mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
KVM: arm64: Split huge pages when dirty logging is enabled
Split huge pages eagerly when enabling dirty logging. The goal is to
avoid doing it while faulting on write-protected pages, which
negatively impacts guest performance.
A memslot marked for dirty logging is split in 1GB pieces at a time.
This is in order to release the mmu_lock and give other kernel threads
the opportunity to run, and also in order to allocate enough pages to
split a 1GB range worth of huge pages (or a single 1GB huge page).
Note that these page allocations can fail, so eager page splitting is
best-effort. This is not a correctness issue though, as huge pages
can still be split on write-faults.
Eager page splitting only takes effect when the huge page mapping has
been existing in the stage-2 page table. Otherwise, the huge page will
be mapped to multiple non-huge pages on page fault.
The benefits of eager page splitting are the same as in x86, added
with commit a3fe5dbda0
("KVM: x86/mmu: Split huge pages mapped by
the TDP MMU when dirty logging is enabled"). For example, when running
dirty_log_perf_test with 64 virtual CPUs (Ampere Altra), 1GB per vCPU,
50% reads, and 2MB HugeTLB memory, the time it takes vCPUs to access
all of their memory after dirty logging is enabled decreased by 44%
from 2.58s to 1.42s.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230426172330.1439644-10-ricarkol@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
This commit is contained in:
parent
ce2b602238
commit
e7bf7a490c
1 changed files with 123 additions and 4 deletions
|
@ -31,14 +31,21 @@ static phys_addr_t __ro_after_init hyp_idmap_vector;
|
|||
|
||||
static unsigned long __ro_after_init io_map_base;
|
||||
|
||||
static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
|
||||
static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
|
||||
phys_addr_t size)
|
||||
{
|
||||
phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
|
||||
phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
|
||||
|
||||
return (boundary - 1 < end - 1) ? boundary : end;
|
||||
}
|
||||
|
||||
static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
|
||||
{
|
||||
phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
|
||||
|
||||
return __stage2_range_addr_end(addr, end, size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
|
||||
* we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
|
||||
|
@ -75,6 +82,79 @@ static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
|
|||
#define stage2_apply_range_resched(mmu, addr, end, fn) \
|
||||
stage2_apply_range(mmu, addr, end, fn, true)
|
||||
|
||||
/*
|
||||
* Get the maximum number of page-tables pages needed to split a range
|
||||
* of blocks into PAGE_SIZE PTEs. It assumes the range is already
|
||||
* mapped at level 2, or at level 1 if allowed.
|
||||
*/
|
||||
static int kvm_mmu_split_nr_page_tables(u64 range)
|
||||
{
|
||||
int n = 0;
|
||||
|
||||
if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
|
||||
n += DIV_ROUND_UP_ULL(range, PUD_SIZE);
|
||||
n += DIV_ROUND_UP_ULL(range, PMD_SIZE);
|
||||
return n;
|
||||
}
|
||||
|
||||
static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
|
||||
{
|
||||
struct kvm_mmu_memory_cache *cache;
|
||||
u64 chunk_size, min;
|
||||
|
||||
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
|
||||
return true;
|
||||
|
||||
chunk_size = kvm->arch.mmu.split_page_chunk_size;
|
||||
min = kvm_mmu_split_nr_page_tables(chunk_size);
|
||||
cache = &kvm->arch.mmu.split_page_cache;
|
||||
return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
|
||||
}
|
||||
|
||||
static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
|
||||
phys_addr_t end)
|
||||
{
|
||||
struct kvm_mmu_memory_cache *cache;
|
||||
struct kvm_pgtable *pgt;
|
||||
int ret, cache_capacity;
|
||||
u64 next, chunk_size;
|
||||
|
||||
lockdep_assert_held_write(&kvm->mmu_lock);
|
||||
|
||||
chunk_size = kvm->arch.mmu.split_page_chunk_size;
|
||||
cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
|
||||
|
||||
if (chunk_size == 0)
|
||||
return 0;
|
||||
|
||||
cache = &kvm->arch.mmu.split_page_cache;
|
||||
|
||||
do {
|
||||
if (need_split_memcache_topup_or_resched(kvm)) {
|
||||
write_unlock(&kvm->mmu_lock);
|
||||
cond_resched();
|
||||
/* Eager page splitting is best-effort. */
|
||||
ret = __kvm_mmu_topup_memory_cache(cache,
|
||||
cache_capacity,
|
||||
cache_capacity);
|
||||
write_lock(&kvm->mmu_lock);
|
||||
if (ret)
|
||||
break;
|
||||
}
|
||||
|
||||
pgt = kvm->arch.mmu.pgt;
|
||||
if (!pgt)
|
||||
return -EINVAL;
|
||||
|
||||
next = __stage2_range_addr_end(addr, end, chunk_size);
|
||||
ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
|
||||
if (ret)
|
||||
break;
|
||||
} while (addr = next, addr != end);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
|
||||
{
|
||||
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
|
||||
|
@ -793,6 +873,7 @@ out_free_pgtable:
|
|||
void kvm_uninit_stage2_mmu(struct kvm *kvm)
|
||||
{
|
||||
kvm_free_stage2_pgd(&kvm->arch.mmu);
|
||||
kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
|
||||
}
|
||||
|
||||
static void stage2_unmap_memslot(struct kvm *kvm,
|
||||
|
@ -1019,6 +1100,34 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
|
|||
stage2_wp_range(&kvm->arch.mmu, start, end);
|
||||
}
|
||||
|
||||
/**
|
||||
* kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
|
||||
* pages for memory slot
|
||||
* @kvm: The KVM pointer
|
||||
* @slot: The memory slot to split
|
||||
*
|
||||
* Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
|
||||
* serializing operations for VM memory regions.
|
||||
*/
|
||||
static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
|
||||
{
|
||||
struct kvm_memslots *slots;
|
||||
struct kvm_memory_slot *memslot;
|
||||
phys_addr_t start, end;
|
||||
|
||||
lockdep_assert_held(&kvm->slots_lock);
|
||||
|
||||
slots = kvm_memslots(kvm);
|
||||
memslot = id_to_memslot(slots, slot);
|
||||
|
||||
start = memslot->base_gfn << PAGE_SHIFT;
|
||||
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
|
||||
|
||||
write_lock(&kvm->mmu_lock);
|
||||
kvm_mmu_split_huge_pages(kvm, start, end);
|
||||
write_unlock(&kvm->mmu_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
|
||||
* dirty pages.
|
||||
|
@ -1812,8 +1921,8 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|||
return;
|
||||
|
||||
/*
|
||||
* Pages are write-protected on either of these two
|
||||
* cases:
|
||||
* Huge and normal pages are write-protected and split
|
||||
* on either of these two cases:
|
||||
*
|
||||
* 1. with initial-all-set: gradually with CLEAR ioctls,
|
||||
*/
|
||||
|
@ -1825,6 +1934,16 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|||
* enabling dirty logging.
|
||||
*/
|
||||
kvm_mmu_wp_memory_region(kvm, new->id);
|
||||
kvm_mmu_split_memory_region(kvm, new->id);
|
||||
} else {
|
||||
/*
|
||||
* Free any leftovers from the eager page splitting cache. Do
|
||||
* this when deleting, moving, disabling dirty logging, or
|
||||
* creating the memslot (a nop). Doing it for deletes makes
|
||||
* sure we don't leak memory, and there's no need to keep the
|
||||
* cache around for any of the other cases.
|
||||
*/
|
||||
kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue