, wksp_size);
if (!ctx->cctx) {
ret = -EINVAL;
goto out_free;
}
out:
return ret;
out_free:
vfree(ctx->cwksp);
goto out;
}
static int zstd_decomp_init(struct zstd_ctx *ctx)
{
int ret = 0;
const size_t wksp_size = zstd_dctx_workspace_bound();
ctx->dwksp = vzalloc(wksp_size);
if (!ctx->dwksp) {
ret = -ENOMEM;
goto out;
}
ctx->dctx = zstd_init_dctx(ctx->dwksp, wksp_size);
if (!ctx->dctx) {
ret = -EINVAL;
goto out_free;
}
out:
return ret;
out_free:
vfree(ctx->dwksp);
goto out;
}
static void zstd_comp_exit(struct zstd_ctx *ctx)
{
vfree(ctx->cwksp);
ctx->cwksp = NULL;
ctx->cctx = NULL;
}
static void zstd_decomp_exit(struct zstd_ctx *ctx)
{
vfree(ctx->dwksp);
ctx->dwksp = NULL;
ctx->dctx = NULL;
}
static int __zstd_init(void *ctx)
{
int ret;
ret = zstd_comp_init(ctx);
if (ret)
return ret;
ret = zstd_decomp_init(ctx);
if (ret)
zstd_comp_exit(ctx);
return ret;
}
static void *zstd_alloc_ctx(void)
{
int ret;
zstd_parameters params;
struct zstd_ctx *ctx;
size_t wksp_size;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
params = zstd_get_params(ZSTD_DEF_LEVEL, ZSTD_MAX_SIZE);
wksp_size = max_t(size_t,
zstd_cstream_workspace_bound(&params.cParams),
zstd_dstream_workspace_bound(ZSTD_MAX_SIZE));
if (!wksp_size)
return ERR_PTR(-EINVAL);
ctx = kvmalloc(sizeof(*ctx) + wksp_size, GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
ret = __zstd_init(ctx);
if (ret) {
kfree(ctx);
return ERR_PTR(ret);
}
ctx->params = params;
ctx->wksp_size = wksp_size;
return ctx;
}
static void __zstd_exit(void *ctx)
static struct crypto_acomp_streams zstd_streams = {
.alloc_ctx = zstd_alloc_stream,
.cfree_ctx = kvfree,
};
static int zstd_init(struct crypto_acomp *acomp_tfm)
{
zstd_comp_exit(ctx);
zstd_decomp_exit(ctx);
int ret = 0;
mutex_lock(&zstd_stream_lock);
ret = crypto_acomp_alloc_streams(&zstd_streams);
mutex_unlock(&zstd_stream_lock);
return ret;
}
static void zstd_free_ctx(void *ctx)
static void zstd_exit(struct crypto_acomp *acomp_tfm)
{
__zstd_exit(ctx);
kfree_sensitive(ctx);
crypto_acomp_free_streams(&zstd_streams);
}
static int __zstd_compress(const u8 *src, unsigned int slen,
u8 *dst, unsigned int *dlen, void *ctx)
static int zstd_compress_one(struct acomp_req *req, struct zstd_ctx *ctx,
const void *src, void *dst, unsigned int *dlen)
{
size_t out_len;
struct zstd_ctx *zctx = ctx;
const zstd_parameters params = zstd_params();
unsigned int out_len;
out_len = zstd_compress_cctx(zctx->cctx, dst, *dlen, src, slen, &params);
ctx->cctx = zstd_init_cctx(ctx->wksp, ctx->wksp_size);
if (!ctx->cctx)
return -EINVAL;
out_len = zstd_compress_cctx(ctx->cctx, dst, req->dlen, src, req->slen,
&ctx->params);
if (zstd_is_error(out_len))
return -EINVAL;
*dlen = out_len;
return 0;
}
static int zstd_scompress(struct crypto_scomp *tfm, const u8 *src,
unsigned int slen, u8 *dst, unsigned int *dlen,
void *ctx)
static int zstd_compress(struct acomp_req *req)
{
return __zstd_compress(src, slen, dst, dlen, ctx);
}
struct crypto_acomp_stream *s;
unsigned int pos, scur, dcur;
unsigned int total_out = 0;
bool data_available = true;
zstd_out_buffer outbuf;
struct acomp_walk walk;
zstd_in_buffer inbuf;
struct zstd_ctx *ctx;
size_t pending_bytes;
size_t num_bytes;
int ret;
static int __zstd_decompress(const u8 *src, unsigned int slen,
u8 *dst, unsigned int *dlen, void *ctx)
{
size_t out_len;
struct zstd_ctx *zctx = ctx;
s = crypto_acomp_lock_stream_bh(&zstd_streams);
ctx = s->ctx;
out_len = zstd_decompress_dctx(zctx->dctx, dst, *dlen, src, slen);
if (zstd_is_error(out_len))
return -EINVAL;
*dlen = out_len;
return 0;
}
ret = acomp_walk_virt(&walk, req, true);
if (ret)
goto out;
static int zstd_sdecompress(struct crypto_scomp *tfm, const u8 *src,
unsigned int slen, u8 *dst, unsigned int *dlen,
void *ctx)
{
return __zstd_decompress(src, slen, dst, dlen, ctx);
}
static struct scomp_alg scomp = {
.alloc_ctx = zstd_alloc_ctx,
.free_ctx = zstd_free_ctx,
.compress = zstd_scompress,
.decompress = zstd_sdecompress,
.base = {
.cra_name = "zstd",
.cra_driver_name = "zstd-scomp",
.cra_module = THIS_MODULE,
ctx->cctx = zstd_init_cstream(&ctx->params, 0, ctx->wksp, ctx->wksp_size);
if (!ctx->cctx) {
ret = -EINVAL;
goto out;
}
do {
dcur = acomp_walk_next_dst(&walk);
if (!dcur) {
ret = -ENOSPC;
goto out;
}
outbuf.pos = 0;
outbuf.dst = (u8 *)walk.dst.virt.addr;
outbuf.size = dcur;
do {
scur = acomp_walk_next_src(&walk);
if (dcur == req->dlen && scur == req->slen) {
ret = zstd_compress_one(req, ctx, walk.src.virt.addr,
walk.dst.virt.addr, &total_out);
acomp_walk_done_src(&walk, scur);
acomp_walk_done_dst(&walk, dcur);
goto out;
}
if (scur) {
inbuf.pos = 0;
inbuf.src = walk.src.virt.addr;
inbuf.size = scur;
} else {
data_available = false;
break;
}
num_bytes = zstd_compress_stream(ctx->cctx, &outbuf, &inbuf);
if (ZSTD_isError(num_bytes)) {
ret = -EIO;
goto out;
}
pending_bytes = zstd_flush_stream(ctx->cctx, &outbuf);
if (ZSTD_isError(pending_bytes)) {
ret = -EIO;
goto out;
}
acomp_walk_done_src(&walk, inbuf.pos);
} while (dcur != outbuf.pos);
total_out += outbuf.pos;
acomp_walk_done_dst(&walk, dcur);
} while (data_available);
pos = outbuf.pos;
num_bytes = zstd_end_stream(ctx->cctx, &outbuf);
if (ZSTD_isError(num_bytes))
ret = -EIO;
else
total_out += (outbuf.pos - pos);
out:
if (ret)
req->dlen = 0;
else
req->dlen = total_out;
crypto_acomp_unlock_stream_bh(s);
return ret;
}
static int zstd_decompress_one(struct acomp_req *req, struct zstd_ctx *ctx,
const void *src, void *dst, unsigned int *dlen)
{
size_t out_len;
ctx->dctx = zstd_init_dctx(ctx->wksp, ctx->wksp_size);
if (!ctx->dctx)
return -EINVAL;
out_len = zstd_decompress_dctx(ctx->dctx, dst, req->dlen, src, req->slen);
if (zstd_is_error(out_len))
return -EINVAL;
*dlen = out_len;
return 0;
}
static int zstd_decompress(struct acomp_req *req)
{
struct crypto_acomp_stream *s;
unsigned int total_out = 0;
unsigned int scur, dcur;
zstd_out_buffer outbuf;
struct acomp_walk walk;
zstd_in_buffer inbuf;
struct zstd_ctx *ctx;
size_t pending_bytes;
int ret;
s = crypto_acomp_lock_stream_bh(&zstd_streams);
ctx = s->ctx;
ret = acomp_walk_virt(&walk, req, true);
if (ret)
goto out;
ctx->dctx = zstd_init_dstream(ZSTD_MAX_SIZE, ctx->wksp, ctx->wksp_size);
if (!ctx->dctx) {
ret = -EINVAL;
goto out;
}
do {
scur = acomp_walk_next_src(&walk);
if (scur) {
inbuf.pos = 0;
inbuf.size = scur;
inbuf.src = walk.src.virt.addr;
} else {
break;
}
do {
dcur = acomp_walk_next_dst(&walk);
if (dcur == req->dlen && scur == req->slen) {
ret = zstd_decompress_one(req, ctx, walk.src.virt.addr,
walk.dst.virt.addr, &total_out);
acomp_walk_done_dst(&walk, dcur);
acomp_walk_done_src(&walk, scur);
goto out;
}
if (!dcur) {
ret = -ENOSPC;
goto out;
}
outbuf.pos = 0;
outbuf.dst = (u8 *)walk.dst.virt.addr;
outbuf.size = dcur;
pending_bytes = zstd_decompress_stream(ctx->dctx, &outbuf, &inbuf);
if (ZSTD_isError(pending_bytes)) {
ret = -EIO;
goto out;
}
total_out += outbuf.pos;
acomp_walk_done_dst(&walk, outbuf.pos);
} while (scur != inbuf.pos);
if (scur)
acomp_walk_done_src(&walk, scur);
} while (ret == 0);
out:
if (ret)
req->dlen = 0;
else
req->dlen = total_out;
crypto_acomp_unlock_stream_bh(s);
return ret;
}
static struct acomp_alg zstd_acomp = {
.base = {
.cra_name = "zstd",
.cra_driver_name = "zstd-generic",
.cra_flags = CRYPTO_ALG_REQ_VIRT,
.cra_module = THIS_MODULE,
},
.init = zstd_init,
.exit = zstd_exit,
.compress = zstd_compress,
.decompress = zstd_decompress,
};
static int __init zstd_mod_init(void)
{
return crypto_register_scomp(&scomp);
return crypto_register_acomp(&zstd_acomp);
}
static void __exit zstd_mod_fini(void)
{
crypto_unregister_scomp(&scomp);
crypto_unregister_acomp(&zstd_acomp);
}
module_init(zstd_mod_init);