mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
Merge branch 'net-retire-dccp-socket'
Kuniyuki Iwashima says:
====================
net: Retire DCCP socket.
As announced by commit b144fcaf46
("dccp: Print deprecation
notice."), it's time to remove DCCP socket.
The patch 2 removes net/dccp, LSM code, doc, and etc, leaving
DCCP netfilter modules.
The patch 3 unexports shared functions for DCCP, and the patch 4
renames tcp_or_dccp_get_hashinfo() to tcp_get_hashinfo().
We can do more cleanup; for example, remove IPPROTO_TCP checks in
__inet6?_check_established(), remove __module_get() for twsk,
remove timewait_sock_ops.twsk_destructor(), etc, but it will be
more of TCP stuff, so I'll defer to a later series.
v2: https://lore.kernel.org/20250409003014.19697-1-kuniyu@amazon.com
v1: https://lore.kernel.org/20250407231823.95927-1-kuniyu@amazon.com
====================
Link: https://patch.msgid.link/20250410023921.11307-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit is contained in:
commit
8bb3212be4
89 changed files with 47 additions and 14370 deletions
|
@ -196,7 +196,7 @@ will see the assembler code for the routine shown, but if your kernel has
|
|||
debug symbols the C code will also be available. (Debug symbols can be enabled
|
||||
in the kernel hacking menu of the menu configuration.) For example::
|
||||
|
||||
$ objdump -r -S -l --disassemble net/dccp/ipv4.o
|
||||
$ objdump -r -S -l --disassemble net/ipv4/tcp.o
|
||||
|
||||
.. note::
|
||||
|
||||
|
|
|
@ -1,219 +0,0 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
=============
|
||||
DCCP protocol
|
||||
=============
|
||||
|
||||
|
||||
.. Contents
|
||||
- Introduction
|
||||
- Missing features
|
||||
- Socket options
|
||||
- Sysctl variables
|
||||
- IOCTLs
|
||||
- Other tunables
|
||||
- Notes
|
||||
|
||||
|
||||
Introduction
|
||||
============
|
||||
Datagram Congestion Control Protocol (DCCP) is an unreliable, connection
|
||||
oriented protocol designed to solve issues present in UDP and TCP, particularly
|
||||
for real-time and multimedia (streaming) traffic.
|
||||
It divides into a base protocol (RFC 4340) and pluggable congestion control
|
||||
modules called CCIDs. Like pluggable TCP congestion control, at least one CCID
|
||||
needs to be enabled in order for the protocol to function properly. In the Linux
|
||||
implementation, this is the TCP-like CCID2 (RFC 4341). Additional CCIDs, such as
|
||||
the TCP-friendly CCID3 (RFC 4342), are optional.
|
||||
For a brief introduction to CCIDs and suggestions for choosing a CCID to match
|
||||
given applications, see section 10 of RFC 4340.
|
||||
|
||||
It has a base protocol and pluggable congestion control IDs (CCIDs).
|
||||
|
||||
DCCP is a Proposed Standard (RFC 2026), and the homepage for DCCP as a protocol
|
||||
is at http://www.ietf.org/html.charters/dccp-charter.html
|
||||
|
||||
|
||||
Missing features
|
||||
================
|
||||
The Linux DCCP implementation does not currently support all the features that are
|
||||
specified in RFCs 4340...42.
|
||||
|
||||
The known bugs are at:
|
||||
|
||||
http://www.linuxfoundation.org/collaborate/workgroups/networking/todo#DCCP
|
||||
|
||||
For more up-to-date versions of the DCCP implementation, please consider using
|
||||
the experimental DCCP test tree; instructions for checking this out are on:
|
||||
http://www.linuxfoundation.org/collaborate/workgroups/networking/dccp_testing#Experimental_DCCP_source_tree
|
||||
|
||||
|
||||
Socket options
|
||||
==============
|
||||
DCCP_SOCKOPT_QPOLICY_ID sets the dequeuing policy for outgoing packets. It takes
|
||||
a policy ID as argument and can only be set before the connection (i.e. changes
|
||||
during an established connection are not supported). Currently, two policies are
|
||||
defined: the "simple" policy (DCCPQ_POLICY_SIMPLE), which does nothing special,
|
||||
and a priority-based variant (DCCPQ_POLICY_PRIO). The latter allows to pass an
|
||||
u32 priority value as ancillary data to sendmsg(), where higher numbers indicate
|
||||
a higher packet priority (similar to SO_PRIORITY). This ancillary data needs to
|
||||
be formatted using a cmsg(3) message header filled in as follows::
|
||||
|
||||
cmsg->cmsg_level = SOL_DCCP;
|
||||
cmsg->cmsg_type = DCCP_SCM_PRIORITY;
|
||||
cmsg->cmsg_len = CMSG_LEN(sizeof(uint32_t)); /* or CMSG_LEN(4) */
|
||||
|
||||
DCCP_SOCKOPT_QPOLICY_TXQLEN sets the maximum length of the output queue. A zero
|
||||
value is always interpreted as unbounded queue length. If different from zero,
|
||||
the interpretation of this parameter depends on the current dequeuing policy
|
||||
(see above): the "simple" policy will enforce a fixed queue size by returning
|
||||
EAGAIN, whereas the "prio" policy enforces a fixed queue length by dropping the
|
||||
lowest-priority packet first. The default value for this parameter is
|
||||
initialised from /proc/sys/net/dccp/default/tx_qlen.
|
||||
|
||||
DCCP_SOCKOPT_SERVICE sets the service. The specification mandates use of
|
||||
service codes (RFC 4340, sec. 8.1.2); if this socket option is not set,
|
||||
the socket will fall back to 0 (which means that no meaningful service code
|
||||
is present). On active sockets this is set before connect(); specifying more
|
||||
than one code has no effect (all subsequent service codes are ignored). The
|
||||
case is different for passive sockets, where multiple service codes (up to 32)
|
||||
can be set before calling bind().
|
||||
|
||||
DCCP_SOCKOPT_GET_CUR_MPS is read-only and retrieves the current maximum packet
|
||||
size (application payload size) in bytes, see RFC 4340, section 14.
|
||||
|
||||
DCCP_SOCKOPT_AVAILABLE_CCIDS is also read-only and returns the list of CCIDs
|
||||
supported by the endpoint. The option value is an array of type uint8_t whose
|
||||
size is passed as option length. The minimum array size is 4 elements, the
|
||||
value returned in the optlen argument always reflects the true number of
|
||||
built-in CCIDs.
|
||||
|
||||
DCCP_SOCKOPT_CCID is write-only and sets both the TX and RX CCIDs at the same
|
||||
time, combining the operation of the next two socket options. This option is
|
||||
preferable over the latter two, since often applications will use the same
|
||||
type of CCID for both directions; and mixed use of CCIDs is not currently well
|
||||
understood. This socket option takes as argument at least one uint8_t value, or
|
||||
an array of uint8_t values, which must match available CCIDS (see above). CCIDs
|
||||
must be registered on the socket before calling connect() or listen().
|
||||
|
||||
DCCP_SOCKOPT_TX_CCID is read/write. It returns the current CCID (if set) or sets
|
||||
the preference list for the TX CCID, using the same format as DCCP_SOCKOPT_CCID.
|
||||
Please note that the getsockopt argument type here is ``int``, not uint8_t.
|
||||
|
||||
DCCP_SOCKOPT_RX_CCID is analogous to DCCP_SOCKOPT_TX_CCID, but for the RX CCID.
|
||||
|
||||
DCCP_SOCKOPT_SERVER_TIMEWAIT enables the server (listening socket) to hold
|
||||
timewait state when closing the connection (RFC 4340, 8.3). The usual case is
|
||||
that the closing server sends a CloseReq, whereupon the client holds timewait
|
||||
state. When this boolean socket option is on, the server sends a Close instead
|
||||
and will enter TIMEWAIT. This option must be set after accept() returns.
|
||||
|
||||
DCCP_SOCKOPT_SEND_CSCOV and DCCP_SOCKOPT_RECV_CSCOV are used for setting the
|
||||
partial checksum coverage (RFC 4340, sec. 9.2). The default is that checksums
|
||||
always cover the entire packet and that only fully covered application data is
|
||||
accepted by the receiver. Hence, when using this feature on the sender, it must
|
||||
be enabled at the receiver, too with suitable choice of CsCov.
|
||||
|
||||
DCCP_SOCKOPT_SEND_CSCOV sets the sender checksum coverage. Values in the
|
||||
range 0..15 are acceptable. The default setting is 0 (full coverage),
|
||||
values between 1..15 indicate partial coverage.
|
||||
|
||||
DCCP_SOCKOPT_RECV_CSCOV is for the receiver and has a different meaning: it
|
||||
sets a threshold, where again values 0..15 are acceptable. The default
|
||||
of 0 means that all packets with a partial coverage will be discarded.
|
||||
Values in the range 1..15 indicate that packets with minimally such a
|
||||
coverage value are also acceptable. The higher the number, the more
|
||||
restrictive this setting (see [RFC 4340, sec. 9.2.1]). Partial coverage
|
||||
settings are inherited to the child socket after accept().
|
||||
|
||||
The following two options apply to CCID 3 exclusively and are getsockopt()-only.
|
||||
In either case, a TFRC info struct (defined in <linux/tfrc.h>) is returned.
|
||||
|
||||
DCCP_SOCKOPT_CCID_RX_INFO
|
||||
Returns a ``struct tfrc_rx_info`` in optval; the buffer for optval and
|
||||
optlen must be set to at least sizeof(struct tfrc_rx_info).
|
||||
|
||||
DCCP_SOCKOPT_CCID_TX_INFO
|
||||
Returns a ``struct tfrc_tx_info`` in optval; the buffer for optval and
|
||||
optlen must be set to at least sizeof(struct tfrc_tx_info).
|
||||
|
||||
On unidirectional connections it is useful to close the unused half-connection
|
||||
via shutdown (SHUT_WR or SHUT_RD): this will reduce per-packet processing costs.
|
||||
|
||||
|
||||
Sysctl variables
|
||||
================
|
||||
Several DCCP default parameters can be managed by the following sysctls
|
||||
(sysctl net.dccp.default or /proc/sys/net/dccp/default):
|
||||
|
||||
request_retries
|
||||
The number of active connection initiation retries (the number of
|
||||
Requests minus one) before timing out. In addition, it also governs
|
||||
the behaviour of the other, passive side: this variable also sets
|
||||
the number of times DCCP repeats sending a Response when the initial
|
||||
handshake does not progress from RESPOND to OPEN (i.e. when no Ack
|
||||
is received after the initial Request). This value should be greater
|
||||
than 0, suggested is less than 10. Analogue of tcp_syn_retries.
|
||||
|
||||
retries1
|
||||
How often a DCCP Response is retransmitted until the listening DCCP
|
||||
side considers its connecting peer dead. Analogue of tcp_retries1.
|
||||
|
||||
retries2
|
||||
The number of times a general DCCP packet is retransmitted. This has
|
||||
importance for retransmitted acknowledgments and feature negotiation,
|
||||
data packets are never retransmitted. Analogue of tcp_retries2.
|
||||
|
||||
tx_ccid = 2
|
||||
Default CCID for the sender-receiver half-connection. Depending on the
|
||||
choice of CCID, the Send Ack Vector feature is enabled automatically.
|
||||
|
||||
rx_ccid = 2
|
||||
Default CCID for the receiver-sender half-connection; see tx_ccid.
|
||||
|
||||
seq_window = 100
|
||||
The initial sequence window (sec. 7.5.2) of the sender. This influences
|
||||
the local ackno validity and the remote seqno validity windows (7.5.1).
|
||||
Values in the range Wmin = 32 (RFC 4340, 7.5.2) up to 2^32-1 can be set.
|
||||
|
||||
tx_qlen = 5
|
||||
The size of the transmit buffer in packets. A value of 0 corresponds
|
||||
to an unbounded transmit buffer.
|
||||
|
||||
sync_ratelimit = 125 ms
|
||||
The timeout between subsequent DCCP-Sync packets sent in response to
|
||||
sequence-invalid packets on the same socket (RFC 4340, 7.5.4). The unit
|
||||
of this parameter is milliseconds; a value of 0 disables rate-limiting.
|
||||
|
||||
|
||||
IOCTLS
|
||||
======
|
||||
FIONREAD
|
||||
Works as in udp(7): returns in the ``int`` argument pointer the size of
|
||||
the next pending datagram in bytes, or 0 when no datagram is pending.
|
||||
|
||||
SIOCOUTQ
|
||||
Returns the number of unsent data bytes in the socket send queue as ``int``
|
||||
into the buffer specified by the argument pointer.
|
||||
|
||||
Other tunables
|
||||
==============
|
||||
Per-route rto_min support
|
||||
CCID-2 supports the RTAX_RTO_MIN per-route setting for the minimum value
|
||||
of the RTO timer. This setting can be modified via the 'rto_min' option
|
||||
of iproute2; for example::
|
||||
|
||||
> ip route change 10.0.0.0/24 rto_min 250j dev wlan0
|
||||
> ip route add 10.0.0.254/32 rto_min 800j dev wlan0
|
||||
> ip route show dev wlan0
|
||||
|
||||
CCID-3 also supports the rto_min setting: it is used to define the lower
|
||||
bound for the expiry of the nofeedback timer. This can be useful on LANs
|
||||
with very low RTTs (e.g., loopback, Gbit ethernet).
|
||||
|
||||
|
||||
Notes
|
||||
=====
|
||||
DCCP does not travel through NAT successfully at present on many boxes. This is
|
||||
because the checksum covers the pseudo-header as per TCP and UDP. Linux NAT
|
||||
support for DCCP has been added.
|
|
@ -48,7 +48,6 @@ Contents:
|
|||
ax25
|
||||
bonding
|
||||
cdc_mbim
|
||||
dccp
|
||||
dctcp
|
||||
devmem
|
||||
dns_resolver
|
||||
|
|
|
@ -37,8 +37,8 @@ ip_no_pmtu_disc - INTEGER
|
|||
Mode 3 is a hardened pmtu discover mode. The kernel will only
|
||||
accept fragmentation-needed errors if the underlying protocol
|
||||
can verify them besides a plain socket lookup. Current
|
||||
protocols for which pmtu events will be honored are TCP, SCTP
|
||||
and DCCP as they verify e.g. the sequence number or the
|
||||
protocols for which pmtu events will be honored are TCP and
|
||||
SCTP as they verify e.g. the sequence number or the
|
||||
association. This mode should not be enabled globally but is
|
||||
only intended to secure e.g. name servers in namespaces where
|
||||
TCP path mtu must still work but path MTU information of other
|
||||
|
|
|
@ -188,7 +188,7 @@ objdump
|
|||
编行。如果没有调试符号,您将看到所示例程的汇编程序代码,但是如果内核有调试
|
||||
符号,C代码也将可见(调试符号可以在内核配置菜单的hacking项中启用)。例如::
|
||||
|
||||
$ objdump -r -S -l --disassemble net/dccp/ipv4.o
|
||||
$ objdump -r -S -l --disassemble net/ipv4/tcp.o
|
||||
|
||||
.. note::
|
||||
|
||||
|
|
|
@ -191,7 +191,7 @@ objdump
|
|||
編行。如果沒有調試符號,您將看到所示例程的彙編程序代碼,但是如果內核有調試
|
||||
符號,C代碼也將可見(調試符號可以在內核配置菜單的hacking項中啓用)。例如::
|
||||
|
||||
$ objdump -r -S -l --disassemble net/dccp/ipv4.o
|
||||
$ objdump -r -S -l --disassemble net/ipv4/tcp.o
|
||||
|
||||
.. note::
|
||||
|
||||
|
|
|
@ -6546,15 +6546,6 @@ S: Maintained
|
|||
F: Documentation/scsi/dc395x.rst
|
||||
F: drivers/scsi/dc395x.*
|
||||
|
||||
DCCP PROTOCOL
|
||||
L: dccp@vger.kernel.org
|
||||
S: Orphan
|
||||
W: http://www.linuxfoundation.org/collaborate/workgroups/networking/dccp
|
||||
F: include/linux/dccp.h
|
||||
F: include/linux/tfrc.h
|
||||
F: include/uapi/linux/dccp.h
|
||||
F: net/dccp/
|
||||
|
||||
DEBUGOBJECTS:
|
||||
M: Thomas Gleixner <tglx@linutronix.de>
|
||||
L: linux-kernel@vger.kernel.org
|
||||
|
|
|
@ -267,8 +267,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -263,8 +263,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -270,8 +270,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -260,8 +260,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -262,8 +262,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -261,8 +261,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -281,8 +281,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -259,8 +259,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -260,8 +260,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -261,8 +261,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -256,8 +256,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -257,8 +257,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
# CONFIG_IP_DCCP_CCID3 is not set
|
||||
CONFIG_SCTP_COOKIE_HMAC_SHA1=y
|
||||
CONFIG_RDS=m
|
||||
CONFIG_RDS_TCP=m
|
||||
|
|
|
@ -81,7 +81,6 @@ CONFIG_IP_VS_SH=m
|
|||
CONFIG_IP_VS_SED=m
|
||||
CONFIG_IP_VS_NQ=m
|
||||
CONFIG_IP_VS_FTP=m
|
||||
CONFIG_IP_DCCP=m
|
||||
CONFIG_BRIDGE=m
|
||||
CONFIG_VLAN_8021Q=m
|
||||
CONFIG_VLAN_8021Q_GVRP=y
|
||||
|
|
|
@ -84,7 +84,6 @@ CONFIG_BRIDGE_EBT_MARK_T=m
|
|||
CONFIG_BRIDGE_EBT_REDIRECT=m
|
||||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
CONFIG_IP_SCTP=m
|
||||
CONFIG_TIPC=m
|
||||
CONFIG_ATM=y
|
||||
|
|
|
@ -130,7 +130,6 @@ CONFIG_BRIDGE_EBT_MARK_T=m
|
|||
CONFIG_BRIDGE_EBT_REDIRECT=m
|
||||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
CONFIG_IP_SCTP=m
|
||||
CONFIG_TIPC=m
|
||||
CONFIG_ATM=y
|
||||
|
|
|
@ -87,7 +87,6 @@ CONFIG_IP_NF_RAW=m
|
|||
CONFIG_IP_NF_ARPTABLES=m
|
||||
CONFIG_IP_NF_ARPFILTER=m
|
||||
CONFIG_IP_NF_ARP_MANGLE=m
|
||||
CONFIG_IP_DCCP=m
|
||||
CONFIG_BT=m
|
||||
CONFIG_BT_RFCOMM=m
|
||||
CONFIG_BT_RFCOMM_TTY=y
|
||||
|
|
|
@ -225,7 +225,6 @@ CONFIG_BRIDGE_EBT_REDIRECT=m
|
|||
CONFIG_BRIDGE_EBT_SNAT=m
|
||||
CONFIG_BRIDGE_EBT_LOG=m
|
||||
CONFIG_BRIDGE_EBT_NFLOG=m
|
||||
CONFIG_IP_DCCP=m
|
||||
CONFIG_TIPC=m
|
||||
CONFIG_ATM=m
|
||||
CONFIG_ATM_CLIP=m
|
||||
|
|
|
@ -2,79 +2,8 @@
|
|||
#ifndef _LINUX_DCCP_H
|
||||
#define _LINUX_DCCP_H
|
||||
|
||||
|
||||
#include <linux/in.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/uio.h>
|
||||
#include <linux/workqueue.h>
|
||||
|
||||
#include <net/inet_connection_sock.h>
|
||||
#include <net/inet_sock.h>
|
||||
#include <net/inet_timewait_sock.h>
|
||||
#include <net/tcp_states.h>
|
||||
#include <uapi/linux/dccp.h>
|
||||
|
||||
enum dccp_state {
|
||||
DCCP_OPEN = TCP_ESTABLISHED,
|
||||
DCCP_REQUESTING = TCP_SYN_SENT,
|
||||
DCCP_LISTEN = TCP_LISTEN,
|
||||
DCCP_RESPOND = TCP_SYN_RECV,
|
||||
/*
|
||||
* States involved in closing a DCCP connection:
|
||||
* 1) ACTIVE_CLOSEREQ is entered by a server sending a CloseReq.
|
||||
*
|
||||
* 2) CLOSING can have three different meanings (RFC 4340, 8.3):
|
||||
* a. Client has performed active-close, has sent a Close to the server
|
||||
* from state OPEN or PARTOPEN, and is waiting for the final Reset
|
||||
* (in this case, SOCK_DONE == 1).
|
||||
* b. Client is asked to perform passive-close, by receiving a CloseReq
|
||||
* in (PART)OPEN state. It sends a Close and waits for final Reset
|
||||
* (in this case, SOCK_DONE == 0).
|
||||
* c. Server performs an active-close as in (a), keeps TIMEWAIT state.
|
||||
*
|
||||
* 3) The following intermediate states are employed to give passively
|
||||
* closing nodes a chance to process their unread data:
|
||||
* - PASSIVE_CLOSE (from OPEN => CLOSED) and
|
||||
* - PASSIVE_CLOSEREQ (from (PART)OPEN to CLOSING; case (b) above).
|
||||
*/
|
||||
DCCP_ACTIVE_CLOSEREQ = TCP_FIN_WAIT1,
|
||||
DCCP_PASSIVE_CLOSE = TCP_CLOSE_WAIT, /* any node receiving a Close */
|
||||
DCCP_CLOSING = TCP_CLOSING,
|
||||
DCCP_TIME_WAIT = TCP_TIME_WAIT,
|
||||
DCCP_CLOSED = TCP_CLOSE,
|
||||
DCCP_NEW_SYN_RECV = TCP_NEW_SYN_RECV,
|
||||
DCCP_PARTOPEN = TCP_MAX_STATES,
|
||||
DCCP_PASSIVE_CLOSEREQ, /* clients receiving CloseReq */
|
||||
DCCP_MAX_STATES
|
||||
};
|
||||
|
||||
enum {
|
||||
DCCPF_OPEN = TCPF_ESTABLISHED,
|
||||
DCCPF_REQUESTING = TCPF_SYN_SENT,
|
||||
DCCPF_LISTEN = TCPF_LISTEN,
|
||||
DCCPF_RESPOND = TCPF_SYN_RECV,
|
||||
DCCPF_ACTIVE_CLOSEREQ = TCPF_FIN_WAIT1,
|
||||
DCCPF_CLOSING = TCPF_CLOSING,
|
||||
DCCPF_TIME_WAIT = TCPF_TIME_WAIT,
|
||||
DCCPF_CLOSED = TCPF_CLOSE,
|
||||
DCCPF_NEW_SYN_RECV = TCPF_NEW_SYN_RECV,
|
||||
DCCPF_PARTOPEN = (1 << DCCP_PARTOPEN),
|
||||
};
|
||||
|
||||
static inline struct dccp_hdr *dccp_hdr(const struct sk_buff *skb)
|
||||
{
|
||||
return (struct dccp_hdr *)skb_transport_header(skb);
|
||||
}
|
||||
|
||||
static inline struct dccp_hdr *dccp_zeroed_hdr(struct sk_buff *skb, int headlen)
|
||||
{
|
||||
skb_push(skb, headlen);
|
||||
skb_reset_transport_header(skb);
|
||||
return memset(skb_transport_header(skb), 0, headlen);
|
||||
}
|
||||
|
||||
static inline struct dccp_hdr_ext *dccp_hdrx(const struct dccp_hdr *dh)
|
||||
{
|
||||
return (struct dccp_hdr_ext *)((unsigned char *)dh + sizeof(*dh));
|
||||
|
@ -85,12 +14,6 @@ static inline unsigned int __dccp_basic_hdr_len(const struct dccp_hdr *dh)
|
|||
return sizeof(*dh) + (dh->dccph_x ? sizeof(struct dccp_hdr_ext) : 0);
|
||||
}
|
||||
|
||||
static inline unsigned int dccp_basic_hdr_len(const struct sk_buff *skb)
|
||||
{
|
||||
const struct dccp_hdr *dh = dccp_hdr(skb);
|
||||
return __dccp_basic_hdr_len(dh);
|
||||
}
|
||||
|
||||
static inline __u64 dccp_hdr_seq(const struct dccp_hdr *dh)
|
||||
{
|
||||
__u64 seq_nr = ntohs(dh->dccph_seq);
|
||||
|
@ -103,222 +26,10 @@ static inline __u64 dccp_hdr_seq(const struct dccp_hdr *dh)
|
|||
return seq_nr;
|
||||
}
|
||||
|
||||
static inline struct dccp_hdr_request *dccp_hdr_request(struct sk_buff *skb)
|
||||
{
|
||||
return (struct dccp_hdr_request *)(skb_transport_header(skb) +
|
||||
dccp_basic_hdr_len(skb));
|
||||
}
|
||||
|
||||
static inline struct dccp_hdr_ack_bits *dccp_hdr_ack_bits(const struct sk_buff *skb)
|
||||
{
|
||||
return (struct dccp_hdr_ack_bits *)(skb_transport_header(skb) +
|
||||
dccp_basic_hdr_len(skb));
|
||||
}
|
||||
|
||||
static inline u64 dccp_hdr_ack_seq(const struct sk_buff *skb)
|
||||
{
|
||||
const struct dccp_hdr_ack_bits *dhack = dccp_hdr_ack_bits(skb);
|
||||
return ((u64)ntohs(dhack->dccph_ack_nr_high) << 32) + ntohl(dhack->dccph_ack_nr_low);
|
||||
}
|
||||
|
||||
static inline struct dccp_hdr_response *dccp_hdr_response(struct sk_buff *skb)
|
||||
{
|
||||
return (struct dccp_hdr_response *)(skb_transport_header(skb) +
|
||||
dccp_basic_hdr_len(skb));
|
||||
}
|
||||
|
||||
static inline struct dccp_hdr_reset *dccp_hdr_reset(struct sk_buff *skb)
|
||||
{
|
||||
return (struct dccp_hdr_reset *)(skb_transport_header(skb) +
|
||||
dccp_basic_hdr_len(skb));
|
||||
}
|
||||
|
||||
static inline unsigned int __dccp_hdr_len(const struct dccp_hdr *dh)
|
||||
{
|
||||
return __dccp_basic_hdr_len(dh) +
|
||||
dccp_packet_hdr_len(dh->dccph_type);
|
||||
}
|
||||
|
||||
static inline unsigned int dccp_hdr_len(const struct sk_buff *skb)
|
||||
{
|
||||
return __dccp_hdr_len(dccp_hdr(skb));
|
||||
}
|
||||
|
||||
/**
|
||||
* struct dccp_request_sock - represent DCCP-specific connection request
|
||||
* @dreq_inet_rsk: structure inherited from
|
||||
* @dreq_iss: initial sequence number, sent on the first Response (RFC 4340, 7.1)
|
||||
* @dreq_gss: greatest sequence number sent (for retransmitted Responses)
|
||||
* @dreq_isr: initial sequence number received in the first Request
|
||||
* @dreq_gsr: greatest sequence number received (for retransmitted Request(s))
|
||||
* @dreq_service: service code present on the Request (there is just one)
|
||||
* @dreq_featneg: feature negotiation options for this connection
|
||||
* The following two fields are analogous to the ones in dccp_sock:
|
||||
* @dreq_timestamp_echo: last received timestamp to echo (13.1)
|
||||
* @dreq_timestamp_echo: the time of receiving the last @dreq_timestamp_echo
|
||||
*/
|
||||
struct dccp_request_sock {
|
||||
struct inet_request_sock dreq_inet_rsk;
|
||||
__u64 dreq_iss;
|
||||
__u64 dreq_gss;
|
||||
__u64 dreq_isr;
|
||||
__u64 dreq_gsr;
|
||||
__be32 dreq_service;
|
||||
spinlock_t dreq_lock;
|
||||
struct list_head dreq_featneg;
|
||||
__u32 dreq_timestamp_echo;
|
||||
__u32 dreq_timestamp_time;
|
||||
};
|
||||
|
||||
static inline struct dccp_request_sock *dccp_rsk(const struct request_sock *req)
|
||||
{
|
||||
return (struct dccp_request_sock *)req;
|
||||
}
|
||||
|
||||
extern struct inet_timewait_death_row dccp_death_row;
|
||||
|
||||
extern int dccp_parse_options(struct sock *sk, struct dccp_request_sock *dreq,
|
||||
struct sk_buff *skb);
|
||||
|
||||
struct dccp_options_received {
|
||||
u64 dccpor_ndp:48;
|
||||
u32 dccpor_timestamp;
|
||||
u32 dccpor_timestamp_echo;
|
||||
u32 dccpor_elapsed_time;
|
||||
};
|
||||
|
||||
struct ccid;
|
||||
|
||||
enum dccp_role {
|
||||
DCCP_ROLE_UNDEFINED,
|
||||
DCCP_ROLE_LISTEN,
|
||||
DCCP_ROLE_CLIENT,
|
||||
DCCP_ROLE_SERVER,
|
||||
};
|
||||
|
||||
struct dccp_service_list {
|
||||
__u32 dccpsl_nr;
|
||||
__be32 dccpsl_list[];
|
||||
};
|
||||
|
||||
#define DCCP_SERVICE_INVALID_VALUE htonl((__u32)-1)
|
||||
#define DCCP_SERVICE_CODE_IS_ABSENT 0
|
||||
|
||||
static inline bool dccp_list_has_service(const struct dccp_service_list *sl,
|
||||
const __be32 service)
|
||||
{
|
||||
if (likely(sl != NULL)) {
|
||||
u32 i = sl->dccpsl_nr;
|
||||
while (i--)
|
||||
if (sl->dccpsl_list[i] == service)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
struct dccp_ackvec;
|
||||
|
||||
/**
|
||||
* struct dccp_sock - DCCP socket state
|
||||
*
|
||||
* @dccps_swl - sequence number window low
|
||||
* @dccps_swh - sequence number window high
|
||||
* @dccps_awl - acknowledgement number window low
|
||||
* @dccps_awh - acknowledgement number window high
|
||||
* @dccps_iss - initial sequence number sent
|
||||
* @dccps_isr - initial sequence number received
|
||||
* @dccps_osr - first OPEN sequence number received
|
||||
* @dccps_gss - greatest sequence number sent
|
||||
* @dccps_gsr - greatest valid sequence number received
|
||||
* @dccps_gar - greatest valid ack number received on a non-Sync; initialized to %dccps_iss
|
||||
* @dccps_service - first (passive sock) or unique (active sock) service code
|
||||
* @dccps_service_list - second .. last service code on passive socket
|
||||
* @dccps_timestamp_echo - latest timestamp received on a TIMESTAMP option
|
||||
* @dccps_timestamp_time - time of receiving latest @dccps_timestamp_echo
|
||||
* @dccps_l_ack_ratio - feature-local Ack Ratio
|
||||
* @dccps_r_ack_ratio - feature-remote Ack Ratio
|
||||
* @dccps_l_seq_win - local Sequence Window (influences ack number validity)
|
||||
* @dccps_r_seq_win - remote Sequence Window (influences seq number validity)
|
||||
* @dccps_pcslen - sender partial checksum coverage (via sockopt)
|
||||
* @dccps_pcrlen - receiver partial checksum coverage (via sockopt)
|
||||
* @dccps_send_ndp_count - local Send NDP Count feature (7.7.2)
|
||||
* @dccps_ndp_count - number of Non Data Packets since last data packet
|
||||
* @dccps_mss_cache - current value of MSS (path MTU minus header sizes)
|
||||
* @dccps_rate_last - timestamp for rate-limiting DCCP-Sync (RFC 4340, 7.5.4)
|
||||
* @dccps_featneg - tracks feature-negotiation state (mostly during handshake)
|
||||
* @dccps_hc_rx_ackvec - rx half connection ack vector
|
||||
* @dccps_hc_rx_ccid - CCID used for the receiver (or receiving half-connection)
|
||||
* @dccps_hc_tx_ccid - CCID used for the sender (or sending half-connection)
|
||||
* @dccps_options_received - parsed set of retrieved options
|
||||
* @dccps_qpolicy - TX dequeueing policy, one of %dccp_packet_dequeueing_policy
|
||||
* @dccps_tx_qlen - maximum length of the TX queue
|
||||
* @dccps_role - role of this sock, one of %dccp_role
|
||||
* @dccps_hc_rx_insert_options - receiver wants to add options when acking
|
||||
* @dccps_hc_tx_insert_options - sender wants to add options when sending
|
||||
* @dccps_server_timewait - server holds timewait state on close (RFC 4340, 8.3)
|
||||
* @dccps_sync_scheduled - flag which signals "send out-of-band message soon"
|
||||
* @dccps_xmitlet - tasklet scheduled by the TX CCID to dequeue data packets
|
||||
* @dccps_xmit_timer - used by the TX CCID to delay sending (rate-based pacing)
|
||||
* @dccps_syn_rtt - RTT sample from Request/Response exchange (in usecs)
|
||||
*/
|
||||
struct dccp_sock {
|
||||
/* inet_connection_sock has to be the first member of dccp_sock */
|
||||
struct inet_connection_sock dccps_inet_connection;
|
||||
#define dccps_syn_rtt dccps_inet_connection.icsk_ack.lrcvtime
|
||||
__u64 dccps_swl;
|
||||
__u64 dccps_swh;
|
||||
__u64 dccps_awl;
|
||||
__u64 dccps_awh;
|
||||
__u64 dccps_iss;
|
||||
__u64 dccps_isr;
|
||||
__u64 dccps_osr;
|
||||
__u64 dccps_gss;
|
||||
__u64 dccps_gsr;
|
||||
__u64 dccps_gar;
|
||||
__be32 dccps_service;
|
||||
__u32 dccps_mss_cache;
|
||||
struct dccp_service_list *dccps_service_list;
|
||||
__u32 dccps_timestamp_echo;
|
||||
__u32 dccps_timestamp_time;
|
||||
__u16 dccps_l_ack_ratio;
|
||||
__u16 dccps_r_ack_ratio;
|
||||
__u64 dccps_l_seq_win:48;
|
||||
__u64 dccps_r_seq_win:48;
|
||||
__u8 dccps_pcslen:4;
|
||||
__u8 dccps_pcrlen:4;
|
||||
__u8 dccps_send_ndp_count:1;
|
||||
__u64 dccps_ndp_count:48;
|
||||
unsigned long dccps_rate_last;
|
||||
struct list_head dccps_featneg;
|
||||
struct dccp_ackvec *dccps_hc_rx_ackvec;
|
||||
struct ccid *dccps_hc_rx_ccid;
|
||||
struct ccid *dccps_hc_tx_ccid;
|
||||
struct dccp_options_received dccps_options_received;
|
||||
__u8 dccps_qpolicy;
|
||||
__u32 dccps_tx_qlen;
|
||||
enum dccp_role dccps_role:2;
|
||||
__u8 dccps_hc_rx_insert_options:1;
|
||||
__u8 dccps_hc_tx_insert_options:1;
|
||||
__u8 dccps_server_timewait:1;
|
||||
__u8 dccps_sync_scheduled:1;
|
||||
struct tasklet_struct dccps_xmitlet;
|
||||
struct timer_list dccps_xmit_timer;
|
||||
};
|
||||
|
||||
#define dccp_sk(ptr) container_of_const(ptr, struct dccp_sock, \
|
||||
dccps_inet_connection.icsk_inet.sk)
|
||||
|
||||
static inline const char *dccp_role(const struct sock *sk)
|
||||
{
|
||||
switch (dccp_sk(sk)->dccps_role) {
|
||||
case DCCP_ROLE_UNDEFINED: return "undefined";
|
||||
case DCCP_ROLE_LISTEN: return "listen";
|
||||
case DCCP_ROLE_SERVER: return "server";
|
||||
case DCCP_ROLE_CLIENT: return "client";
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
extern void dccp_syn_ack_timeout(const struct request_sock *req);
|
||||
|
||||
#endif /* _LINUX_DCCP_H */
|
||||
|
|
|
@ -1,51 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
#ifndef _LINUX_TFRC_H_
|
||||
#define _LINUX_TFRC_H_
|
||||
/*
|
||||
* TFRC - Data Structures for the TCP-Friendly Rate Control congestion
|
||||
* control mechanism as specified in RFC 3448.
|
||||
*
|
||||
* Copyright (c) 2005 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2005 Ian McDonald <iam4@cs.waikato.ac.nz>
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*/
|
||||
#include <linux/types.h>
|
||||
|
||||
/** tfrc_rx_info - TFRC Receiver Data Structure
|
||||
*
|
||||
* @tfrcrx_x_recv: receiver estimate of sending rate (3.2.2)
|
||||
* @tfrcrx_rtt: round-trip-time (communicated by sender)
|
||||
* @tfrcrx_p: current estimate of loss event rate (3.2.2)
|
||||
*/
|
||||
struct tfrc_rx_info {
|
||||
__u32 tfrcrx_x_recv;
|
||||
__u32 tfrcrx_rtt;
|
||||
__u32 tfrcrx_p;
|
||||
};
|
||||
|
||||
/** tfrc_tx_info - TFRC Sender Data Structure
|
||||
*
|
||||
* @tfrctx_x: computed transmit rate (4.3 (4))
|
||||
* @tfrctx_x_recv: receiver estimate of send rate (4.3)
|
||||
* @tfrctx_x_calc: return value of throughput equation (3.1)
|
||||
* @tfrctx_rtt: (moving average) estimate of RTT (4.3)
|
||||
* @tfrctx_p: current loss event rate (5.4)
|
||||
* @tfrctx_rto: estimate of RTO, equals 4*RTT (4.3)
|
||||
* @tfrctx_ipi: inter-packet interval (4.6)
|
||||
*
|
||||
* Note: X and X_recv are both maintained in units of 64 * bytes/second. This
|
||||
* enables a finer resolution of sending rates and avoids problems with
|
||||
* integer arithmetic; u32 is not sufficient as scaling consumes 6 bits.
|
||||
*/
|
||||
struct tfrc_tx_info {
|
||||
__u64 tfrctx_x;
|
||||
__u64 tfrctx_x_recv;
|
||||
__u32 tfrctx_x_calc;
|
||||
__u32 tfrctx_rtt;
|
||||
__u32 tfrctx_p;
|
||||
__u32 tfrctx_rto;
|
||||
__u32 tfrctx_ipi;
|
||||
};
|
||||
|
||||
#endif /* _LINUX_TFRC_H_ */
|
|
@ -175,14 +175,9 @@ struct inet_hashinfo {
|
|||
bool pernet;
|
||||
} ____cacheline_aligned_in_smp;
|
||||
|
||||
static inline struct inet_hashinfo *tcp_or_dccp_get_hashinfo(const struct sock *sk)
|
||||
static inline struct inet_hashinfo *tcp_get_hashinfo(const struct sock *sk)
|
||||
{
|
||||
#if IS_ENABLED(CONFIG_IP_DCCP)
|
||||
return sk->sk_prot->h.hashinfo ? :
|
||||
sock_net(sk)->ipv4.tcp_death_row.hashinfo;
|
||||
#else
|
||||
return sock_net(sk)->ipv4.tcp_death_row.hashinfo;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline struct inet_listen_hashbucket *
|
||||
|
|
|
@ -36,7 +36,7 @@
|
|||
/**
|
||||
* enum sk_rst_reason - the reasons of socket reset
|
||||
*
|
||||
* The reasons of sk reset, which are used in DCCP/TCP/MPTCP protocols.
|
||||
* The reasons of sk reset, which are used in TCP/MPTCP protocols.
|
||||
*
|
||||
* There are three parts in order:
|
||||
* 1) skb drop reasons: relying on drop reasons for such as passive reset
|
||||
|
|
|
@ -16,9 +16,5 @@ u32 secure_tcpv6_seq(const __be32 *saddr, const __be32 *daddr,
|
|||
__be16 sport, __be16 dport);
|
||||
u32 secure_tcpv6_ts_off(const struct net *net,
|
||||
const __be32 *saddr, const __be32 *daddr);
|
||||
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
|
||||
__be16 sport, __be16 dport);
|
||||
u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
|
||||
__be16 sport, __be16 dport);
|
||||
|
||||
#endif /* _NET_SECURE_SEQ */
|
||||
|
|
|
@ -1781,7 +1781,6 @@ void sk_free(struct sock *sk);
|
|||
void sk_net_refcnt_upgrade(struct sock *sk);
|
||||
void sk_destruct(struct sock *sk);
|
||||
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
|
||||
void sk_free_unlock_clone(struct sock *sk);
|
||||
|
||||
struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
|
||||
gfp_t priority);
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
/* The protocol traced by inet_sock_set_state */
|
||||
#define inet_protocol_names \
|
||||
EM(IPPROTO_TCP) \
|
||||
EM(IPPROTO_DCCP) \
|
||||
EM(IPPROTO_SCTP) \
|
||||
EMe(IPPROTO_MPTCP)
|
||||
|
||||
|
|
|
@ -21,7 +21,6 @@ TRACE_DEFINE_ENUM(SOCK_DGRAM);
|
|||
TRACE_DEFINE_ENUM(SOCK_RAW);
|
||||
TRACE_DEFINE_ENUM(SOCK_RDM);
|
||||
TRACE_DEFINE_ENUM(SOCK_SEQPACKET);
|
||||
TRACE_DEFINE_ENUM(SOCK_DCCP);
|
||||
TRACE_DEFINE_ENUM(SOCK_PACKET);
|
||||
|
||||
#define show_socket_type(type) \
|
||||
|
@ -31,7 +30,6 @@ TRACE_DEFINE_ENUM(SOCK_PACKET);
|
|||
{ SOCK_RAW, "RAW" }, \
|
||||
{ SOCK_RDM, "RDM" }, \
|
||||
{ SOCK_SEQPACKET, "SEQPACKET" }, \
|
||||
{ SOCK_DCCP, "DCCP" }, \
|
||||
{ SOCK_PACKET, "PACKET" })
|
||||
|
||||
/* This list is known to be incomplete, add new enums as needed. */
|
||||
|
|
|
@ -245,7 +245,6 @@ source "net/bridge/netfilter/Kconfig"
|
|||
|
||||
endif
|
||||
|
||||
source "net/dccp/Kconfig"
|
||||
source "net/sctp/Kconfig"
|
||||
source "net/rds/Kconfig"
|
||||
source "net/tipc/Kconfig"
|
||||
|
|
|
@ -42,7 +42,6 @@ obj-$(CONFIG_PHONET) += phonet/
|
|||
ifneq ($(CONFIG_VLAN_8021Q),)
|
||||
obj-y += 8021q/
|
||||
endif
|
||||
obj-$(CONFIG_IP_DCCP) += dccp/
|
||||
obj-$(CONFIG_IP_SCTP) += sctp/
|
||||
obj-$(CONFIG_RDS) += rds/
|
||||
obj-$(CONFIG_WIRELESS) += wireless/
|
||||
|
|
|
@ -156,45 +156,3 @@ u64 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
|
||||
#endif
|
||||
|
||||
#if IS_ENABLED(CONFIG_IP_DCCP)
|
||||
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
|
||||
__be16 sport, __be16 dport)
|
||||
{
|
||||
u64 seq;
|
||||
net_secret_init();
|
||||
seq = siphash_3u32((__force u32)saddr, (__force u32)daddr,
|
||||
(__force u32)sport << 16 | (__force u32)dport,
|
||||
&net_secret);
|
||||
seq += ktime_get_real_ns();
|
||||
seq &= (1ull << 48) - 1;
|
||||
return seq;
|
||||
}
|
||||
EXPORT_SYMBOL(secure_dccp_sequence_number);
|
||||
|
||||
#if IS_ENABLED(CONFIG_IPV6)
|
||||
u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
|
||||
__be16 sport, __be16 dport)
|
||||
{
|
||||
const struct {
|
||||
struct in6_addr saddr;
|
||||
struct in6_addr daddr;
|
||||
__be16 sport;
|
||||
__be16 dport;
|
||||
} __aligned(SIPHASH_ALIGNMENT) combined = {
|
||||
.saddr = *(struct in6_addr *)saddr,
|
||||
.daddr = *(struct in6_addr *)daddr,
|
||||
.sport = sport,
|
||||
.dport = dport
|
||||
};
|
||||
u64 seq;
|
||||
net_secret_init();
|
||||
seq = siphash(&combined, offsetofend(typeof(combined), dport),
|
||||
&net_secret);
|
||||
seq += ktime_get_real_ns();
|
||||
seq &= (1ull << 48) - 1;
|
||||
return seq;
|
||||
}
|
||||
EXPORT_SYMBOL(secure_dccpv6_sequence_number);
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -2494,17 +2494,14 @@ struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
|
|||
*/
|
||||
if (!is_charged)
|
||||
RCU_INIT_POINTER(newsk->sk_filter, NULL);
|
||||
sk_free_unlock_clone(newsk);
|
||||
newsk = NULL;
|
||||
goto out;
|
||||
|
||||
goto free;
|
||||
}
|
||||
|
||||
RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
|
||||
|
||||
if (bpf_sk_storage_clone(sk, newsk)) {
|
||||
sk_free_unlock_clone(newsk);
|
||||
newsk = NULL;
|
||||
goto out;
|
||||
}
|
||||
if (bpf_sk_storage_clone(sk, newsk))
|
||||
goto free;
|
||||
|
||||
/* Clear sk_user_data if parent had the pointer tagged
|
||||
* as not suitable for copying when cloning.
|
||||
|
@ -2534,19 +2531,18 @@ struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
|
|||
net_enable_timestamp();
|
||||
out:
|
||||
return newsk;
|
||||
free:
|
||||
/* It is still raw copy of parent, so invalidate
|
||||
* destructor and make plain sk_free()
|
||||
*/
|
||||
newsk->sk_destruct = NULL;
|
||||
bh_unlock_sock(newsk);
|
||||
sk_free(newsk);
|
||||
newsk = NULL;
|
||||
goto out;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(sk_clone_lock);
|
||||
|
||||
void sk_free_unlock_clone(struct sock *sk)
|
||||
{
|
||||
/* It is still raw copy of parent, so invalidate
|
||||
* destructor and make plain sk_free() */
|
||||
sk->sk_destruct = NULL;
|
||||
bh_unlock_sock(sk);
|
||||
sk_free(sk);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
|
||||
|
||||
static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
|
||||
{
|
||||
bool is_ipv6 = false;
|
||||
|
|
|
@ -264,8 +264,6 @@ static int sock_diag_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
|
|||
|
||||
switch (nlh->nlmsg_type) {
|
||||
case TCPDIAG_GETSOCK:
|
||||
case DCCPDIAG_GETSOCK:
|
||||
|
||||
if (!rcu_access_pointer(inet_rcv_compat))
|
||||
sock_load_diag_module(AF_INET, 0);
|
||||
|
||||
|
|
|
@ -1,46 +0,0 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-only
|
||||
menuconfig IP_DCCP
|
||||
tristate "The DCCP Protocol"
|
||||
depends on INET
|
||||
help
|
||||
Datagram Congestion Control Protocol (RFC 4340)
|
||||
|
||||
From https://www.ietf.org/rfc/rfc4340.txt:
|
||||
|
||||
The Datagram Congestion Control Protocol (DCCP) is a transport
|
||||
protocol that implements bidirectional, unicast connections of
|
||||
congestion-controlled, unreliable datagrams. It should be suitable
|
||||
for use by applications such as streaming media, Internet telephony,
|
||||
and on-line games.
|
||||
|
||||
To compile this protocol support as a module, choose M here: the
|
||||
module will be called dccp.
|
||||
|
||||
If in doubt, say N.
|
||||
|
||||
if IP_DCCP
|
||||
|
||||
config INET_DCCP_DIAG
|
||||
depends on INET_DIAG
|
||||
def_tristate y if (IP_DCCP = y && INET_DIAG = y)
|
||||
def_tristate m
|
||||
|
||||
source "net/dccp/ccids/Kconfig"
|
||||
|
||||
menu "DCCP Kernel Hacking"
|
||||
depends on DEBUG_KERNEL=y
|
||||
|
||||
config IP_DCCP_DEBUG
|
||||
bool "DCCP debug messages"
|
||||
help
|
||||
Only use this if you're hacking DCCP.
|
||||
|
||||
When compiling DCCP as a module, this debugging output can be toggled
|
||||
by setting the parameter dccp_debug of the `dccp' module to 0 or 1.
|
||||
|
||||
Just say N.
|
||||
|
||||
|
||||
endmenu
|
||||
|
||||
endif # IP_DDCP
|
|
@ -1,30 +0,0 @@
|
|||
# SPDX-License-Identifier: GPL-2.0
|
||||
obj-$(CONFIG_IP_DCCP) += dccp.o dccp_ipv4.o
|
||||
|
||||
dccp-y := ccid.o feat.o input.o minisocks.o options.o output.o proto.o timer.o \
|
||||
qpolicy.o
|
||||
#
|
||||
# CCID algorithms to be used by dccp.ko
|
||||
#
|
||||
# CCID-2 is default (RFC 4340, p. 77) and has Ack Vectors as dependency
|
||||
dccp-y += ccids/ccid2.o ackvec.o
|
||||
dccp-$(CONFIG_IP_DCCP_CCID3) += ccids/ccid3.o
|
||||
dccp-$(CONFIG_IP_DCCP_TFRC_LIB) += ccids/lib/tfrc.o \
|
||||
ccids/lib/tfrc_equation.o \
|
||||
ccids/lib/packet_history.o \
|
||||
ccids/lib/loss_interval.o
|
||||
|
||||
dccp_ipv4-y := ipv4.o
|
||||
|
||||
# build dccp_ipv6 as module whenever either IPv6 or DCCP is a module
|
||||
obj-$(subst y,$(CONFIG_IP_DCCP),$(CONFIG_IPV6)) += dccp_ipv6.o
|
||||
dccp_ipv6-y := ipv6.o
|
||||
|
||||
obj-$(CONFIG_INET_DCCP_DIAG) += dccp_diag.o
|
||||
|
||||
dccp-$(CONFIG_SYSCTL) += sysctl.o
|
||||
|
||||
dccp_diag-y := diag.o
|
||||
|
||||
# build with local directory for trace.h
|
||||
CFLAGS_proto.o := -I$(src)
|
|
@ -1,403 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* net/dccp/ackvec.c
|
||||
*
|
||||
* An implementation of Ack Vectors for the DCCP protocol
|
||||
* Copyright (c) 2007 University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
|
||||
*/
|
||||
#include "dccp.h"
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/export.h>
|
||||
|
||||
static struct kmem_cache *dccp_ackvec_slab;
|
||||
static struct kmem_cache *dccp_ackvec_record_slab;
|
||||
|
||||
struct dccp_ackvec *dccp_ackvec_alloc(const gfp_t priority)
|
||||
{
|
||||
struct dccp_ackvec *av = kmem_cache_zalloc(dccp_ackvec_slab, priority);
|
||||
|
||||
if (av != NULL) {
|
||||
av->av_buf_head = av->av_buf_tail = DCCPAV_MAX_ACKVEC_LEN - 1;
|
||||
INIT_LIST_HEAD(&av->av_records);
|
||||
}
|
||||
return av;
|
||||
}
|
||||
|
||||
static void dccp_ackvec_purge_records(struct dccp_ackvec *av)
|
||||
{
|
||||
struct dccp_ackvec_record *cur, *next;
|
||||
|
||||
list_for_each_entry_safe(cur, next, &av->av_records, avr_node)
|
||||
kmem_cache_free(dccp_ackvec_record_slab, cur);
|
||||
INIT_LIST_HEAD(&av->av_records);
|
||||
}
|
||||
|
||||
void dccp_ackvec_free(struct dccp_ackvec *av)
|
||||
{
|
||||
if (likely(av != NULL)) {
|
||||
dccp_ackvec_purge_records(av);
|
||||
kmem_cache_free(dccp_ackvec_slab, av);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_ackvec_update_records - Record information about sent Ack Vectors
|
||||
* @av: Ack Vector records to update
|
||||
* @seqno: Sequence number of the packet carrying the Ack Vector just sent
|
||||
* @nonce_sum: The sum of all buffer nonces contained in the Ack Vector
|
||||
*/
|
||||
int dccp_ackvec_update_records(struct dccp_ackvec *av, u64 seqno, u8 nonce_sum)
|
||||
{
|
||||
struct dccp_ackvec_record *avr;
|
||||
|
||||
avr = kmem_cache_alloc(dccp_ackvec_record_slab, GFP_ATOMIC);
|
||||
if (avr == NULL)
|
||||
return -ENOBUFS;
|
||||
|
||||
avr->avr_ack_seqno = seqno;
|
||||
avr->avr_ack_ptr = av->av_buf_head;
|
||||
avr->avr_ack_ackno = av->av_buf_ackno;
|
||||
avr->avr_ack_nonce = nonce_sum;
|
||||
avr->avr_ack_runlen = dccp_ackvec_runlen(av->av_buf + av->av_buf_head);
|
||||
/*
|
||||
* When the buffer overflows, we keep no more than one record. This is
|
||||
* the simplest way of disambiguating sender-Acks dating from before the
|
||||
* overflow from sender-Acks which refer to after the overflow; a simple
|
||||
* solution is preferable here since we are handling an exception.
|
||||
*/
|
||||
if (av->av_overflow)
|
||||
dccp_ackvec_purge_records(av);
|
||||
/*
|
||||
* Since GSS is incremented for each packet, the list is automatically
|
||||
* arranged in descending order of @ack_seqno.
|
||||
*/
|
||||
list_add(&avr->avr_node, &av->av_records);
|
||||
|
||||
dccp_pr_debug("Added Vector, ack_seqno=%llu, ack_ackno=%llu (rl=%u)\n",
|
||||
(unsigned long long)avr->avr_ack_seqno,
|
||||
(unsigned long long)avr->avr_ack_ackno,
|
||||
avr->avr_ack_runlen);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct dccp_ackvec_record *dccp_ackvec_lookup(struct list_head *av_list,
|
||||
const u64 ackno)
|
||||
{
|
||||
struct dccp_ackvec_record *avr;
|
||||
/*
|
||||
* Exploit that records are inserted in descending order of sequence
|
||||
* number, start with the oldest record first. If @ackno is `before'
|
||||
* the earliest ack_ackno, the packet is too old to be considered.
|
||||
*/
|
||||
list_for_each_entry_reverse(avr, av_list, avr_node) {
|
||||
if (avr->avr_ack_seqno == ackno)
|
||||
return avr;
|
||||
if (before48(ackno, avr->avr_ack_seqno))
|
||||
break;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Buffer index and length computation using modulo-buffersize arithmetic.
|
||||
* Note that, as pointers move from right to left, head is `before' tail.
|
||||
*/
|
||||
static inline u16 __ackvec_idx_add(const u16 a, const u16 b)
|
||||
{
|
||||
return (a + b) % DCCPAV_MAX_ACKVEC_LEN;
|
||||
}
|
||||
|
||||
static inline u16 __ackvec_idx_sub(const u16 a, const u16 b)
|
||||
{
|
||||
return __ackvec_idx_add(a, DCCPAV_MAX_ACKVEC_LEN - b);
|
||||
}
|
||||
|
||||
u16 dccp_ackvec_buflen(const struct dccp_ackvec *av)
|
||||
{
|
||||
if (unlikely(av->av_overflow))
|
||||
return DCCPAV_MAX_ACKVEC_LEN;
|
||||
return __ackvec_idx_sub(av->av_buf_tail, av->av_buf_head);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_ackvec_update_old - Update previous state as per RFC 4340, 11.4.1
|
||||
* @av: non-empty buffer to update
|
||||
* @distance: negative or zero distance of @seqno from buf_ackno downward
|
||||
* @seqno: the (old) sequence number whose record is to be updated
|
||||
* @state: state in which packet carrying @seqno was received
|
||||
*/
|
||||
static void dccp_ackvec_update_old(struct dccp_ackvec *av, s64 distance,
|
||||
u64 seqno, enum dccp_ackvec_states state)
|
||||
{
|
||||
u16 ptr = av->av_buf_head;
|
||||
|
||||
BUG_ON(distance > 0);
|
||||
if (unlikely(dccp_ackvec_is_empty(av)))
|
||||
return;
|
||||
|
||||
do {
|
||||
u8 runlen = dccp_ackvec_runlen(av->av_buf + ptr);
|
||||
|
||||
if (distance + runlen >= 0) {
|
||||
/*
|
||||
* Only update the state if packet has not been received
|
||||
* yet. This is OK as per the second table in RFC 4340,
|
||||
* 11.4.1; i.e. here we are using the following table:
|
||||
* RECEIVED
|
||||
* 0 1 3
|
||||
* S +---+---+---+
|
||||
* T 0 | 0 | 0 | 0 |
|
||||
* O +---+---+---+
|
||||
* R 1 | 1 | 1 | 1 |
|
||||
* E +---+---+---+
|
||||
* D 3 | 0 | 1 | 3 |
|
||||
* +---+---+---+
|
||||
* The "Not Received" state was set by reserve_seats().
|
||||
*/
|
||||
if (av->av_buf[ptr] == DCCPAV_NOT_RECEIVED)
|
||||
av->av_buf[ptr] = state;
|
||||
else
|
||||
dccp_pr_debug("Not changing %llu state to %u\n",
|
||||
(unsigned long long)seqno, state);
|
||||
break;
|
||||
}
|
||||
|
||||
distance += runlen + 1;
|
||||
ptr = __ackvec_idx_add(ptr, 1);
|
||||
|
||||
} while (ptr != av->av_buf_tail);
|
||||
}
|
||||
|
||||
/* Mark @num entries after buf_head as "Not yet received". */
|
||||
static void dccp_ackvec_reserve_seats(struct dccp_ackvec *av, u16 num)
|
||||
{
|
||||
u16 start = __ackvec_idx_add(av->av_buf_head, 1),
|
||||
len = DCCPAV_MAX_ACKVEC_LEN - start;
|
||||
|
||||
/* check for buffer wrap-around */
|
||||
if (num > len) {
|
||||
memset(av->av_buf + start, DCCPAV_NOT_RECEIVED, len);
|
||||
start = 0;
|
||||
num -= len;
|
||||
}
|
||||
if (num)
|
||||
memset(av->av_buf + start, DCCPAV_NOT_RECEIVED, num);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_ackvec_add_new - Record one or more new entries in Ack Vector buffer
|
||||
* @av: container of buffer to update (can be empty or non-empty)
|
||||
* @num_packets: number of packets to register (must be >= 1)
|
||||
* @seqno: sequence number of the first packet in @num_packets
|
||||
* @state: state in which packet carrying @seqno was received
|
||||
*/
|
||||
static void dccp_ackvec_add_new(struct dccp_ackvec *av, u32 num_packets,
|
||||
u64 seqno, enum dccp_ackvec_states state)
|
||||
{
|
||||
u32 num_cells = num_packets;
|
||||
|
||||
if (num_packets > DCCPAV_BURST_THRESH) {
|
||||
u32 lost_packets = num_packets - 1;
|
||||
|
||||
DCCP_WARN("Warning: large burst loss (%u)\n", lost_packets);
|
||||
/*
|
||||
* We received 1 packet and have a loss of size "num_packets-1"
|
||||
* which we squeeze into num_cells-1 rather than reserving an
|
||||
* entire byte for each lost packet.
|
||||
* The reason is that the vector grows in O(burst_length); when
|
||||
* it grows too large there will no room left for the payload.
|
||||
* This is a trade-off: if a few packets out of the burst show
|
||||
* up later, their state will not be changed; it is simply too
|
||||
* costly to reshuffle/reallocate/copy the buffer each time.
|
||||
* Should such problems persist, we will need to switch to a
|
||||
* different underlying data structure.
|
||||
*/
|
||||
for (num_packets = num_cells = 1; lost_packets; ++num_cells) {
|
||||
u8 len = min_t(u32, lost_packets, DCCPAV_MAX_RUNLEN);
|
||||
|
||||
av->av_buf_head = __ackvec_idx_sub(av->av_buf_head, 1);
|
||||
av->av_buf[av->av_buf_head] = DCCPAV_NOT_RECEIVED | len;
|
||||
|
||||
lost_packets -= len;
|
||||
}
|
||||
}
|
||||
|
||||
if (num_cells + dccp_ackvec_buflen(av) >= DCCPAV_MAX_ACKVEC_LEN) {
|
||||
DCCP_CRIT("Ack Vector buffer overflow: dropping old entries");
|
||||
av->av_overflow = true;
|
||||
}
|
||||
|
||||
av->av_buf_head = __ackvec_idx_sub(av->av_buf_head, num_packets);
|
||||
if (av->av_overflow)
|
||||
av->av_buf_tail = av->av_buf_head;
|
||||
|
||||
av->av_buf[av->av_buf_head] = state;
|
||||
av->av_buf_ackno = seqno;
|
||||
|
||||
if (num_packets > 1)
|
||||
dccp_ackvec_reserve_seats(av, num_packets - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_ackvec_input - Register incoming packet in the buffer
|
||||
* @av: Ack Vector to register packet to
|
||||
* @skb: Packet to register
|
||||
*/
|
||||
void dccp_ackvec_input(struct dccp_ackvec *av, struct sk_buff *skb)
|
||||
{
|
||||
u64 seqno = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
enum dccp_ackvec_states state = DCCPAV_RECEIVED;
|
||||
|
||||
if (dccp_ackvec_is_empty(av)) {
|
||||
dccp_ackvec_add_new(av, 1, seqno, state);
|
||||
av->av_tail_ackno = seqno;
|
||||
|
||||
} else {
|
||||
s64 num_packets = dccp_delta_seqno(av->av_buf_ackno, seqno);
|
||||
u8 *current_head = av->av_buf + av->av_buf_head;
|
||||
|
||||
if (num_packets == 1 &&
|
||||
dccp_ackvec_state(current_head) == state &&
|
||||
dccp_ackvec_runlen(current_head) < DCCPAV_MAX_RUNLEN) {
|
||||
|
||||
*current_head += 1;
|
||||
av->av_buf_ackno = seqno;
|
||||
|
||||
} else if (num_packets > 0) {
|
||||
dccp_ackvec_add_new(av, num_packets, seqno, state);
|
||||
} else {
|
||||
dccp_ackvec_update_old(av, num_packets, seqno, state);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_ackvec_clear_state - Perform house-keeping / garbage-collection
|
||||
* @av: Ack Vector record to clean
|
||||
* @ackno: last Ack Vector which has been acknowledged
|
||||
*
|
||||
* This routine is called when the peer acknowledges the receipt of Ack Vectors
|
||||
* up to and including @ackno. While based on section A.3 of RFC 4340, here
|
||||
* are additional precautions to prevent corrupted buffer state. In particular,
|
||||
* we use tail_ackno to identify outdated records; it always marks the earliest
|
||||
* packet of group (2) in 11.4.2.
|
||||
*/
|
||||
void dccp_ackvec_clear_state(struct dccp_ackvec *av, const u64 ackno)
|
||||
{
|
||||
struct dccp_ackvec_record *avr, *next;
|
||||
u8 runlen_now, eff_runlen;
|
||||
s64 delta;
|
||||
|
||||
avr = dccp_ackvec_lookup(&av->av_records, ackno);
|
||||
if (avr == NULL)
|
||||
return;
|
||||
/*
|
||||
* Deal with outdated acknowledgments: this arises when e.g. there are
|
||||
* several old records and the acks from the peer come in slowly. In
|
||||
* that case we may still have records that pre-date tail_ackno.
|
||||
*/
|
||||
delta = dccp_delta_seqno(av->av_tail_ackno, avr->avr_ack_ackno);
|
||||
if (delta < 0)
|
||||
goto free_records;
|
||||
/*
|
||||
* Deal with overlapping Ack Vectors: don't subtract more than the
|
||||
* number of packets between tail_ackno and ack_ackno.
|
||||
*/
|
||||
eff_runlen = delta < avr->avr_ack_runlen ? delta : avr->avr_ack_runlen;
|
||||
|
||||
runlen_now = dccp_ackvec_runlen(av->av_buf + avr->avr_ack_ptr);
|
||||
/*
|
||||
* The run length of Ack Vector cells does not decrease over time. If
|
||||
* the run length is the same as at the time the Ack Vector was sent, we
|
||||
* free the ack_ptr cell. That cell can however not be freed if the run
|
||||
* length has increased: in this case we need to move the tail pointer
|
||||
* backwards (towards higher indices), to its next-oldest neighbour.
|
||||
*/
|
||||
if (runlen_now > eff_runlen) {
|
||||
|
||||
av->av_buf[avr->avr_ack_ptr] -= eff_runlen + 1;
|
||||
av->av_buf_tail = __ackvec_idx_add(avr->avr_ack_ptr, 1);
|
||||
|
||||
/* This move may not have cleared the overflow flag. */
|
||||
if (av->av_overflow)
|
||||
av->av_overflow = (av->av_buf_head == av->av_buf_tail);
|
||||
} else {
|
||||
av->av_buf_tail = avr->avr_ack_ptr;
|
||||
/*
|
||||
* We have made sure that avr points to a valid cell within the
|
||||
* buffer. This cell is either older than head, or equals head
|
||||
* (empty buffer): in both cases we no longer have any overflow.
|
||||
*/
|
||||
av->av_overflow = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The peer has acknowledged up to and including ack_ackno. Hence the
|
||||
* first packet in group (2) of 11.4.2 is the successor of ack_ackno.
|
||||
*/
|
||||
av->av_tail_ackno = ADD48(avr->avr_ack_ackno, 1);
|
||||
|
||||
free_records:
|
||||
list_for_each_entry_safe_from(avr, next, &av->av_records, avr_node) {
|
||||
list_del(&avr->avr_node);
|
||||
kmem_cache_free(dccp_ackvec_record_slab, avr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Routines to keep track of Ack Vectors received in an skb
|
||||
*/
|
||||
int dccp_ackvec_parsed_add(struct list_head *head, u8 *vec, u8 len, u8 nonce)
|
||||
{
|
||||
struct dccp_ackvec_parsed *new = kmalloc(sizeof(*new), GFP_ATOMIC);
|
||||
|
||||
if (new == NULL)
|
||||
return -ENOBUFS;
|
||||
new->vec = vec;
|
||||
new->len = len;
|
||||
new->nonce = nonce;
|
||||
|
||||
list_add_tail(&new->node, head);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(dccp_ackvec_parsed_add);
|
||||
|
||||
void dccp_ackvec_parsed_cleanup(struct list_head *parsed_chunks)
|
||||
{
|
||||
struct dccp_ackvec_parsed *cur, *next;
|
||||
|
||||
list_for_each_entry_safe(cur, next, parsed_chunks, node)
|
||||
kfree(cur);
|
||||
INIT_LIST_HEAD(parsed_chunks);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(dccp_ackvec_parsed_cleanup);
|
||||
|
||||
int __init dccp_ackvec_init(void)
|
||||
{
|
||||
dccp_ackvec_slab = KMEM_CACHE(dccp_ackvec, SLAB_HWCACHE_ALIGN);
|
||||
if (dccp_ackvec_slab == NULL)
|
||||
goto out_err;
|
||||
|
||||
dccp_ackvec_record_slab = KMEM_CACHE(dccp_ackvec_record, SLAB_HWCACHE_ALIGN);
|
||||
if (dccp_ackvec_record_slab == NULL)
|
||||
goto out_destroy_slab;
|
||||
|
||||
return 0;
|
||||
|
||||
out_destroy_slab:
|
||||
kmem_cache_destroy(dccp_ackvec_slab);
|
||||
dccp_ackvec_slab = NULL;
|
||||
out_err:
|
||||
DCCP_CRIT("Unable to create Ack Vector slab cache");
|
||||
return -ENOBUFS;
|
||||
}
|
||||
|
||||
void dccp_ackvec_exit(void)
|
||||
{
|
||||
kmem_cache_destroy(dccp_ackvec_slab);
|
||||
dccp_ackvec_slab = NULL;
|
||||
kmem_cache_destroy(dccp_ackvec_record_slab);
|
||||
dccp_ackvec_record_slab = NULL;
|
||||
}
|
|
@ -1,136 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
#ifndef _ACKVEC_H
|
||||
#define _ACKVEC_H
|
||||
/*
|
||||
* net/dccp/ackvec.h
|
||||
*
|
||||
* An implementation of Ack Vectors for the DCCP protocol
|
||||
* Copyright (c) 2007 University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@mandriva.com>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
/*
|
||||
* Ack Vector buffer space is static, in multiples of %DCCP_SINGLE_OPT_MAXLEN,
|
||||
* the maximum size of a single Ack Vector. Setting %DCCPAV_NUM_ACKVECS to 1
|
||||
* will be sufficient for most cases of low Ack Ratios, using a value of 2 gives
|
||||
* more headroom if Ack Ratio is higher or when the sender acknowledges slowly.
|
||||
* The maximum value is bounded by the u16 types for indices and functions.
|
||||
*/
|
||||
#define DCCPAV_NUM_ACKVECS 2
|
||||
#define DCCPAV_MAX_ACKVEC_LEN (DCCP_SINGLE_OPT_MAXLEN * DCCPAV_NUM_ACKVECS)
|
||||
|
||||
/* Estimated minimum average Ack Vector length - used for updating MPS */
|
||||
#define DCCPAV_MIN_OPTLEN 16
|
||||
|
||||
/* Threshold for coping with large bursts of losses */
|
||||
#define DCCPAV_BURST_THRESH (DCCPAV_MAX_ACKVEC_LEN / 8)
|
||||
|
||||
enum dccp_ackvec_states {
|
||||
DCCPAV_RECEIVED = 0x00,
|
||||
DCCPAV_ECN_MARKED = 0x40,
|
||||
DCCPAV_RESERVED = 0x80,
|
||||
DCCPAV_NOT_RECEIVED = 0xC0
|
||||
};
|
||||
#define DCCPAV_MAX_RUNLEN 0x3F
|
||||
|
||||
static inline u8 dccp_ackvec_runlen(const u8 *cell)
|
||||
{
|
||||
return *cell & DCCPAV_MAX_RUNLEN;
|
||||
}
|
||||
|
||||
static inline u8 dccp_ackvec_state(const u8 *cell)
|
||||
{
|
||||
return *cell & ~DCCPAV_MAX_RUNLEN;
|
||||
}
|
||||
|
||||
/**
|
||||
* struct dccp_ackvec - Ack Vector main data structure
|
||||
*
|
||||
* This implements a fixed-size circular buffer within an array and is largely
|
||||
* based on Appendix A of RFC 4340.
|
||||
*
|
||||
* @av_buf: circular buffer storage area
|
||||
* @av_buf_head: head index; begin of live portion in @av_buf
|
||||
* @av_buf_tail: tail index; first index _after_ the live portion in @av_buf
|
||||
* @av_buf_ackno: highest seqno of acknowledgeable packet recorded in @av_buf
|
||||
* @av_tail_ackno: lowest seqno of acknowledgeable packet recorded in @av_buf
|
||||
* @av_buf_nonce: ECN nonce sums, each covering subsequent segments of up to
|
||||
* %DCCP_SINGLE_OPT_MAXLEN cells in the live portion of @av_buf
|
||||
* @av_overflow: if 1 then buf_head == buf_tail indicates buffer wraparound
|
||||
* @av_records: list of %dccp_ackvec_record (Ack Vectors sent previously)
|
||||
*/
|
||||
struct dccp_ackvec {
|
||||
u8 av_buf[DCCPAV_MAX_ACKVEC_LEN];
|
||||
u16 av_buf_head;
|
||||
u16 av_buf_tail;
|
||||
u64 av_buf_ackno:48;
|
||||
u64 av_tail_ackno:48;
|
||||
bool av_buf_nonce[DCCPAV_NUM_ACKVECS];
|
||||
u8 av_overflow:1;
|
||||
struct list_head av_records;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct dccp_ackvec_record - Records information about sent Ack Vectors
|
||||
*
|
||||
* These list entries define the additional information which the HC-Receiver
|
||||
* keeps about recently-sent Ack Vectors; again refer to RFC 4340, Appendix A.
|
||||
*
|
||||
* @avr_node: the list node in @av_records
|
||||
* @avr_ack_seqno: sequence number of the packet the Ack Vector was sent on
|
||||
* @avr_ack_ackno: the Ack number that this record/Ack Vector refers to
|
||||
* @avr_ack_ptr: pointer into @av_buf where this record starts
|
||||
* @avr_ack_runlen: run length of @avr_ack_ptr at the time of sending
|
||||
* @avr_ack_nonce: the sum of @av_buf_nonce's at the time this record was sent
|
||||
*
|
||||
* The list as a whole is sorted in descending order by @avr_ack_seqno.
|
||||
*/
|
||||
struct dccp_ackvec_record {
|
||||
struct list_head avr_node;
|
||||
u64 avr_ack_seqno:48;
|
||||
u64 avr_ack_ackno:48;
|
||||
u16 avr_ack_ptr;
|
||||
u8 avr_ack_runlen;
|
||||
u8 avr_ack_nonce:1;
|
||||
};
|
||||
|
||||
int dccp_ackvec_init(void);
|
||||
void dccp_ackvec_exit(void);
|
||||
|
||||
struct dccp_ackvec *dccp_ackvec_alloc(const gfp_t priority);
|
||||
void dccp_ackvec_free(struct dccp_ackvec *av);
|
||||
|
||||
void dccp_ackvec_input(struct dccp_ackvec *av, struct sk_buff *skb);
|
||||
int dccp_ackvec_update_records(struct dccp_ackvec *av, u64 seq, u8 sum);
|
||||
void dccp_ackvec_clear_state(struct dccp_ackvec *av, const u64 ackno);
|
||||
u16 dccp_ackvec_buflen(const struct dccp_ackvec *av);
|
||||
|
||||
static inline bool dccp_ackvec_is_empty(const struct dccp_ackvec *av)
|
||||
{
|
||||
return av->av_overflow == 0 && av->av_buf_head == av->av_buf_tail;
|
||||
}
|
||||
|
||||
/**
|
||||
* struct dccp_ackvec_parsed - Record offsets of Ack Vectors in skb
|
||||
* @vec: start of vector (offset into skb)
|
||||
* @len: length of @vec
|
||||
* @nonce: whether @vec had an ECN nonce of 0 or 1
|
||||
* @node: FIFO - arranged in descending order of ack_ackno
|
||||
*
|
||||
* This structure is used by CCIDs to access Ack Vectors in a received skb.
|
||||
*/
|
||||
struct dccp_ackvec_parsed {
|
||||
u8 *vec,
|
||||
len,
|
||||
nonce:1;
|
||||
struct list_head node;
|
||||
};
|
||||
|
||||
int dccp_ackvec_parsed_add(struct list_head *head, u8 *vec, u8 len, u8 nonce);
|
||||
void dccp_ackvec_parsed_cleanup(struct list_head *parsed_chunks);
|
||||
#endif /* _ACKVEC_H */
|
219
net/dccp/ccid.c
219
net/dccp/ccid.c
|
@ -1,219 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* net/dccp/ccid.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*
|
||||
* CCID infrastructure
|
||||
*/
|
||||
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include "ccid.h"
|
||||
#include "ccids/lib/tfrc.h"
|
||||
|
||||
static struct ccid_operations *ccids[] = {
|
||||
&ccid2_ops,
|
||||
#ifdef CONFIG_IP_DCCP_CCID3
|
||||
&ccid3_ops,
|
||||
#endif
|
||||
};
|
||||
|
||||
static struct ccid_operations *ccid_by_number(const u8 id)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(ccids); i++)
|
||||
if (ccids[i]->ccid_id == id)
|
||||
return ccids[i];
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* check that up to @array_len members in @ccid_array are supported */
|
||||
bool ccid_support_check(u8 const *ccid_array, u8 array_len)
|
||||
{
|
||||
while (array_len > 0)
|
||||
if (ccid_by_number(ccid_array[--array_len]) == NULL)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid_get_builtin_ccids - Populate a list of built-in CCIDs
|
||||
* @ccid_array: pointer to copy into
|
||||
* @array_len: value to return length into
|
||||
*
|
||||
* This function allocates memory - caller must see that it is freed after use.
|
||||
*/
|
||||
int ccid_get_builtin_ccids(u8 **ccid_array, u8 *array_len)
|
||||
{
|
||||
*ccid_array = kmalloc(ARRAY_SIZE(ccids), gfp_any());
|
||||
if (*ccid_array == NULL)
|
||||
return -ENOBUFS;
|
||||
|
||||
for (*array_len = 0; *array_len < ARRAY_SIZE(ccids); *array_len += 1)
|
||||
(*ccid_array)[*array_len] = ccids[*array_len]->ccid_id;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ccid_getsockopt_builtin_ccids(struct sock *sk, int len,
|
||||
char __user *optval, int __user *optlen)
|
||||
{
|
||||
u8 *ccid_array, array_len;
|
||||
int err = 0;
|
||||
|
||||
if (ccid_get_builtin_ccids(&ccid_array, &array_len))
|
||||
return -ENOBUFS;
|
||||
|
||||
if (put_user(array_len, optlen))
|
||||
err = -EFAULT;
|
||||
else if (len > 0 && copy_to_user(optval, ccid_array,
|
||||
len > array_len ? array_len : len))
|
||||
err = -EFAULT;
|
||||
|
||||
kfree(ccid_array);
|
||||
return err;
|
||||
}
|
||||
|
||||
static __printf(3, 4) struct kmem_cache *ccid_kmem_cache_create(int obj_size, char *slab_name_fmt, const char *fmt,...)
|
||||
{
|
||||
struct kmem_cache *slab;
|
||||
va_list args;
|
||||
|
||||
va_start(args, fmt);
|
||||
vsnprintf(slab_name_fmt, CCID_SLAB_NAME_LENGTH, fmt, args);
|
||||
va_end(args);
|
||||
|
||||
slab = kmem_cache_create(slab_name_fmt, sizeof(struct ccid) + obj_size, 0,
|
||||
SLAB_HWCACHE_ALIGN, NULL);
|
||||
return slab;
|
||||
}
|
||||
|
||||
static void ccid_kmem_cache_destroy(struct kmem_cache *slab)
|
||||
{
|
||||
kmem_cache_destroy(slab);
|
||||
}
|
||||
|
||||
static int __init ccid_activate(struct ccid_operations *ccid_ops)
|
||||
{
|
||||
int err = -ENOBUFS;
|
||||
|
||||
ccid_ops->ccid_hc_rx_slab =
|
||||
ccid_kmem_cache_create(ccid_ops->ccid_hc_rx_obj_size,
|
||||
ccid_ops->ccid_hc_rx_slab_name,
|
||||
"ccid%u_hc_rx_sock",
|
||||
ccid_ops->ccid_id);
|
||||
if (ccid_ops->ccid_hc_rx_slab == NULL)
|
||||
goto out;
|
||||
|
||||
ccid_ops->ccid_hc_tx_slab =
|
||||
ccid_kmem_cache_create(ccid_ops->ccid_hc_tx_obj_size,
|
||||
ccid_ops->ccid_hc_tx_slab_name,
|
||||
"ccid%u_hc_tx_sock",
|
||||
ccid_ops->ccid_id);
|
||||
if (ccid_ops->ccid_hc_tx_slab == NULL)
|
||||
goto out_free_rx_slab;
|
||||
|
||||
pr_info("DCCP: Activated CCID %d (%s)\n",
|
||||
ccid_ops->ccid_id, ccid_ops->ccid_name);
|
||||
err = 0;
|
||||
out:
|
||||
return err;
|
||||
out_free_rx_slab:
|
||||
ccid_kmem_cache_destroy(ccid_ops->ccid_hc_rx_slab);
|
||||
ccid_ops->ccid_hc_rx_slab = NULL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
static void ccid_deactivate(struct ccid_operations *ccid_ops)
|
||||
{
|
||||
ccid_kmem_cache_destroy(ccid_ops->ccid_hc_tx_slab);
|
||||
ccid_ops->ccid_hc_tx_slab = NULL;
|
||||
ccid_kmem_cache_destroy(ccid_ops->ccid_hc_rx_slab);
|
||||
ccid_ops->ccid_hc_rx_slab = NULL;
|
||||
|
||||
pr_info("DCCP: Deactivated CCID %d (%s)\n",
|
||||
ccid_ops->ccid_id, ccid_ops->ccid_name);
|
||||
}
|
||||
|
||||
struct ccid *ccid_new(const u8 id, struct sock *sk, bool rx)
|
||||
{
|
||||
struct ccid_operations *ccid_ops = ccid_by_number(id);
|
||||
struct ccid *ccid = NULL;
|
||||
|
||||
if (ccid_ops == NULL)
|
||||
goto out;
|
||||
|
||||
ccid = kmem_cache_alloc(rx ? ccid_ops->ccid_hc_rx_slab :
|
||||
ccid_ops->ccid_hc_tx_slab, gfp_any());
|
||||
if (ccid == NULL)
|
||||
goto out;
|
||||
ccid->ccid_ops = ccid_ops;
|
||||
if (rx) {
|
||||
memset(ccid + 1, 0, ccid_ops->ccid_hc_rx_obj_size);
|
||||
if (ccid->ccid_ops->ccid_hc_rx_init != NULL &&
|
||||
ccid->ccid_ops->ccid_hc_rx_init(ccid, sk) != 0)
|
||||
goto out_free_ccid;
|
||||
} else {
|
||||
memset(ccid + 1, 0, ccid_ops->ccid_hc_tx_obj_size);
|
||||
if (ccid->ccid_ops->ccid_hc_tx_init != NULL &&
|
||||
ccid->ccid_ops->ccid_hc_tx_init(ccid, sk) != 0)
|
||||
goto out_free_ccid;
|
||||
}
|
||||
out:
|
||||
return ccid;
|
||||
out_free_ccid:
|
||||
kmem_cache_free(rx ? ccid_ops->ccid_hc_rx_slab :
|
||||
ccid_ops->ccid_hc_tx_slab, ccid);
|
||||
ccid = NULL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
void ccid_hc_rx_delete(struct ccid *ccid, struct sock *sk)
|
||||
{
|
||||
if (ccid != NULL) {
|
||||
if (ccid->ccid_ops->ccid_hc_rx_exit != NULL)
|
||||
ccid->ccid_ops->ccid_hc_rx_exit(sk);
|
||||
kmem_cache_free(ccid->ccid_ops->ccid_hc_rx_slab, ccid);
|
||||
}
|
||||
}
|
||||
|
||||
void ccid_hc_tx_delete(struct ccid *ccid, struct sock *sk)
|
||||
{
|
||||
if (ccid != NULL) {
|
||||
if (ccid->ccid_ops->ccid_hc_tx_exit != NULL)
|
||||
ccid->ccid_ops->ccid_hc_tx_exit(sk);
|
||||
kmem_cache_free(ccid->ccid_ops->ccid_hc_tx_slab, ccid);
|
||||
}
|
||||
}
|
||||
|
||||
int __init ccid_initialize_builtins(void)
|
||||
{
|
||||
int i, err = tfrc_lib_init();
|
||||
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(ccids); i++) {
|
||||
err = ccid_activate(ccids[i]);
|
||||
if (err)
|
||||
goto unwind_registrations;
|
||||
}
|
||||
return 0;
|
||||
|
||||
unwind_registrations:
|
||||
while(--i >= 0)
|
||||
ccid_deactivate(ccids[i]);
|
||||
tfrc_lib_exit();
|
||||
return err;
|
||||
}
|
||||
|
||||
void ccid_cleanup_builtins(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(ccids); i++)
|
||||
ccid_deactivate(ccids[i]);
|
||||
tfrc_lib_exit();
|
||||
}
|
262
net/dccp/ccid.h
262
net/dccp/ccid.h
|
@ -1,262 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
#ifndef _CCID_H
|
||||
#define _CCID_H
|
||||
/*
|
||||
* net/dccp/ccid.h
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*
|
||||
* CCID infrastructure
|
||||
*/
|
||||
|
||||
#include <net/sock.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
/* maximum value for a CCID (RFC 4340, 19.5) */
|
||||
#define CCID_MAX 255
|
||||
#define CCID_SLAB_NAME_LENGTH 32
|
||||
|
||||
struct tcp_info;
|
||||
|
||||
/**
|
||||
* struct ccid_operations - Interface to Congestion-Control Infrastructure
|
||||
*
|
||||
* @ccid_id: numerical CCID ID (up to %CCID_MAX, cf. table 5 in RFC 4340, 10.)
|
||||
* @ccid_ccmps: the CCMPS including network/transport headers (0 when disabled)
|
||||
* @ccid_name: alphabetical identifier string for @ccid_id
|
||||
* @ccid_hc_{r,t}x_slab: memory pool for the receiver/sender half-connection
|
||||
* @ccid_hc_{r,t}x_obj_size: size of the receiver/sender half-connection socket
|
||||
*
|
||||
* @ccid_hc_{r,t}x_init: CCID-specific initialisation routine (before startup)
|
||||
* @ccid_hc_{r,t}x_exit: CCID-specific cleanup routine (before destruction)
|
||||
* @ccid_hc_rx_packet_recv: implements the HC-receiver side
|
||||
* @ccid_hc_{r,t}x_parse_options: parsing routine for CCID/HC-specific options
|
||||
* @ccid_hc_{r,t}x_insert_options: insert routine for CCID/HC-specific options
|
||||
* @ccid_hc_tx_packet_recv: implements feedback processing for the HC-sender
|
||||
* @ccid_hc_tx_send_packet: implements the sending part of the HC-sender
|
||||
* @ccid_hc_tx_packet_sent: does accounting for packets in flight by HC-sender
|
||||
* @ccid_hc_{r,t}x_get_info: INET_DIAG information for HC-receiver/sender
|
||||
* @ccid_hc_{r,t}x_getsockopt: socket options specific to HC-receiver/sender
|
||||
*/
|
||||
struct ccid_operations {
|
||||
unsigned char ccid_id;
|
||||
__u32 ccid_ccmps;
|
||||
const char *ccid_name;
|
||||
struct kmem_cache *ccid_hc_rx_slab,
|
||||
*ccid_hc_tx_slab;
|
||||
char ccid_hc_rx_slab_name[CCID_SLAB_NAME_LENGTH];
|
||||
char ccid_hc_tx_slab_name[CCID_SLAB_NAME_LENGTH];
|
||||
__u32 ccid_hc_rx_obj_size,
|
||||
ccid_hc_tx_obj_size;
|
||||
/* Interface Routines */
|
||||
int (*ccid_hc_rx_init)(struct ccid *ccid, struct sock *sk);
|
||||
int (*ccid_hc_tx_init)(struct ccid *ccid, struct sock *sk);
|
||||
void (*ccid_hc_rx_exit)(struct sock *sk);
|
||||
void (*ccid_hc_tx_exit)(struct sock *sk);
|
||||
void (*ccid_hc_rx_packet_recv)(struct sock *sk,
|
||||
struct sk_buff *skb);
|
||||
int (*ccid_hc_rx_parse_options)(struct sock *sk, u8 pkt,
|
||||
u8 opt, u8 *val, u8 len);
|
||||
int (*ccid_hc_rx_insert_options)(struct sock *sk,
|
||||
struct sk_buff *skb);
|
||||
void (*ccid_hc_tx_packet_recv)(struct sock *sk,
|
||||
struct sk_buff *skb);
|
||||
int (*ccid_hc_tx_parse_options)(struct sock *sk, u8 pkt,
|
||||
u8 opt, u8 *val, u8 len);
|
||||
int (*ccid_hc_tx_send_packet)(struct sock *sk,
|
||||
struct sk_buff *skb);
|
||||
void (*ccid_hc_tx_packet_sent)(struct sock *sk,
|
||||
unsigned int len);
|
||||
void (*ccid_hc_rx_get_info)(struct sock *sk,
|
||||
struct tcp_info *info);
|
||||
void (*ccid_hc_tx_get_info)(struct sock *sk,
|
||||
struct tcp_info *info);
|
||||
int (*ccid_hc_rx_getsockopt)(struct sock *sk,
|
||||
const int optname, int len,
|
||||
u32 __user *optval,
|
||||
int __user *optlen);
|
||||
int (*ccid_hc_tx_getsockopt)(struct sock *sk,
|
||||
const int optname, int len,
|
||||
u32 __user *optval,
|
||||
int __user *optlen);
|
||||
};
|
||||
|
||||
extern struct ccid_operations ccid2_ops;
|
||||
#ifdef CONFIG_IP_DCCP_CCID3
|
||||
extern struct ccid_operations ccid3_ops;
|
||||
#endif
|
||||
|
||||
int ccid_initialize_builtins(void);
|
||||
void ccid_cleanup_builtins(void);
|
||||
|
||||
struct ccid {
|
||||
struct ccid_operations *ccid_ops;
|
||||
char ccid_priv[];
|
||||
};
|
||||
|
||||
static inline void *ccid_priv(const struct ccid *ccid)
|
||||
{
|
||||
return (void *)ccid->ccid_priv;
|
||||
}
|
||||
|
||||
bool ccid_support_check(u8 const *ccid_array, u8 array_len);
|
||||
int ccid_get_builtin_ccids(u8 **ccid_array, u8 *array_len);
|
||||
int ccid_getsockopt_builtin_ccids(struct sock *sk, int len,
|
||||
char __user *, int __user *);
|
||||
|
||||
struct ccid *ccid_new(const u8 id, struct sock *sk, bool rx);
|
||||
|
||||
static inline int ccid_get_current_rx_ccid(struct dccp_sock *dp)
|
||||
{
|
||||
struct ccid *ccid = dp->dccps_hc_rx_ccid;
|
||||
|
||||
if (ccid == NULL || ccid->ccid_ops == NULL)
|
||||
return -1;
|
||||
return ccid->ccid_ops->ccid_id;
|
||||
}
|
||||
|
||||
static inline int ccid_get_current_tx_ccid(struct dccp_sock *dp)
|
||||
{
|
||||
struct ccid *ccid = dp->dccps_hc_tx_ccid;
|
||||
|
||||
if (ccid == NULL || ccid->ccid_ops == NULL)
|
||||
return -1;
|
||||
return ccid->ccid_ops->ccid_id;
|
||||
}
|
||||
|
||||
void ccid_hc_rx_delete(struct ccid *ccid, struct sock *sk);
|
||||
void ccid_hc_tx_delete(struct ccid *ccid, struct sock *sk);
|
||||
|
||||
/*
|
||||
* Congestion control of queued data packets via CCID decision.
|
||||
*
|
||||
* The TX CCID performs its congestion-control by indicating whether and when a
|
||||
* queued packet may be sent, using the return code of ccid_hc_tx_send_packet().
|
||||
* The following modes are supported via the symbolic constants below:
|
||||
* - timer-based pacing (CCID returns a delay value in milliseconds);
|
||||
* - autonomous dequeueing (CCID internally schedules dccps_xmitlet).
|
||||
*/
|
||||
|
||||
enum ccid_dequeueing_decision {
|
||||
CCID_PACKET_SEND_AT_ONCE = 0x00000, /* "green light": no delay */
|
||||
CCID_PACKET_DELAY_MAX = 0x0FFFF, /* maximum delay in msecs */
|
||||
CCID_PACKET_DELAY = 0x10000, /* CCID msec-delay mode */
|
||||
CCID_PACKET_WILL_DEQUEUE_LATER = 0x20000, /* CCID autonomous mode */
|
||||
CCID_PACKET_ERR = 0xF0000, /* error condition */
|
||||
};
|
||||
|
||||
static inline int ccid_packet_dequeue_eval(const int return_code)
|
||||
{
|
||||
if (return_code < 0)
|
||||
return CCID_PACKET_ERR;
|
||||
if (return_code == 0)
|
||||
return CCID_PACKET_SEND_AT_ONCE;
|
||||
if (return_code <= CCID_PACKET_DELAY_MAX)
|
||||
return CCID_PACKET_DELAY;
|
||||
return return_code;
|
||||
}
|
||||
|
||||
static inline int ccid_hc_tx_send_packet(struct ccid *ccid, struct sock *sk,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_tx_send_packet != NULL)
|
||||
return ccid->ccid_ops->ccid_hc_tx_send_packet(sk, skb);
|
||||
return CCID_PACKET_SEND_AT_ONCE;
|
||||
}
|
||||
|
||||
static inline void ccid_hc_tx_packet_sent(struct ccid *ccid, struct sock *sk,
|
||||
unsigned int len)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_tx_packet_sent != NULL)
|
||||
ccid->ccid_ops->ccid_hc_tx_packet_sent(sk, len);
|
||||
}
|
||||
|
||||
static inline void ccid_hc_rx_packet_recv(struct ccid *ccid, struct sock *sk,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_rx_packet_recv != NULL)
|
||||
ccid->ccid_ops->ccid_hc_rx_packet_recv(sk, skb);
|
||||
}
|
||||
|
||||
static inline void ccid_hc_tx_packet_recv(struct ccid *ccid, struct sock *sk,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_tx_packet_recv != NULL)
|
||||
ccid->ccid_ops->ccid_hc_tx_packet_recv(sk, skb);
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid_hc_tx_parse_options - Parse CCID-specific options sent by the receiver
|
||||
* @pkt: type of packet that @opt appears on (RFC 4340, 5.1)
|
||||
* @opt: the CCID-specific option type (RFC 4340, 5.8 and 10.3)
|
||||
* @val: value of @opt
|
||||
* @len: length of @val in bytes
|
||||
*/
|
||||
static inline int ccid_hc_tx_parse_options(struct ccid *ccid, struct sock *sk,
|
||||
u8 pkt, u8 opt, u8 *val, u8 len)
|
||||
{
|
||||
if (!ccid || !ccid->ccid_ops->ccid_hc_tx_parse_options)
|
||||
return 0;
|
||||
return ccid->ccid_ops->ccid_hc_tx_parse_options(sk, pkt, opt, val, len);
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid_hc_rx_parse_options - Parse CCID-specific options sent by the sender
|
||||
* Arguments are analogous to ccid_hc_tx_parse_options()
|
||||
*/
|
||||
static inline int ccid_hc_rx_parse_options(struct ccid *ccid, struct sock *sk,
|
||||
u8 pkt, u8 opt, u8 *val, u8 len)
|
||||
{
|
||||
if (!ccid || !ccid->ccid_ops->ccid_hc_rx_parse_options)
|
||||
return 0;
|
||||
return ccid->ccid_ops->ccid_hc_rx_parse_options(sk, pkt, opt, val, len);
|
||||
}
|
||||
|
||||
static inline int ccid_hc_rx_insert_options(struct ccid *ccid, struct sock *sk,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_rx_insert_options != NULL)
|
||||
return ccid->ccid_ops->ccid_hc_rx_insert_options(sk, skb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void ccid_hc_rx_get_info(struct ccid *ccid, struct sock *sk,
|
||||
struct tcp_info *info)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_rx_get_info != NULL)
|
||||
ccid->ccid_ops->ccid_hc_rx_get_info(sk, info);
|
||||
}
|
||||
|
||||
static inline void ccid_hc_tx_get_info(struct ccid *ccid, struct sock *sk,
|
||||
struct tcp_info *info)
|
||||
{
|
||||
if (ccid->ccid_ops->ccid_hc_tx_get_info != NULL)
|
||||
ccid->ccid_ops->ccid_hc_tx_get_info(sk, info);
|
||||
}
|
||||
|
||||
static inline int ccid_hc_rx_getsockopt(struct ccid *ccid, struct sock *sk,
|
||||
const int optname, int len,
|
||||
u32 __user *optval, int __user *optlen)
|
||||
{
|
||||
int rc = -ENOPROTOOPT;
|
||||
if (ccid != NULL && ccid->ccid_ops->ccid_hc_rx_getsockopt != NULL)
|
||||
rc = ccid->ccid_ops->ccid_hc_rx_getsockopt(sk, optname, len,
|
||||
optval, optlen);
|
||||
return rc;
|
||||
}
|
||||
|
||||
static inline int ccid_hc_tx_getsockopt(struct ccid *ccid, struct sock *sk,
|
||||
const int optname, int len,
|
||||
u32 __user *optval, int __user *optlen)
|
||||
{
|
||||
int rc = -ENOPROTOOPT;
|
||||
if (ccid != NULL && ccid->ccid_ops->ccid_hc_tx_getsockopt != NULL)
|
||||
rc = ccid->ccid_ops->ccid_hc_tx_getsockopt(sk, optname, len,
|
||||
optval, optlen);
|
||||
return rc;
|
||||
}
|
||||
#endif /* _CCID_H */
|
|
@ -1,55 +0,0 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-only
|
||||
menu "DCCP CCIDs Configuration"
|
||||
|
||||
config IP_DCCP_CCID2_DEBUG
|
||||
bool "CCID-2 debugging messages"
|
||||
help
|
||||
Enable CCID-2 specific debugging messages.
|
||||
|
||||
The debugging output can additionally be toggled by setting the
|
||||
ccid2_debug parameter to 0 or 1.
|
||||
|
||||
If in doubt, say N.
|
||||
|
||||
config IP_DCCP_CCID3
|
||||
bool "CCID-3 (TCP-Friendly)"
|
||||
default IP_DCCP = y || IP_DCCP = m
|
||||
help
|
||||
CCID-3 denotes TCP-Friendly Rate Control (TFRC), an equation-based
|
||||
rate-controlled congestion control mechanism. TFRC is designed to
|
||||
be reasonably fair when competing for bandwidth with TCP-like flows,
|
||||
where a flow is "reasonably fair" if its sending rate is generally
|
||||
within a factor of two of the sending rate of a TCP flow under the
|
||||
same conditions. However, TFRC has a much lower variation of
|
||||
throughput over time compared with TCP, which makes CCID-3 more
|
||||
suitable than CCID-2 for applications such streaming media where a
|
||||
relatively smooth sending rate is of importance.
|
||||
|
||||
CCID-3 is further described in RFC 4342,
|
||||
https://www.ietf.org/rfc/rfc4342.txt
|
||||
|
||||
The TFRC congestion control algorithms were initially described in
|
||||
RFC 5348.
|
||||
|
||||
This text was extracted from RFC 4340 (sec. 10.2),
|
||||
https://www.ietf.org/rfc/rfc4340.txt
|
||||
|
||||
If in doubt, say N.
|
||||
|
||||
config IP_DCCP_CCID3_DEBUG
|
||||
bool "CCID-3 debugging messages"
|
||||
depends on IP_DCCP_CCID3
|
||||
help
|
||||
Enable CCID-3 specific debugging messages.
|
||||
|
||||
The debugging output can additionally be toggled by setting the
|
||||
ccid3_debug parameter to 0 or 1.
|
||||
|
||||
If in doubt, say N.
|
||||
|
||||
config IP_DCCP_TFRC_LIB
|
||||
def_bool y if IP_DCCP_CCID3
|
||||
|
||||
config IP_DCCP_TFRC_DEBUG
|
||||
def_bool y if IP_DCCP_CCID3_DEBUG
|
||||
endmenu
|
|
@ -1,794 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Copyright (c) 2005, 2006 Andrea Bittau <a.bittau@cs.ucl.ac.uk>
|
||||
*
|
||||
* Changes to meet Linux coding standards, and DCCP infrastructure fixes.
|
||||
*
|
||||
* Copyright (c) 2006 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
/*
|
||||
* This implementation should follow RFC 4341
|
||||
*/
|
||||
#include <linux/slab.h>
|
||||
#include "../feat.h"
|
||||
#include "ccid2.h"
|
||||
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_CCID2_DEBUG
|
||||
static bool ccid2_debug;
|
||||
#define ccid2_pr_debug(format, a...) DCCP_PR_DEBUG(ccid2_debug, format, ##a)
|
||||
#else
|
||||
#define ccid2_pr_debug(format, a...)
|
||||
#endif
|
||||
|
||||
static int ccid2_hc_tx_alloc_seq(struct ccid2_hc_tx_sock *hc)
|
||||
{
|
||||
struct ccid2_seq *seqp;
|
||||
int i;
|
||||
|
||||
/* check if we have space to preserve the pointer to the buffer */
|
||||
if (hc->tx_seqbufc >= (sizeof(hc->tx_seqbuf) /
|
||||
sizeof(struct ccid2_seq *)))
|
||||
return -ENOMEM;
|
||||
|
||||
/* allocate buffer and initialize linked list */
|
||||
seqp = kmalloc_array(CCID2_SEQBUF_LEN, sizeof(struct ccid2_seq),
|
||||
gfp_any());
|
||||
if (seqp == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
for (i = 0; i < (CCID2_SEQBUF_LEN - 1); i++) {
|
||||
seqp[i].ccid2s_next = &seqp[i + 1];
|
||||
seqp[i + 1].ccid2s_prev = &seqp[i];
|
||||
}
|
||||
seqp[CCID2_SEQBUF_LEN - 1].ccid2s_next = seqp;
|
||||
seqp->ccid2s_prev = &seqp[CCID2_SEQBUF_LEN - 1];
|
||||
|
||||
/* This is the first allocation. Initiate the head and tail. */
|
||||
if (hc->tx_seqbufc == 0)
|
||||
hc->tx_seqh = hc->tx_seqt = seqp;
|
||||
else {
|
||||
/* link the existing list with the one we just created */
|
||||
hc->tx_seqh->ccid2s_next = seqp;
|
||||
seqp->ccid2s_prev = hc->tx_seqh;
|
||||
|
||||
hc->tx_seqt->ccid2s_prev = &seqp[CCID2_SEQBUF_LEN - 1];
|
||||
seqp[CCID2_SEQBUF_LEN - 1].ccid2s_next = hc->tx_seqt;
|
||||
}
|
||||
|
||||
/* store the original pointer to the buffer so we can free it */
|
||||
hc->tx_seqbuf[hc->tx_seqbufc] = seqp;
|
||||
hc->tx_seqbufc++;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccid2_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
if (ccid2_cwnd_network_limited(ccid2_hc_tx_sk(sk)))
|
||||
return CCID_PACKET_WILL_DEQUEUE_LATER;
|
||||
return CCID_PACKET_SEND_AT_ONCE;
|
||||
}
|
||||
|
||||
static void ccid2_change_l_ack_ratio(struct sock *sk, u32 val)
|
||||
{
|
||||
u32 max_ratio = DIV_ROUND_UP(ccid2_hc_tx_sk(sk)->tx_cwnd, 2);
|
||||
|
||||
/*
|
||||
* Ensure that Ack Ratio does not exceed ceil(cwnd/2), which is (2) from
|
||||
* RFC 4341, 6.1.2. We ignore the statement that Ack Ratio 2 is always
|
||||
* acceptable since this causes starvation/deadlock whenever cwnd < 2.
|
||||
* The same problem arises when Ack Ratio is 0 (ie. Ack Ratio disabled).
|
||||
*/
|
||||
if (val == 0 || val > max_ratio) {
|
||||
DCCP_WARN("Limiting Ack Ratio (%u) to %u\n", val, max_ratio);
|
||||
val = max_ratio;
|
||||
}
|
||||
dccp_feat_signal_nn_change(sk, DCCPF_ACK_RATIO,
|
||||
min_t(u32, val, DCCPF_ACK_RATIO_MAX));
|
||||
}
|
||||
|
||||
static void ccid2_check_l_ack_ratio(struct sock *sk)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
|
||||
/*
|
||||
* After a loss, idle period, application limited period, or RTO we
|
||||
* need to check that the ack ratio is still less than the congestion
|
||||
* window. Otherwise, we will send an entire congestion window of
|
||||
* packets and got no response because we haven't sent ack ratio
|
||||
* packets yet.
|
||||
* If the ack ratio does need to be reduced, we reduce it to half of
|
||||
* the congestion window (or 1 if that's zero) instead of to the
|
||||
* congestion window. This prevents problems if one ack is lost.
|
||||
*/
|
||||
if (dccp_feat_nn_get(sk, DCCPF_ACK_RATIO) > hc->tx_cwnd)
|
||||
ccid2_change_l_ack_ratio(sk, hc->tx_cwnd/2 ? : 1U);
|
||||
}
|
||||
|
||||
static void ccid2_change_l_seq_window(struct sock *sk, u64 val)
|
||||
{
|
||||
dccp_feat_signal_nn_change(sk, DCCPF_SEQUENCE_WINDOW,
|
||||
clamp_val(val, DCCPF_SEQ_WMIN,
|
||||
DCCPF_SEQ_WMAX));
|
||||
}
|
||||
|
||||
static void dccp_tasklet_schedule(struct sock *sk)
|
||||
{
|
||||
struct tasklet_struct *t = &dccp_sk(sk)->dccps_xmitlet;
|
||||
|
||||
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
|
||||
sock_hold(sk);
|
||||
__tasklet_schedule(t);
|
||||
}
|
||||
}
|
||||
|
||||
static void ccid2_hc_tx_rto_expire(struct timer_list *t)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = from_timer(hc, t, tx_rtotimer);
|
||||
struct sock *sk = hc->sk;
|
||||
const bool sender_was_blocked = ccid2_cwnd_network_limited(hc);
|
||||
|
||||
bh_lock_sock(sk);
|
||||
if (sock_owned_by_user(sk)) {
|
||||
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + HZ / 5);
|
||||
goto out;
|
||||
}
|
||||
|
||||
ccid2_pr_debug("RTO_EXPIRE\n");
|
||||
|
||||
if (sk->sk_state == DCCP_CLOSED)
|
||||
goto out;
|
||||
|
||||
/* back-off timer */
|
||||
hc->tx_rto <<= 1;
|
||||
if (hc->tx_rto > DCCP_RTO_MAX)
|
||||
hc->tx_rto = DCCP_RTO_MAX;
|
||||
|
||||
/* adjust pipe, cwnd etc */
|
||||
hc->tx_ssthresh = hc->tx_cwnd / 2;
|
||||
if (hc->tx_ssthresh < 2)
|
||||
hc->tx_ssthresh = 2;
|
||||
hc->tx_cwnd = 1;
|
||||
hc->tx_pipe = 0;
|
||||
|
||||
/* clear state about stuff we sent */
|
||||
hc->tx_seqt = hc->tx_seqh;
|
||||
hc->tx_packets_acked = 0;
|
||||
|
||||
/* clear ack ratio state. */
|
||||
hc->tx_rpseq = 0;
|
||||
hc->tx_rpdupack = -1;
|
||||
ccid2_change_l_ack_ratio(sk, 1);
|
||||
|
||||
/* if we were blocked before, we may now send cwnd=1 packet */
|
||||
if (sender_was_blocked)
|
||||
dccp_tasklet_schedule(sk);
|
||||
/* restart backed-off timer */
|
||||
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + hc->tx_rto);
|
||||
out:
|
||||
bh_unlock_sock(sk);
|
||||
sock_put(sk);
|
||||
}
|
||||
|
||||
/*
|
||||
* Congestion window validation (RFC 2861).
|
||||
*/
|
||||
static bool ccid2_do_cwv = true;
|
||||
module_param(ccid2_do_cwv, bool, 0644);
|
||||
MODULE_PARM_DESC(ccid2_do_cwv, "Perform RFC2861 Congestion Window Validation");
|
||||
|
||||
/**
|
||||
* ccid2_update_used_window - Track how much of cwnd is actually used
|
||||
* @hc: socket to update window
|
||||
* @new_wnd: new window values to add into the filter
|
||||
*
|
||||
* This is done in addition to CWV. The sender needs to have an idea of how many
|
||||
* packets may be in flight, to set the local Sequence Window value accordingly
|
||||
* (RFC 4340, 7.5.2). The CWV mechanism is exploited to keep track of the
|
||||
* maximum-used window. We use an EWMA low-pass filter to filter out noise.
|
||||
*/
|
||||
static void ccid2_update_used_window(struct ccid2_hc_tx_sock *hc, u32 new_wnd)
|
||||
{
|
||||
hc->tx_expected_wnd = (3 * hc->tx_expected_wnd + new_wnd) / 4;
|
||||
}
|
||||
|
||||
/* This borrows the code of tcp_cwnd_application_limited() */
|
||||
static void ccid2_cwnd_application_limited(struct sock *sk, const u32 now)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
/* don't reduce cwnd below the initial window (IW) */
|
||||
u32 init_win = rfc3390_bytes_to_packets(dccp_sk(sk)->dccps_mss_cache),
|
||||
win_used = max(hc->tx_cwnd_used, init_win);
|
||||
|
||||
if (win_used < hc->tx_cwnd) {
|
||||
hc->tx_ssthresh = max(hc->tx_ssthresh,
|
||||
(hc->tx_cwnd >> 1) + (hc->tx_cwnd >> 2));
|
||||
hc->tx_cwnd = (hc->tx_cwnd + win_used) >> 1;
|
||||
}
|
||||
hc->tx_cwnd_used = 0;
|
||||
hc->tx_cwnd_stamp = now;
|
||||
|
||||
ccid2_check_l_ack_ratio(sk);
|
||||
}
|
||||
|
||||
/* This borrows the code of tcp_cwnd_restart() */
|
||||
static void ccid2_cwnd_restart(struct sock *sk, const u32 now)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
u32 cwnd = hc->tx_cwnd, restart_cwnd,
|
||||
iwnd = rfc3390_bytes_to_packets(dccp_sk(sk)->dccps_mss_cache);
|
||||
s32 delta = now - hc->tx_lsndtime;
|
||||
|
||||
hc->tx_ssthresh = max(hc->tx_ssthresh, (cwnd >> 1) + (cwnd >> 2));
|
||||
|
||||
/* don't reduce cwnd below the initial window (IW) */
|
||||
restart_cwnd = min(cwnd, iwnd);
|
||||
|
||||
while ((delta -= hc->tx_rto) >= 0 && cwnd > restart_cwnd)
|
||||
cwnd >>= 1;
|
||||
hc->tx_cwnd = max(cwnd, restart_cwnd);
|
||||
hc->tx_cwnd_stamp = now;
|
||||
hc->tx_cwnd_used = 0;
|
||||
|
||||
ccid2_check_l_ack_ratio(sk);
|
||||
}
|
||||
|
||||
static void ccid2_hc_tx_packet_sent(struct sock *sk, unsigned int len)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
const u32 now = ccid2_jiffies32;
|
||||
struct ccid2_seq *next;
|
||||
|
||||
/* slow-start after idle periods (RFC 2581, RFC 2861) */
|
||||
if (ccid2_do_cwv && !hc->tx_pipe &&
|
||||
(s32)(now - hc->tx_lsndtime) >= hc->tx_rto)
|
||||
ccid2_cwnd_restart(sk, now);
|
||||
|
||||
hc->tx_lsndtime = now;
|
||||
hc->tx_pipe += 1;
|
||||
|
||||
/* see whether cwnd was fully used (RFC 2861), update expected window */
|
||||
if (ccid2_cwnd_network_limited(hc)) {
|
||||
ccid2_update_used_window(hc, hc->tx_cwnd);
|
||||
hc->tx_cwnd_used = 0;
|
||||
hc->tx_cwnd_stamp = now;
|
||||
} else {
|
||||
if (hc->tx_pipe > hc->tx_cwnd_used)
|
||||
hc->tx_cwnd_used = hc->tx_pipe;
|
||||
|
||||
ccid2_update_used_window(hc, hc->tx_cwnd_used);
|
||||
|
||||
if (ccid2_do_cwv && (s32)(now - hc->tx_cwnd_stamp) >= hc->tx_rto)
|
||||
ccid2_cwnd_application_limited(sk, now);
|
||||
}
|
||||
|
||||
hc->tx_seqh->ccid2s_seq = dp->dccps_gss;
|
||||
hc->tx_seqh->ccid2s_acked = 0;
|
||||
hc->tx_seqh->ccid2s_sent = now;
|
||||
|
||||
next = hc->tx_seqh->ccid2s_next;
|
||||
/* check if we need to alloc more space */
|
||||
if (next == hc->tx_seqt) {
|
||||
if (ccid2_hc_tx_alloc_seq(hc)) {
|
||||
DCCP_CRIT("packet history - out of memory!");
|
||||
/* FIXME: find a more graceful way to bail out */
|
||||
return;
|
||||
}
|
||||
next = hc->tx_seqh->ccid2s_next;
|
||||
BUG_ON(next == hc->tx_seqt);
|
||||
}
|
||||
hc->tx_seqh = next;
|
||||
|
||||
ccid2_pr_debug("cwnd=%d pipe=%d\n", hc->tx_cwnd, hc->tx_pipe);
|
||||
|
||||
/*
|
||||
* FIXME: The code below is broken and the variables have been removed
|
||||
* from the socket struct. The `ackloss' variable was always set to 0,
|
||||
* and with arsent there are several problems:
|
||||
* (i) it doesn't just count the number of Acks, but all sent packets;
|
||||
* (ii) it is expressed in # of packets, not # of windows, so the
|
||||
* comparison below uses the wrong formula: Appendix A of RFC 4341
|
||||
* comes up with the number K = cwnd / (R^2 - R) of consecutive windows
|
||||
* of data with no lost or marked Ack packets. If arsent were the # of
|
||||
* consecutive Acks received without loss, then Ack Ratio needs to be
|
||||
* decreased by 1 when
|
||||
* arsent >= K * cwnd / R = cwnd^2 / (R^3 - R^2)
|
||||
* where cwnd / R is the number of Acks received per window of data
|
||||
* (cf. RFC 4341, App. A). The problems are that
|
||||
* - arsent counts other packets as well;
|
||||
* - the comparison uses a formula different from RFC 4341;
|
||||
* - computing a cubic/quadratic equation each time is too complicated.
|
||||
* Hence a different algorithm is needed.
|
||||
*/
|
||||
#if 0
|
||||
/* Ack Ratio. Need to maintain a concept of how many windows we sent */
|
||||
hc->tx_arsent++;
|
||||
/* We had an ack loss in this window... */
|
||||
if (hc->tx_ackloss) {
|
||||
if (hc->tx_arsent >= hc->tx_cwnd) {
|
||||
hc->tx_arsent = 0;
|
||||
hc->tx_ackloss = 0;
|
||||
}
|
||||
} else {
|
||||
/* No acks lost up to now... */
|
||||
/* decrease ack ratio if enough packets were sent */
|
||||
if (dp->dccps_l_ack_ratio > 1) {
|
||||
/* XXX don't calculate denominator each time */
|
||||
int denom = dp->dccps_l_ack_ratio * dp->dccps_l_ack_ratio -
|
||||
dp->dccps_l_ack_ratio;
|
||||
|
||||
denom = hc->tx_cwnd * hc->tx_cwnd / denom;
|
||||
|
||||
if (hc->tx_arsent >= denom) {
|
||||
ccid2_change_l_ack_ratio(sk, dp->dccps_l_ack_ratio - 1);
|
||||
hc->tx_arsent = 0;
|
||||
}
|
||||
} else {
|
||||
/* we can't increase ack ratio further [1] */
|
||||
hc->tx_arsent = 0; /* or maybe set it to cwnd*/
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + hc->tx_rto);
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_CCID2_DEBUG
|
||||
do {
|
||||
struct ccid2_seq *seqp = hc->tx_seqt;
|
||||
|
||||
while (seqp != hc->tx_seqh) {
|
||||
ccid2_pr_debug("out seq=%llu acked=%d time=%u\n",
|
||||
(unsigned long long)seqp->ccid2s_seq,
|
||||
seqp->ccid2s_acked, seqp->ccid2s_sent);
|
||||
seqp = seqp->ccid2s_next;
|
||||
}
|
||||
} while (0);
|
||||
ccid2_pr_debug("=========\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid2_rtt_estimator - Sample RTT and compute RTO using RFC2988 algorithm
|
||||
* @sk: socket to perform estimator on
|
||||
* @mrtt: measured RTT
|
||||
*
|
||||
* This code is almost identical with TCP's tcp_rtt_estimator(), since
|
||||
* - it has a higher sampling frequency (recommended by RFC 1323),
|
||||
* - the RTO does not collapse into RTT due to RTTVAR going towards zero,
|
||||
* - it is simple (cf. more complex proposals such as Eifel timer or research
|
||||
* which suggests that the gain should be set according to window size),
|
||||
* - in tests it was found to work well with CCID2 [gerrit].
|
||||
*/
|
||||
static void ccid2_rtt_estimator(struct sock *sk, const long mrtt)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
long m = mrtt ? : 1;
|
||||
|
||||
if (hc->tx_srtt == 0) {
|
||||
/* First measurement m */
|
||||
hc->tx_srtt = m << 3;
|
||||
hc->tx_mdev = m << 1;
|
||||
|
||||
hc->tx_mdev_max = max(hc->tx_mdev, tcp_rto_min(sk));
|
||||
hc->tx_rttvar = hc->tx_mdev_max;
|
||||
|
||||
hc->tx_rtt_seq = dccp_sk(sk)->dccps_gss;
|
||||
} else {
|
||||
/* Update scaled SRTT as SRTT += 1/8 * (m - SRTT) */
|
||||
m -= (hc->tx_srtt >> 3);
|
||||
hc->tx_srtt += m;
|
||||
|
||||
/* Similarly, update scaled mdev with regard to |m| */
|
||||
if (m < 0) {
|
||||
m = -m;
|
||||
m -= (hc->tx_mdev >> 2);
|
||||
/*
|
||||
* This neutralises RTO increase when RTT < SRTT - mdev
|
||||
* (see P. Sarolahti, A. Kuznetsov,"Congestion Control
|
||||
* in Linux TCP", USENIX 2002, pp. 49-62).
|
||||
*/
|
||||
if (m > 0)
|
||||
m >>= 3;
|
||||
} else {
|
||||
m -= (hc->tx_mdev >> 2);
|
||||
}
|
||||
hc->tx_mdev += m;
|
||||
|
||||
if (hc->tx_mdev > hc->tx_mdev_max) {
|
||||
hc->tx_mdev_max = hc->tx_mdev;
|
||||
if (hc->tx_mdev_max > hc->tx_rttvar)
|
||||
hc->tx_rttvar = hc->tx_mdev_max;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decay RTTVAR at most once per flight, exploiting that
|
||||
* 1) pipe <= cwnd <= Sequence_Window = W (RFC 4340, 7.5.2)
|
||||
* 2) AWL = GSS-W+1 <= GAR <= GSS (RFC 4340, 7.5.1)
|
||||
* GAR is a useful bound for FlightSize = pipe.
|
||||
* AWL is probably too low here, as it over-estimates pipe.
|
||||
*/
|
||||
if (after48(dccp_sk(sk)->dccps_gar, hc->tx_rtt_seq)) {
|
||||
if (hc->tx_mdev_max < hc->tx_rttvar)
|
||||
hc->tx_rttvar -= (hc->tx_rttvar -
|
||||
hc->tx_mdev_max) >> 2;
|
||||
hc->tx_rtt_seq = dccp_sk(sk)->dccps_gss;
|
||||
hc->tx_mdev_max = tcp_rto_min(sk);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Set RTO from SRTT and RTTVAR
|
||||
* As in TCP, 4 * RTTVAR >= TCP_RTO_MIN, giving a minimum RTO of 200 ms.
|
||||
* This agrees with RFC 4341, 5:
|
||||
* "Because DCCP does not retransmit data, DCCP does not require
|
||||
* TCP's recommended minimum timeout of one second".
|
||||
*/
|
||||
hc->tx_rto = (hc->tx_srtt >> 3) + hc->tx_rttvar;
|
||||
|
||||
if (hc->tx_rto > DCCP_RTO_MAX)
|
||||
hc->tx_rto = DCCP_RTO_MAX;
|
||||
}
|
||||
|
||||
static void ccid2_new_ack(struct sock *sk, struct ccid2_seq *seqp,
|
||||
unsigned int *maxincr)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
int r_seq_used = hc->tx_cwnd / dp->dccps_l_ack_ratio;
|
||||
|
||||
if (hc->tx_cwnd < dp->dccps_l_seq_win &&
|
||||
r_seq_used < dp->dccps_r_seq_win) {
|
||||
if (hc->tx_cwnd < hc->tx_ssthresh) {
|
||||
if (*maxincr > 0 && ++hc->tx_packets_acked >= 2) {
|
||||
hc->tx_cwnd += 1;
|
||||
*maxincr -= 1;
|
||||
hc->tx_packets_acked = 0;
|
||||
}
|
||||
} else if (++hc->tx_packets_acked >= hc->tx_cwnd) {
|
||||
hc->tx_cwnd += 1;
|
||||
hc->tx_packets_acked = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Adjust the local sequence window and the ack ratio to allow about
|
||||
* 5 times the number of packets in the network (RFC 4340 7.5.2)
|
||||
*/
|
||||
if (r_seq_used * CCID2_WIN_CHANGE_FACTOR >= dp->dccps_r_seq_win)
|
||||
ccid2_change_l_ack_ratio(sk, dp->dccps_l_ack_ratio * 2);
|
||||
else if (r_seq_used * CCID2_WIN_CHANGE_FACTOR < dp->dccps_r_seq_win/2)
|
||||
ccid2_change_l_ack_ratio(sk, dp->dccps_l_ack_ratio / 2 ? : 1U);
|
||||
|
||||
if (hc->tx_cwnd * CCID2_WIN_CHANGE_FACTOR >= dp->dccps_l_seq_win)
|
||||
ccid2_change_l_seq_window(sk, dp->dccps_l_seq_win * 2);
|
||||
else if (hc->tx_cwnd * CCID2_WIN_CHANGE_FACTOR < dp->dccps_l_seq_win/2)
|
||||
ccid2_change_l_seq_window(sk, dp->dccps_l_seq_win / 2);
|
||||
|
||||
/*
|
||||
* FIXME: RTT is sampled several times per acknowledgment (for each
|
||||
* entry in the Ack Vector), instead of once per Ack (as in TCP SACK).
|
||||
* This causes the RTT to be over-estimated, since the older entries
|
||||
* in the Ack Vector have earlier sending times.
|
||||
* The cleanest solution is to not use the ccid2s_sent field at all
|
||||
* and instead use DCCP timestamps: requires changes in other places.
|
||||
*/
|
||||
ccid2_rtt_estimator(sk, ccid2_jiffies32 - seqp->ccid2s_sent);
|
||||
}
|
||||
|
||||
static void ccid2_congestion_event(struct sock *sk, struct ccid2_seq *seqp)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
|
||||
if ((s32)(seqp->ccid2s_sent - hc->tx_last_cong) < 0) {
|
||||
ccid2_pr_debug("Multiple losses in an RTT---treating as one\n");
|
||||
return;
|
||||
}
|
||||
|
||||
hc->tx_last_cong = ccid2_jiffies32;
|
||||
|
||||
hc->tx_cwnd = hc->tx_cwnd / 2 ? : 1U;
|
||||
hc->tx_ssthresh = max(hc->tx_cwnd, 2U);
|
||||
|
||||
ccid2_check_l_ack_ratio(sk);
|
||||
}
|
||||
|
||||
static int ccid2_hc_tx_parse_options(struct sock *sk, u8 packet_type,
|
||||
u8 option, u8 *optval, u8 optlen)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
|
||||
switch (option) {
|
||||
case DCCPO_ACK_VECTOR_0:
|
||||
case DCCPO_ACK_VECTOR_1:
|
||||
return dccp_ackvec_parsed_add(&hc->tx_av_chunks, optval, optlen,
|
||||
option - DCCPO_ACK_VECTOR_0);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccid2_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
const bool sender_was_blocked = ccid2_cwnd_network_limited(hc);
|
||||
struct dccp_ackvec_parsed *avp;
|
||||
u64 ackno, seqno;
|
||||
struct ccid2_seq *seqp;
|
||||
int done = 0;
|
||||
unsigned int maxincr = 0;
|
||||
|
||||
/* check reverse path congestion */
|
||||
seqno = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
|
||||
/* XXX this whole "algorithm" is broken. Need to fix it to keep track
|
||||
* of the seqnos of the dupacks so that rpseq and rpdupack are correct
|
||||
* -sorbo.
|
||||
*/
|
||||
/* need to bootstrap */
|
||||
if (hc->tx_rpdupack == -1) {
|
||||
hc->tx_rpdupack = 0;
|
||||
hc->tx_rpseq = seqno;
|
||||
} else {
|
||||
/* check if packet is consecutive */
|
||||
if (dccp_delta_seqno(hc->tx_rpseq, seqno) == 1)
|
||||
hc->tx_rpseq = seqno;
|
||||
/* it's a later packet */
|
||||
else if (after48(seqno, hc->tx_rpseq)) {
|
||||
hc->tx_rpdupack++;
|
||||
|
||||
/* check if we got enough dupacks */
|
||||
if (hc->tx_rpdupack >= NUMDUPACK) {
|
||||
hc->tx_rpdupack = -1; /* XXX lame */
|
||||
hc->tx_rpseq = 0;
|
||||
#ifdef __CCID2_COPES_GRACEFULLY_WITH_ACK_CONGESTION_CONTROL__
|
||||
/*
|
||||
* FIXME: Ack Congestion Control is broken; in
|
||||
* the current state instabilities occurred with
|
||||
* Ack Ratios greater than 1; causing hang-ups
|
||||
* and long RTO timeouts. This needs to be fixed
|
||||
* before opening up dynamic changes. -- gerrit
|
||||
*/
|
||||
ccid2_change_l_ack_ratio(sk, 2 * dp->dccps_l_ack_ratio);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check forward path congestion */
|
||||
if (dccp_packet_without_ack(skb))
|
||||
return;
|
||||
|
||||
/* still didn't send out new data packets */
|
||||
if (hc->tx_seqh == hc->tx_seqt)
|
||||
goto done;
|
||||
|
||||
ackno = DCCP_SKB_CB(skb)->dccpd_ack_seq;
|
||||
if (after48(ackno, hc->tx_high_ack))
|
||||
hc->tx_high_ack = ackno;
|
||||
|
||||
seqp = hc->tx_seqt;
|
||||
while (before48(seqp->ccid2s_seq, ackno)) {
|
||||
seqp = seqp->ccid2s_next;
|
||||
if (seqp == hc->tx_seqh) {
|
||||
seqp = hc->tx_seqh->ccid2s_prev;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* In slow-start, cwnd can increase up to a maximum of Ack Ratio/2
|
||||
* packets per acknowledgement. Rounding up avoids that cwnd is not
|
||||
* advanced when Ack Ratio is 1 and gives a slight edge otherwise.
|
||||
*/
|
||||
if (hc->tx_cwnd < hc->tx_ssthresh)
|
||||
maxincr = DIV_ROUND_UP(dp->dccps_l_ack_ratio, 2);
|
||||
|
||||
/* go through all ack vectors */
|
||||
list_for_each_entry(avp, &hc->tx_av_chunks, node) {
|
||||
/* go through this ack vector */
|
||||
for (; avp->len--; avp->vec++) {
|
||||
u64 ackno_end_rl = SUB48(ackno,
|
||||
dccp_ackvec_runlen(avp->vec));
|
||||
|
||||
ccid2_pr_debug("ackvec %llu |%u,%u|\n",
|
||||
(unsigned long long)ackno,
|
||||
dccp_ackvec_state(avp->vec) >> 6,
|
||||
dccp_ackvec_runlen(avp->vec));
|
||||
/* if the seqno we are analyzing is larger than the
|
||||
* current ackno, then move towards the tail of our
|
||||
* seqnos.
|
||||
*/
|
||||
while (after48(seqp->ccid2s_seq, ackno)) {
|
||||
if (seqp == hc->tx_seqt) {
|
||||
done = 1;
|
||||
break;
|
||||
}
|
||||
seqp = seqp->ccid2s_prev;
|
||||
}
|
||||
if (done)
|
||||
break;
|
||||
|
||||
/* check all seqnos in the range of the vector
|
||||
* run length
|
||||
*/
|
||||
while (between48(seqp->ccid2s_seq,ackno_end_rl,ackno)) {
|
||||
const u8 state = dccp_ackvec_state(avp->vec);
|
||||
|
||||
/* new packet received or marked */
|
||||
if (state != DCCPAV_NOT_RECEIVED &&
|
||||
!seqp->ccid2s_acked) {
|
||||
if (state == DCCPAV_ECN_MARKED)
|
||||
ccid2_congestion_event(sk,
|
||||
seqp);
|
||||
else
|
||||
ccid2_new_ack(sk, seqp,
|
||||
&maxincr);
|
||||
|
||||
seqp->ccid2s_acked = 1;
|
||||
ccid2_pr_debug("Got ack for %llu\n",
|
||||
(unsigned long long)seqp->ccid2s_seq);
|
||||
hc->tx_pipe--;
|
||||
}
|
||||
if (seqp == hc->tx_seqt) {
|
||||
done = 1;
|
||||
break;
|
||||
}
|
||||
seqp = seqp->ccid2s_prev;
|
||||
}
|
||||
if (done)
|
||||
break;
|
||||
|
||||
ackno = SUB48(ackno_end_rl, 1);
|
||||
}
|
||||
if (done)
|
||||
break;
|
||||
}
|
||||
|
||||
/* The state about what is acked should be correct now
|
||||
* Check for NUMDUPACK
|
||||
*/
|
||||
seqp = hc->tx_seqt;
|
||||
while (before48(seqp->ccid2s_seq, hc->tx_high_ack)) {
|
||||
seqp = seqp->ccid2s_next;
|
||||
if (seqp == hc->tx_seqh) {
|
||||
seqp = hc->tx_seqh->ccid2s_prev;
|
||||
break;
|
||||
}
|
||||
}
|
||||
done = 0;
|
||||
while (1) {
|
||||
if (seqp->ccid2s_acked) {
|
||||
done++;
|
||||
if (done == NUMDUPACK)
|
||||
break;
|
||||
}
|
||||
if (seqp == hc->tx_seqt)
|
||||
break;
|
||||
seqp = seqp->ccid2s_prev;
|
||||
}
|
||||
|
||||
/* If there are at least 3 acknowledgements, anything unacknowledged
|
||||
* below the last sequence number is considered lost
|
||||
*/
|
||||
if (done == NUMDUPACK) {
|
||||
struct ccid2_seq *last_acked = seqp;
|
||||
|
||||
/* check for lost packets */
|
||||
while (1) {
|
||||
if (!seqp->ccid2s_acked) {
|
||||
ccid2_pr_debug("Packet lost: %llu\n",
|
||||
(unsigned long long)seqp->ccid2s_seq);
|
||||
/* XXX need to traverse from tail -> head in
|
||||
* order to detect multiple congestion events in
|
||||
* one ack vector.
|
||||
*/
|
||||
ccid2_congestion_event(sk, seqp);
|
||||
hc->tx_pipe--;
|
||||
}
|
||||
if (seqp == hc->tx_seqt)
|
||||
break;
|
||||
seqp = seqp->ccid2s_prev;
|
||||
}
|
||||
|
||||
hc->tx_seqt = last_acked;
|
||||
}
|
||||
|
||||
/* trim acked packets in tail */
|
||||
while (hc->tx_seqt != hc->tx_seqh) {
|
||||
if (!hc->tx_seqt->ccid2s_acked)
|
||||
break;
|
||||
|
||||
hc->tx_seqt = hc->tx_seqt->ccid2s_next;
|
||||
}
|
||||
|
||||
/* restart RTO timer if not all outstanding data has been acked */
|
||||
if (hc->tx_pipe == 0)
|
||||
sk_stop_timer(sk, &hc->tx_rtotimer);
|
||||
else
|
||||
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + hc->tx_rto);
|
||||
done:
|
||||
/* check if incoming Acks allow pending packets to be sent */
|
||||
if (sender_was_blocked && !ccid2_cwnd_network_limited(hc))
|
||||
dccp_tasklet_schedule(sk);
|
||||
dccp_ackvec_parsed_cleanup(&hc->tx_av_chunks);
|
||||
}
|
||||
|
||||
static int ccid2_hc_tx_init(struct ccid *ccid, struct sock *sk)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid_priv(ccid);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
u32 max_ratio;
|
||||
|
||||
/* RFC 4341, 5: initialise ssthresh to arbitrarily high (max) value */
|
||||
hc->tx_ssthresh = ~0U;
|
||||
|
||||
/* Use larger initial windows (RFC 4341, section 5). */
|
||||
hc->tx_cwnd = rfc3390_bytes_to_packets(dp->dccps_mss_cache);
|
||||
hc->tx_expected_wnd = hc->tx_cwnd;
|
||||
|
||||
/* Make sure that Ack Ratio is enabled and within bounds. */
|
||||
max_ratio = DIV_ROUND_UP(hc->tx_cwnd, 2);
|
||||
if (dp->dccps_l_ack_ratio == 0 || dp->dccps_l_ack_ratio > max_ratio)
|
||||
dp->dccps_l_ack_ratio = max_ratio;
|
||||
|
||||
/* XXX init ~ to window size... */
|
||||
if (ccid2_hc_tx_alloc_seq(hc))
|
||||
return -ENOMEM;
|
||||
|
||||
hc->tx_rto = DCCP_TIMEOUT_INIT;
|
||||
hc->tx_rpdupack = -1;
|
||||
hc->tx_last_cong = hc->tx_lsndtime = hc->tx_cwnd_stamp = ccid2_jiffies32;
|
||||
hc->tx_cwnd_used = 0;
|
||||
hc->sk = sk;
|
||||
timer_setup(&hc->tx_rtotimer, ccid2_hc_tx_rto_expire, 0);
|
||||
INIT_LIST_HEAD(&hc->tx_av_chunks);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccid2_hc_tx_exit(struct sock *sk)
|
||||
{
|
||||
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
|
||||
int i;
|
||||
|
||||
sk_stop_timer(sk, &hc->tx_rtotimer);
|
||||
|
||||
for (i = 0; i < hc->tx_seqbufc; i++)
|
||||
kfree(hc->tx_seqbuf[i]);
|
||||
hc->tx_seqbufc = 0;
|
||||
dccp_ackvec_parsed_cleanup(&hc->tx_av_chunks);
|
||||
}
|
||||
|
||||
static void ccid2_hc_rx_packet_recv(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct ccid2_hc_rx_sock *hc = ccid2_hc_rx_sk(sk);
|
||||
|
||||
if (!dccp_data_packet(skb))
|
||||
return;
|
||||
|
||||
if (++hc->rx_num_data_pkts >= dccp_sk(sk)->dccps_r_ack_ratio) {
|
||||
dccp_send_ack(sk);
|
||||
hc->rx_num_data_pkts = 0;
|
||||
}
|
||||
}
|
||||
|
||||
struct ccid_operations ccid2_ops = {
|
||||
.ccid_id = DCCPC_CCID2,
|
||||
.ccid_name = "TCP-like",
|
||||
.ccid_hc_tx_obj_size = sizeof(struct ccid2_hc_tx_sock),
|
||||
.ccid_hc_tx_init = ccid2_hc_tx_init,
|
||||
.ccid_hc_tx_exit = ccid2_hc_tx_exit,
|
||||
.ccid_hc_tx_send_packet = ccid2_hc_tx_send_packet,
|
||||
.ccid_hc_tx_packet_sent = ccid2_hc_tx_packet_sent,
|
||||
.ccid_hc_tx_parse_options = ccid2_hc_tx_parse_options,
|
||||
.ccid_hc_tx_packet_recv = ccid2_hc_tx_packet_recv,
|
||||
.ccid_hc_rx_obj_size = sizeof(struct ccid2_hc_rx_sock),
|
||||
.ccid_hc_rx_packet_recv = ccid2_hc_rx_packet_recv,
|
||||
};
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_CCID2_DEBUG
|
||||
module_param(ccid2_debug, bool, 0644);
|
||||
MODULE_PARM_DESC(ccid2_debug, "Enable CCID-2 debug messages");
|
||||
#endif
|
|
@ -1,121 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
* Copyright (c) 2005 Andrea Bittau <a.bittau@cs.ucl.ac.uk>
|
||||
*/
|
||||
#ifndef _DCCP_CCID2_H_
|
||||
#define _DCCP_CCID2_H_
|
||||
|
||||
#include <linux/timer.h>
|
||||
#include <linux/types.h>
|
||||
#include "../ccid.h"
|
||||
#include "../dccp.h"
|
||||
|
||||
/*
|
||||
* CCID-2 timestamping faces the same issues as TCP timestamping.
|
||||
* Hence we reuse/share as much of the code as possible.
|
||||
*/
|
||||
#define ccid2_jiffies32 ((u32)jiffies)
|
||||
|
||||
/* NUMDUPACK parameter from RFC 4341, p. 6 */
|
||||
#define NUMDUPACK 3
|
||||
|
||||
struct ccid2_seq {
|
||||
u64 ccid2s_seq;
|
||||
u32 ccid2s_sent;
|
||||
int ccid2s_acked;
|
||||
struct ccid2_seq *ccid2s_prev;
|
||||
struct ccid2_seq *ccid2s_next;
|
||||
};
|
||||
|
||||
#define CCID2_SEQBUF_LEN 1024
|
||||
#define CCID2_SEQBUF_MAX 128
|
||||
|
||||
/*
|
||||
* Multiple of congestion window to keep the sequence window at
|
||||
* (RFC 4340 7.5.2)
|
||||
*/
|
||||
#define CCID2_WIN_CHANGE_FACTOR 5
|
||||
|
||||
/**
|
||||
* struct ccid2_hc_tx_sock - CCID2 TX half connection
|
||||
* @tx_{cwnd,ssthresh,pipe}: as per RFC 4341, section 5
|
||||
* @tx_packets_acked: Ack counter for deriving cwnd growth (RFC 3465)
|
||||
* @tx_srtt: smoothed RTT estimate, scaled by 2^3
|
||||
* @tx_mdev: smoothed RTT variation, scaled by 2^2
|
||||
* @tx_mdev_max: maximum of @mdev during one flight
|
||||
* @tx_rttvar: moving average/maximum of @mdev_max
|
||||
* @tx_rto: RTO value deriving from SRTT and RTTVAR (RFC 2988)
|
||||
* @tx_rtt_seq: to decay RTTVAR at most once per flight
|
||||
* @tx_cwnd_used: actually used cwnd, W_used of RFC 2861
|
||||
* @tx_expected_wnd: moving average of @tx_cwnd_used
|
||||
* @tx_cwnd_stamp: to track idle periods in CWV
|
||||
* @tx_lsndtime: last time (in jiffies) a data packet was sent
|
||||
* @tx_rpseq: last consecutive seqno
|
||||
* @tx_rpdupack: dupacks since rpseq
|
||||
* @tx_av_chunks: list of Ack Vectors received on current skb
|
||||
*/
|
||||
struct ccid2_hc_tx_sock {
|
||||
u32 tx_cwnd;
|
||||
u32 tx_ssthresh;
|
||||
u32 tx_pipe;
|
||||
u32 tx_packets_acked;
|
||||
struct ccid2_seq *tx_seqbuf[CCID2_SEQBUF_MAX];
|
||||
int tx_seqbufc;
|
||||
struct ccid2_seq *tx_seqh;
|
||||
struct ccid2_seq *tx_seqt;
|
||||
|
||||
/* RTT measurement: variables/principles are the same as in TCP */
|
||||
u32 tx_srtt,
|
||||
tx_mdev,
|
||||
tx_mdev_max,
|
||||
tx_rttvar,
|
||||
tx_rto;
|
||||
u64 tx_rtt_seq:48;
|
||||
struct timer_list tx_rtotimer;
|
||||
struct sock *sk;
|
||||
|
||||
/* Congestion Window validation (optional, RFC 2861) */
|
||||
u32 tx_cwnd_used,
|
||||
tx_expected_wnd,
|
||||
tx_cwnd_stamp,
|
||||
tx_lsndtime;
|
||||
|
||||
u64 tx_rpseq;
|
||||
int tx_rpdupack;
|
||||
u32 tx_last_cong;
|
||||
u64 tx_high_ack;
|
||||
struct list_head tx_av_chunks;
|
||||
};
|
||||
|
||||
static inline bool ccid2_cwnd_network_limited(struct ccid2_hc_tx_sock *hc)
|
||||
{
|
||||
return hc->tx_pipe >= hc->tx_cwnd;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert RFC 3390 larger initial window into an equivalent number of packets.
|
||||
* This is based on the numbers specified in RFC 5681, 3.1.
|
||||
*/
|
||||
static inline u32 rfc3390_bytes_to_packets(const u32 smss)
|
||||
{
|
||||
return smss <= 1095 ? 4 : (smss > 2190 ? 2 : 3);
|
||||
}
|
||||
|
||||
/**
|
||||
* struct ccid2_hc_rx_sock - Receiving end of CCID-2 half-connection
|
||||
* @rx_num_data_pkts: number of data packets received since last feedback
|
||||
*/
|
||||
struct ccid2_hc_rx_sock {
|
||||
u32 rx_num_data_pkts;
|
||||
};
|
||||
|
||||
static inline struct ccid2_hc_tx_sock *ccid2_hc_tx_sk(const struct sock *sk)
|
||||
{
|
||||
return ccid_priv(dccp_sk(sk)->dccps_hc_tx_ccid);
|
||||
}
|
||||
|
||||
static inline struct ccid2_hc_rx_sock *ccid2_hc_rx_sk(const struct sock *sk)
|
||||
{
|
||||
return ccid_priv(dccp_sk(sk)->dccps_hc_rx_ccid);
|
||||
}
|
||||
#endif /* _DCCP_CCID2_H_ */
|
|
@ -1,866 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2005-7 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
*
|
||||
* This code has been developed by the University of Waikato WAND
|
||||
* research group. For further information please see https://www.wand.net.nz/
|
||||
*
|
||||
* This code also uses code from Lulea University, rereleased as GPL by its
|
||||
* authors:
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*
|
||||
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
|
||||
* and to make it work as a loadable module in the DCCP stack written by
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
|
||||
*
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
#include "../dccp.h"
|
||||
#include "ccid3.h"
|
||||
|
||||
#include <linux/unaligned.h>
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
|
||||
static bool ccid3_debug;
|
||||
#define ccid3_pr_debug(format, a...) DCCP_PR_DEBUG(ccid3_debug, format, ##a)
|
||||
#else
|
||||
#define ccid3_pr_debug(format, a...)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Transmitter Half-Connection Routines
|
||||
*/
|
||||
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
|
||||
static const char *ccid3_tx_state_name(enum ccid3_hc_tx_states state)
|
||||
{
|
||||
static const char *const ccid3_state_names[] = {
|
||||
[TFRC_SSTATE_NO_SENT] = "NO_SENT",
|
||||
[TFRC_SSTATE_NO_FBACK] = "NO_FBACK",
|
||||
[TFRC_SSTATE_FBACK] = "FBACK",
|
||||
};
|
||||
|
||||
return ccid3_state_names[state];
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ccid3_hc_tx_set_state(struct sock *sk,
|
||||
enum ccid3_hc_tx_states state)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
enum ccid3_hc_tx_states oldstate = hc->tx_state;
|
||||
|
||||
ccid3_pr_debug("%s(%p) %-8.8s -> %s\n",
|
||||
dccp_role(sk), sk, ccid3_tx_state_name(oldstate),
|
||||
ccid3_tx_state_name(state));
|
||||
WARN_ON(state == oldstate);
|
||||
hc->tx_state = state;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute the initial sending rate X_init in the manner of RFC 3390:
|
||||
*
|
||||
* X_init = min(4 * s, max(2 * s, 4380 bytes)) / RTT
|
||||
*
|
||||
* Note that RFC 3390 uses MSS, RFC 4342 refers to RFC 3390, and rfc3448bis
|
||||
* (rev-02) clarifies the use of RFC 3390 with regard to the above formula.
|
||||
* For consistency with other parts of the code, X_init is scaled by 2^6.
|
||||
*/
|
||||
static inline u64 rfc3390_initial_rate(struct sock *sk)
|
||||
{
|
||||
const struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
const __u32 w_init = clamp_t(__u32, 4380U, 2 * hc->tx_s, 4 * hc->tx_s);
|
||||
|
||||
return scaled_div(w_init << 6, hc->tx_rtt);
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid3_update_send_interval - Calculate new t_ipi = s / X_inst
|
||||
* @hc: socket to have the send interval updated
|
||||
*
|
||||
* This respects the granularity of X_inst (64 * bytes/second).
|
||||
*/
|
||||
static void ccid3_update_send_interval(struct ccid3_hc_tx_sock *hc)
|
||||
{
|
||||
hc->tx_t_ipi = scaled_div32(((u64)hc->tx_s) << 6, hc->tx_x);
|
||||
|
||||
DCCP_BUG_ON(hc->tx_t_ipi == 0);
|
||||
ccid3_pr_debug("t_ipi=%u, s=%u, X=%u\n", hc->tx_t_ipi,
|
||||
hc->tx_s, (unsigned int)(hc->tx_x >> 6));
|
||||
}
|
||||
|
||||
static u32 ccid3_hc_tx_idle_rtt(struct ccid3_hc_tx_sock *hc, ktime_t now)
|
||||
{
|
||||
u32 delta = ktime_us_delta(now, hc->tx_t_last_win_count);
|
||||
|
||||
return delta / hc->tx_rtt;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid3_hc_tx_update_x - Update allowed sending rate X
|
||||
* @sk: socket to be updated
|
||||
* @stamp: most recent time if available - can be left NULL.
|
||||
*
|
||||
* This function tracks draft rfc3448bis, check there for latest details.
|
||||
*
|
||||
* Note: X and X_recv are both stored in units of 64 * bytes/second, to support
|
||||
* fine-grained resolution of sending rates. This requires scaling by 2^6
|
||||
* throughout the code. Only X_calc is unscaled (in bytes/second).
|
||||
*
|
||||
*/
|
||||
static void ccid3_hc_tx_update_x(struct sock *sk, ktime_t *stamp)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
__u64 min_rate = 2 * hc->tx_x_recv;
|
||||
const __u64 old_x = hc->tx_x;
|
||||
ktime_t now = stamp ? *stamp : ktime_get_real();
|
||||
|
||||
/*
|
||||
* Handle IDLE periods: do not reduce below RFC3390 initial sending rate
|
||||
* when idling [RFC 4342, 5.1]. Definition of idling is from rfc3448bis:
|
||||
* a sender is idle if it has not sent anything over a 2-RTT-period.
|
||||
* For consistency with X and X_recv, min_rate is also scaled by 2^6.
|
||||
*/
|
||||
if (ccid3_hc_tx_idle_rtt(hc, now) >= 2) {
|
||||
min_rate = rfc3390_initial_rate(sk);
|
||||
min_rate = max(min_rate, 2 * hc->tx_x_recv);
|
||||
}
|
||||
|
||||
if (hc->tx_p > 0) {
|
||||
|
||||
hc->tx_x = min(((__u64)hc->tx_x_calc) << 6, min_rate);
|
||||
hc->tx_x = max(hc->tx_x, (((__u64)hc->tx_s) << 6) / TFRC_T_MBI);
|
||||
|
||||
} else if (ktime_us_delta(now, hc->tx_t_ld) - (s64)hc->tx_rtt >= 0) {
|
||||
|
||||
hc->tx_x = min(2 * hc->tx_x, min_rate);
|
||||
hc->tx_x = max(hc->tx_x,
|
||||
scaled_div(((__u64)hc->tx_s) << 6, hc->tx_rtt));
|
||||
hc->tx_t_ld = now;
|
||||
}
|
||||
|
||||
if (hc->tx_x != old_x) {
|
||||
ccid3_pr_debug("X_prev=%u, X_now=%u, X_calc=%u, "
|
||||
"X_recv=%u\n", (unsigned int)(old_x >> 6),
|
||||
(unsigned int)(hc->tx_x >> 6), hc->tx_x_calc,
|
||||
(unsigned int)(hc->tx_x_recv >> 6));
|
||||
|
||||
ccid3_update_send_interval(hc);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid3_hc_tx_update_s - Track the mean packet size `s'
|
||||
* @hc: socket to be updated
|
||||
* @len: DCCP packet payload size in bytes
|
||||
*
|
||||
* cf. RFC 4342, 5.3 and RFC 3448, 4.1
|
||||
*/
|
||||
static inline void ccid3_hc_tx_update_s(struct ccid3_hc_tx_sock *hc, int len)
|
||||
{
|
||||
const u16 old_s = hc->tx_s;
|
||||
|
||||
hc->tx_s = tfrc_ewma(hc->tx_s, len, 9);
|
||||
|
||||
if (hc->tx_s != old_s)
|
||||
ccid3_update_send_interval(hc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Update Window Counter using the algorithm from [RFC 4342, 8.1].
|
||||
* As elsewhere, RTT > 0 is assumed by using dccp_sample_rtt().
|
||||
*/
|
||||
static inline void ccid3_hc_tx_update_win_count(struct ccid3_hc_tx_sock *hc,
|
||||
ktime_t now)
|
||||
{
|
||||
u32 delta = ktime_us_delta(now, hc->tx_t_last_win_count),
|
||||
quarter_rtts = (4 * delta) / hc->tx_rtt;
|
||||
|
||||
if (quarter_rtts > 0) {
|
||||
hc->tx_t_last_win_count = now;
|
||||
hc->tx_last_win_count += min(quarter_rtts, 5U);
|
||||
hc->tx_last_win_count &= 0xF; /* mod 16 */
|
||||
}
|
||||
}
|
||||
|
||||
static void ccid3_hc_tx_no_feedback_timer(struct timer_list *t)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = from_timer(hc, t, tx_no_feedback_timer);
|
||||
struct sock *sk = hc->sk;
|
||||
unsigned long t_nfb = USEC_PER_SEC / 5;
|
||||
|
||||
bh_lock_sock(sk);
|
||||
if (sock_owned_by_user(sk)) {
|
||||
/* Try again later. */
|
||||
/* XXX: set some sensible MIB */
|
||||
goto restart_timer;
|
||||
}
|
||||
|
||||
ccid3_pr_debug("%s(%p, state=%s) - entry\n", dccp_role(sk), sk,
|
||||
ccid3_tx_state_name(hc->tx_state));
|
||||
|
||||
/* Ignore and do not restart after leaving the established state */
|
||||
if ((1 << sk->sk_state) & ~(DCCPF_OPEN | DCCPF_PARTOPEN))
|
||||
goto out;
|
||||
|
||||
/* Reset feedback state to "no feedback received" */
|
||||
if (hc->tx_state == TFRC_SSTATE_FBACK)
|
||||
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_NO_FBACK);
|
||||
|
||||
/*
|
||||
* Determine new allowed sending rate X as per draft rfc3448bis-00, 4.4
|
||||
* RTO is 0 if and only if no feedback has been received yet.
|
||||
*/
|
||||
if (hc->tx_t_rto == 0 || hc->tx_p == 0) {
|
||||
|
||||
/* halve send rate directly */
|
||||
hc->tx_x = max(hc->tx_x / 2,
|
||||
(((__u64)hc->tx_s) << 6) / TFRC_T_MBI);
|
||||
ccid3_update_send_interval(hc);
|
||||
} else {
|
||||
/*
|
||||
* Modify the cached value of X_recv
|
||||
*
|
||||
* If (X_calc > 2 * X_recv)
|
||||
* X_recv = max(X_recv / 2, s / (2 * t_mbi));
|
||||
* Else
|
||||
* X_recv = X_calc / 4;
|
||||
*
|
||||
* Note that X_recv is scaled by 2^6 while X_calc is not
|
||||
*/
|
||||
if (hc->tx_x_calc > (hc->tx_x_recv >> 5))
|
||||
hc->tx_x_recv =
|
||||
max(hc->tx_x_recv / 2,
|
||||
(((__u64)hc->tx_s) << 6) / (2*TFRC_T_MBI));
|
||||
else {
|
||||
hc->tx_x_recv = hc->tx_x_calc;
|
||||
hc->tx_x_recv <<= 4;
|
||||
}
|
||||
ccid3_hc_tx_update_x(sk, NULL);
|
||||
}
|
||||
ccid3_pr_debug("Reduced X to %llu/64 bytes/sec\n",
|
||||
(unsigned long long)hc->tx_x);
|
||||
|
||||
/*
|
||||
* Set new timeout for the nofeedback timer.
|
||||
* See comments in packet_recv() regarding the value of t_RTO.
|
||||
*/
|
||||
if (unlikely(hc->tx_t_rto == 0)) /* no feedback received yet */
|
||||
t_nfb = TFRC_INITIAL_TIMEOUT;
|
||||
else
|
||||
t_nfb = max(hc->tx_t_rto, 2 * hc->tx_t_ipi);
|
||||
|
||||
restart_timer:
|
||||
sk_reset_timer(sk, &hc->tx_no_feedback_timer,
|
||||
jiffies + usecs_to_jiffies(t_nfb));
|
||||
out:
|
||||
bh_unlock_sock(sk);
|
||||
sock_put(sk);
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid3_hc_tx_send_packet - Delay-based dequeueing of TX packets
|
||||
* @sk: socket to send packet from
|
||||
* @skb: next packet candidate to send on @sk
|
||||
*
|
||||
* This function uses the convention of ccid_packet_dequeue_eval() and
|
||||
* returns a millisecond-delay value between 0 and t_mbi = 64000 msec.
|
||||
*/
|
||||
static int ccid3_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
ktime_t now = ktime_get_real();
|
||||
s64 delay;
|
||||
|
||||
/*
|
||||
* This function is called only for Data and DataAck packets. Sending
|
||||
* zero-sized Data(Ack)s is theoretically possible, but for congestion
|
||||
* control this case is pathological - ignore it.
|
||||
*/
|
||||
if (unlikely(skb->len == 0))
|
||||
return -EBADMSG;
|
||||
|
||||
if (hc->tx_state == TFRC_SSTATE_NO_SENT) {
|
||||
sk_reset_timer(sk, &hc->tx_no_feedback_timer, (jiffies +
|
||||
usecs_to_jiffies(TFRC_INITIAL_TIMEOUT)));
|
||||
hc->tx_last_win_count = 0;
|
||||
hc->tx_t_last_win_count = now;
|
||||
|
||||
/* Set t_0 for initial packet */
|
||||
hc->tx_t_nom = now;
|
||||
|
||||
hc->tx_s = skb->len;
|
||||
|
||||
/*
|
||||
* Use initial RTT sample when available: recommended by erratum
|
||||
* to RFC 4342. This implements the initialisation procedure of
|
||||
* draft rfc3448bis, section 4.2. Remember, X is scaled by 2^6.
|
||||
*/
|
||||
if (dp->dccps_syn_rtt) {
|
||||
ccid3_pr_debug("SYN RTT = %uus\n", dp->dccps_syn_rtt);
|
||||
hc->tx_rtt = dp->dccps_syn_rtt;
|
||||
hc->tx_x = rfc3390_initial_rate(sk);
|
||||
hc->tx_t_ld = now;
|
||||
} else {
|
||||
/*
|
||||
* Sender does not have RTT sample:
|
||||
* - set fallback RTT (RFC 4340, 3.4) since a RTT value
|
||||
* is needed in several parts (e.g. window counter);
|
||||
* - set sending rate X_pps = 1pps as per RFC 3448, 4.2.
|
||||
*/
|
||||
hc->tx_rtt = DCCP_FALLBACK_RTT;
|
||||
hc->tx_x = hc->tx_s;
|
||||
hc->tx_x <<= 6;
|
||||
}
|
||||
ccid3_update_send_interval(hc);
|
||||
|
||||
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_NO_FBACK);
|
||||
|
||||
} else {
|
||||
delay = ktime_us_delta(hc->tx_t_nom, now);
|
||||
ccid3_pr_debug("delay=%ld\n", (long)delay);
|
||||
/*
|
||||
* Scheduling of packet transmissions (RFC 5348, 8.3)
|
||||
*
|
||||
* if (t_now > t_nom - delta)
|
||||
* // send the packet now
|
||||
* else
|
||||
* // send the packet in (t_nom - t_now) milliseconds.
|
||||
*/
|
||||
if (delay >= TFRC_T_DELTA)
|
||||
return (u32)delay / USEC_PER_MSEC;
|
||||
|
||||
ccid3_hc_tx_update_win_count(hc, now);
|
||||
}
|
||||
|
||||
/* prepare to send now (add options etc.) */
|
||||
dp->dccps_hc_tx_insert_options = 1;
|
||||
DCCP_SKB_CB(skb)->dccpd_ccval = hc->tx_last_win_count;
|
||||
|
||||
/* set the nominal send time for the next following packet */
|
||||
hc->tx_t_nom = ktime_add_us(hc->tx_t_nom, hc->tx_t_ipi);
|
||||
return CCID_PACKET_SEND_AT_ONCE;
|
||||
}
|
||||
|
||||
static void ccid3_hc_tx_packet_sent(struct sock *sk, unsigned int len)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
|
||||
ccid3_hc_tx_update_s(hc, len);
|
||||
|
||||
if (tfrc_tx_hist_add(&hc->tx_hist, dccp_sk(sk)->dccps_gss))
|
||||
DCCP_CRIT("packet history - out of memory!");
|
||||
}
|
||||
|
||||
static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
struct tfrc_tx_hist_entry *acked;
|
||||
ktime_t now;
|
||||
unsigned long t_nfb;
|
||||
u32 r_sample;
|
||||
|
||||
/* we are only interested in ACKs */
|
||||
if (!(DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_ACK ||
|
||||
DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_DATAACK))
|
||||
return;
|
||||
/*
|
||||
* Locate the acknowledged packet in the TX history.
|
||||
*
|
||||
* Returning "entry not found" here can for instance happen when
|
||||
* - the host has not sent out anything (e.g. a passive server),
|
||||
* - the Ack is outdated (packet with higher Ack number was received),
|
||||
* - it is a bogus Ack (for a packet not sent on this connection).
|
||||
*/
|
||||
acked = tfrc_tx_hist_find_entry(hc->tx_hist, dccp_hdr_ack_seq(skb));
|
||||
if (acked == NULL)
|
||||
return;
|
||||
/* For the sake of RTT sampling, ignore/remove all older entries */
|
||||
tfrc_tx_hist_purge(&acked->next);
|
||||
|
||||
/* Update the moving average for the RTT estimate (RFC 3448, 4.3) */
|
||||
now = ktime_get_real();
|
||||
r_sample = dccp_sample_rtt(sk, ktime_us_delta(now, acked->stamp));
|
||||
hc->tx_rtt = tfrc_ewma(hc->tx_rtt, r_sample, 9);
|
||||
|
||||
/*
|
||||
* Update allowed sending rate X as per draft rfc3448bis-00, 4.2/3
|
||||
*/
|
||||
if (hc->tx_state == TFRC_SSTATE_NO_FBACK) {
|
||||
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
|
||||
|
||||
if (hc->tx_t_rto == 0) {
|
||||
/*
|
||||
* Initial feedback packet: Larger Initial Windows (4.2)
|
||||
*/
|
||||
hc->tx_x = rfc3390_initial_rate(sk);
|
||||
hc->tx_t_ld = now;
|
||||
|
||||
ccid3_update_send_interval(hc);
|
||||
|
||||
goto done_computing_x;
|
||||
} else if (hc->tx_p == 0) {
|
||||
/*
|
||||
* First feedback after nofeedback timer expiry (4.3)
|
||||
*/
|
||||
goto done_computing_x;
|
||||
}
|
||||
}
|
||||
|
||||
/* Update sending rate (step 4 of [RFC 3448, 4.3]) */
|
||||
if (hc->tx_p > 0)
|
||||
hc->tx_x_calc = tfrc_calc_x(hc->tx_s, hc->tx_rtt, hc->tx_p);
|
||||
ccid3_hc_tx_update_x(sk, &now);
|
||||
|
||||
done_computing_x:
|
||||
ccid3_pr_debug("%s(%p), RTT=%uus (sample=%uus), s=%u, "
|
||||
"p=%u, X_calc=%u, X_recv=%u, X=%u\n",
|
||||
dccp_role(sk), sk, hc->tx_rtt, r_sample,
|
||||
hc->tx_s, hc->tx_p, hc->tx_x_calc,
|
||||
(unsigned int)(hc->tx_x_recv >> 6),
|
||||
(unsigned int)(hc->tx_x >> 6));
|
||||
|
||||
/* unschedule no feedback timer */
|
||||
sk_stop_timer(sk, &hc->tx_no_feedback_timer);
|
||||
|
||||
/*
|
||||
* As we have calculated new ipi, delta, t_nom it is possible
|
||||
* that we now can send a packet, so wake up dccp_wait_for_ccid
|
||||
*/
|
||||
sk->sk_write_space(sk);
|
||||
|
||||
/*
|
||||
* Update timeout interval for the nofeedback timer. In order to control
|
||||
* rate halving on networks with very low RTTs (<= 1 ms), use per-route
|
||||
* tunable RTAX_RTO_MIN value as the lower bound.
|
||||
*/
|
||||
hc->tx_t_rto = max_t(u32, 4 * hc->tx_rtt,
|
||||
USEC_PER_SEC/HZ * tcp_rto_min(sk));
|
||||
/*
|
||||
* Schedule no feedback timer to expire in
|
||||
* max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
|
||||
*/
|
||||
t_nfb = max(hc->tx_t_rto, 2 * hc->tx_t_ipi);
|
||||
|
||||
ccid3_pr_debug("%s(%p), Scheduled no feedback timer to "
|
||||
"expire in %lu jiffies (%luus)\n",
|
||||
dccp_role(sk), sk, usecs_to_jiffies(t_nfb), t_nfb);
|
||||
|
||||
sk_reset_timer(sk, &hc->tx_no_feedback_timer,
|
||||
jiffies + usecs_to_jiffies(t_nfb));
|
||||
}
|
||||
|
||||
static int ccid3_hc_tx_parse_options(struct sock *sk, u8 packet_type,
|
||||
u8 option, u8 *optval, u8 optlen)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
__be32 opt_val;
|
||||
|
||||
switch (option) {
|
||||
case TFRC_OPT_RECEIVE_RATE:
|
||||
case TFRC_OPT_LOSS_EVENT_RATE:
|
||||
/* Must be ignored on Data packets, cf. RFC 4342 8.3 and 8.5 */
|
||||
if (packet_type == DCCP_PKT_DATA)
|
||||
break;
|
||||
if (unlikely(optlen != 4)) {
|
||||
DCCP_WARN("%s(%p), invalid len %d for %u\n",
|
||||
dccp_role(sk), sk, optlen, option);
|
||||
return -EINVAL;
|
||||
}
|
||||
opt_val = ntohl(get_unaligned((__be32 *)optval));
|
||||
|
||||
if (option == TFRC_OPT_RECEIVE_RATE) {
|
||||
/* Receive Rate is kept in units of 64 bytes/second */
|
||||
hc->tx_x_recv = opt_val;
|
||||
hc->tx_x_recv <<= 6;
|
||||
|
||||
ccid3_pr_debug("%s(%p), RECEIVE_RATE=%u\n",
|
||||
dccp_role(sk), sk, opt_val);
|
||||
} else {
|
||||
/* Update the fixpoint Loss Event Rate fraction */
|
||||
hc->tx_p = tfrc_invert_loss_event_rate(opt_val);
|
||||
|
||||
ccid3_pr_debug("%s(%p), LOSS_EVENT_RATE=%u\n",
|
||||
dccp_role(sk), sk, opt_val);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccid3_hc_tx_init(struct ccid *ccid, struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid_priv(ccid);
|
||||
|
||||
hc->tx_state = TFRC_SSTATE_NO_SENT;
|
||||
hc->tx_hist = NULL;
|
||||
hc->sk = sk;
|
||||
timer_setup(&hc->tx_no_feedback_timer,
|
||||
ccid3_hc_tx_no_feedback_timer, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccid3_hc_tx_exit(struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
|
||||
sk_stop_timer(sk, &hc->tx_no_feedback_timer);
|
||||
tfrc_tx_hist_purge(&hc->tx_hist);
|
||||
}
|
||||
|
||||
static void ccid3_hc_tx_get_info(struct sock *sk, struct tcp_info *info)
|
||||
{
|
||||
info->tcpi_rto = ccid3_hc_tx_sk(sk)->tx_t_rto;
|
||||
info->tcpi_rtt = ccid3_hc_tx_sk(sk)->tx_rtt;
|
||||
}
|
||||
|
||||
static int ccid3_hc_tx_getsockopt(struct sock *sk, const int optname, int len,
|
||||
u32 __user *optval, int __user *optlen)
|
||||
{
|
||||
const struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
|
||||
struct tfrc_tx_info tfrc;
|
||||
const void *val;
|
||||
|
||||
switch (optname) {
|
||||
case DCCP_SOCKOPT_CCID_TX_INFO:
|
||||
if (len < sizeof(tfrc))
|
||||
return -EINVAL;
|
||||
memset(&tfrc, 0, sizeof(tfrc));
|
||||
tfrc.tfrctx_x = hc->tx_x;
|
||||
tfrc.tfrctx_x_recv = hc->tx_x_recv;
|
||||
tfrc.tfrctx_x_calc = hc->tx_x_calc;
|
||||
tfrc.tfrctx_rtt = hc->tx_rtt;
|
||||
tfrc.tfrctx_p = hc->tx_p;
|
||||
tfrc.tfrctx_rto = hc->tx_t_rto;
|
||||
tfrc.tfrctx_ipi = hc->tx_t_ipi;
|
||||
len = sizeof(tfrc);
|
||||
val = &tfrc;
|
||||
break;
|
||||
default:
|
||||
return -ENOPROTOOPT;
|
||||
}
|
||||
|
||||
if (put_user(len, optlen) || copy_to_user(optval, val, len))
|
||||
return -EFAULT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receiver Half-Connection Routines
|
||||
*/
|
||||
|
||||
/* CCID3 feedback types */
|
||||
enum ccid3_fback_type {
|
||||
CCID3_FBACK_NONE = 0,
|
||||
CCID3_FBACK_INITIAL,
|
||||
CCID3_FBACK_PERIODIC,
|
||||
CCID3_FBACK_PARAM_CHANGE
|
||||
};
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
|
||||
static const char *ccid3_rx_state_name(enum ccid3_hc_rx_states state)
|
||||
{
|
||||
static const char *const ccid3_rx_state_names[] = {
|
||||
[TFRC_RSTATE_NO_DATA] = "NO_DATA",
|
||||
[TFRC_RSTATE_DATA] = "DATA",
|
||||
};
|
||||
|
||||
return ccid3_rx_state_names[state];
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ccid3_hc_rx_set_state(struct sock *sk,
|
||||
enum ccid3_hc_rx_states state)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
enum ccid3_hc_rx_states oldstate = hc->rx_state;
|
||||
|
||||
ccid3_pr_debug("%s(%p) %-8.8s -> %s\n",
|
||||
dccp_role(sk), sk, ccid3_rx_state_name(oldstate),
|
||||
ccid3_rx_state_name(state));
|
||||
WARN_ON(state == oldstate);
|
||||
hc->rx_state = state;
|
||||
}
|
||||
|
||||
static void ccid3_hc_rx_send_feedback(struct sock *sk,
|
||||
const struct sk_buff *skb,
|
||||
enum ccid3_fback_type fbtype)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
ktime_t now = ktime_get();
|
||||
s64 delta = 0;
|
||||
|
||||
switch (fbtype) {
|
||||
case CCID3_FBACK_INITIAL:
|
||||
hc->rx_x_recv = 0;
|
||||
hc->rx_pinv = ~0U; /* see RFC 4342, 8.5 */
|
||||
break;
|
||||
case CCID3_FBACK_PARAM_CHANGE:
|
||||
/*
|
||||
* When parameters change (new loss or p > p_prev), we do not
|
||||
* have a reliable estimate for R_m of [RFC 3448, 6.2] and so
|
||||
* need to reuse the previous value of X_recv. However, when
|
||||
* X_recv was 0 (due to early loss), this would kill X down to
|
||||
* s/t_mbi (i.e. one packet in 64 seconds).
|
||||
* To avoid such drastic reduction, we approximate X_recv as
|
||||
* the number of bytes since last feedback.
|
||||
* This is a safe fallback, since X is bounded above by X_calc.
|
||||
*/
|
||||
if (hc->rx_x_recv > 0)
|
||||
break;
|
||||
fallthrough;
|
||||
case CCID3_FBACK_PERIODIC:
|
||||
delta = ktime_us_delta(now, hc->rx_tstamp_last_feedback);
|
||||
if (delta <= 0)
|
||||
delta = 1;
|
||||
hc->rx_x_recv = scaled_div32(hc->rx_bytes_recv, delta);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
ccid3_pr_debug("Interval %lldusec, X_recv=%u, 1/p=%u\n", delta,
|
||||
hc->rx_x_recv, hc->rx_pinv);
|
||||
|
||||
hc->rx_tstamp_last_feedback = now;
|
||||
hc->rx_last_counter = dccp_hdr(skb)->dccph_ccval;
|
||||
hc->rx_bytes_recv = 0;
|
||||
|
||||
dp->dccps_hc_rx_insert_options = 1;
|
||||
dccp_send_ack(sk);
|
||||
}
|
||||
|
||||
static int ccid3_hc_rx_insert_options(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
const struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
__be32 x_recv, pinv;
|
||||
|
||||
if (!(sk->sk_state == DCCP_OPEN || sk->sk_state == DCCP_PARTOPEN))
|
||||
return 0;
|
||||
|
||||
if (dccp_packet_without_ack(skb))
|
||||
return 0;
|
||||
|
||||
x_recv = htonl(hc->rx_x_recv);
|
||||
pinv = htonl(hc->rx_pinv);
|
||||
|
||||
if (dccp_insert_option(skb, TFRC_OPT_LOSS_EVENT_RATE,
|
||||
&pinv, sizeof(pinv)) ||
|
||||
dccp_insert_option(skb, TFRC_OPT_RECEIVE_RATE,
|
||||
&x_recv, sizeof(x_recv)))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* ccid3_first_li - Implements [RFC 5348, 6.3.1]
|
||||
* @sk: socket to calculate loss interval for
|
||||
*
|
||||
* Determine the length of the first loss interval via inverse lookup.
|
||||
* Assume that X_recv can be computed by the throughput equation
|
||||
* s
|
||||
* X_recv = --------
|
||||
* R * fval
|
||||
* Find some p such that f(p) = fval; return 1/p (scaled).
|
||||
*/
|
||||
static u32 ccid3_first_li(struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
u32 x_recv, p;
|
||||
s64 delta;
|
||||
u64 fval;
|
||||
|
||||
if (hc->rx_rtt == 0) {
|
||||
DCCP_WARN("No RTT estimate available, using fallback RTT\n");
|
||||
hc->rx_rtt = DCCP_FALLBACK_RTT;
|
||||
}
|
||||
|
||||
delta = ktime_us_delta(ktime_get(), hc->rx_tstamp_last_feedback);
|
||||
if (delta <= 0)
|
||||
delta = 1;
|
||||
x_recv = scaled_div32(hc->rx_bytes_recv, delta);
|
||||
if (x_recv == 0) { /* would also trigger divide-by-zero */
|
||||
DCCP_WARN("X_recv==0\n");
|
||||
if (hc->rx_x_recv == 0) {
|
||||
DCCP_BUG("stored value of X_recv is zero");
|
||||
return ~0U;
|
||||
}
|
||||
x_recv = hc->rx_x_recv;
|
||||
}
|
||||
|
||||
fval = scaled_div(hc->rx_s, hc->rx_rtt);
|
||||
fval = scaled_div32(fval, x_recv);
|
||||
p = tfrc_calc_x_reverse_lookup(fval);
|
||||
|
||||
ccid3_pr_debug("%s(%p), receive rate=%u bytes/s, implied "
|
||||
"loss rate=%u\n", dccp_role(sk), sk, x_recv, p);
|
||||
|
||||
return p == 0 ? ~0U : scaled_div(1, p);
|
||||
}
|
||||
|
||||
static void ccid3_hc_rx_packet_recv(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
enum ccid3_fback_type do_feedback = CCID3_FBACK_NONE;
|
||||
const u64 ndp = dccp_sk(sk)->dccps_options_received.dccpor_ndp;
|
||||
const bool is_data_packet = dccp_data_packet(skb);
|
||||
|
||||
if (unlikely(hc->rx_state == TFRC_RSTATE_NO_DATA)) {
|
||||
if (is_data_packet) {
|
||||
const u32 payload = skb->len - dccp_hdr(skb)->dccph_doff * 4;
|
||||
do_feedback = CCID3_FBACK_INITIAL;
|
||||
ccid3_hc_rx_set_state(sk, TFRC_RSTATE_DATA);
|
||||
hc->rx_s = payload;
|
||||
/*
|
||||
* Not necessary to update rx_bytes_recv here,
|
||||
* since X_recv = 0 for the first feedback packet (cf.
|
||||
* RFC 3448, 6.3) -- gerrit
|
||||
*/
|
||||
}
|
||||
goto update_records;
|
||||
}
|
||||
|
||||
if (tfrc_rx_hist_duplicate(&hc->rx_hist, skb))
|
||||
return; /* done receiving */
|
||||
|
||||
if (is_data_packet) {
|
||||
const u32 payload = skb->len - dccp_hdr(skb)->dccph_doff * 4;
|
||||
/*
|
||||
* Update moving-average of s and the sum of received payload bytes
|
||||
*/
|
||||
hc->rx_s = tfrc_ewma(hc->rx_s, payload, 9);
|
||||
hc->rx_bytes_recv += payload;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform loss detection and handle pending losses
|
||||
*/
|
||||
if (tfrc_rx_handle_loss(&hc->rx_hist, &hc->rx_li_hist,
|
||||
skb, ndp, ccid3_first_li, sk)) {
|
||||
do_feedback = CCID3_FBACK_PARAM_CHANGE;
|
||||
goto done_receiving;
|
||||
}
|
||||
|
||||
if (tfrc_rx_hist_loss_pending(&hc->rx_hist))
|
||||
return; /* done receiving */
|
||||
|
||||
/*
|
||||
* Handle data packets: RTT sampling and monitoring p
|
||||
*/
|
||||
if (unlikely(!is_data_packet))
|
||||
goto update_records;
|
||||
|
||||
if (!tfrc_lh_is_initialised(&hc->rx_li_hist)) {
|
||||
const u32 sample = tfrc_rx_hist_sample_rtt(&hc->rx_hist, skb);
|
||||
/*
|
||||
* Empty loss history: no loss so far, hence p stays 0.
|
||||
* Sample RTT values, since an RTT estimate is required for the
|
||||
* computation of p when the first loss occurs; RFC 3448, 6.3.1.
|
||||
*/
|
||||
if (sample != 0)
|
||||
hc->rx_rtt = tfrc_ewma(hc->rx_rtt, sample, 9);
|
||||
|
||||
} else if (tfrc_lh_update_i_mean(&hc->rx_li_hist, skb)) {
|
||||
/*
|
||||
* Step (3) of [RFC 3448, 6.1]: Recompute I_mean and, if I_mean
|
||||
* has decreased (resp. p has increased), send feedback now.
|
||||
*/
|
||||
do_feedback = CCID3_FBACK_PARAM_CHANGE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if the periodic once-per-RTT feedback is due; RFC 4342, 10.3
|
||||
*/
|
||||
if (SUB16(dccp_hdr(skb)->dccph_ccval, hc->rx_last_counter) > 3)
|
||||
do_feedback = CCID3_FBACK_PERIODIC;
|
||||
|
||||
update_records:
|
||||
tfrc_rx_hist_add_packet(&hc->rx_hist, skb, ndp);
|
||||
|
||||
done_receiving:
|
||||
if (do_feedback)
|
||||
ccid3_hc_rx_send_feedback(sk, skb, do_feedback);
|
||||
}
|
||||
|
||||
static int ccid3_hc_rx_init(struct ccid *ccid, struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hc = ccid_priv(ccid);
|
||||
|
||||
hc->rx_state = TFRC_RSTATE_NO_DATA;
|
||||
tfrc_lh_init(&hc->rx_li_hist);
|
||||
return tfrc_rx_hist_alloc(&hc->rx_hist);
|
||||
}
|
||||
|
||||
static void ccid3_hc_rx_exit(struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
|
||||
tfrc_rx_hist_purge(&hc->rx_hist);
|
||||
tfrc_lh_cleanup(&hc->rx_li_hist);
|
||||
}
|
||||
|
||||
static void ccid3_hc_rx_get_info(struct sock *sk, struct tcp_info *info)
|
||||
{
|
||||
info->tcpi_ca_state = ccid3_hc_rx_sk(sk)->rx_state;
|
||||
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
|
||||
info->tcpi_rcv_rtt = ccid3_hc_rx_sk(sk)->rx_rtt;
|
||||
}
|
||||
|
||||
static int ccid3_hc_rx_getsockopt(struct sock *sk, const int optname, int len,
|
||||
u32 __user *optval, int __user *optlen)
|
||||
{
|
||||
const struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
|
||||
struct tfrc_rx_info rx_info;
|
||||
const void *val;
|
||||
|
||||
switch (optname) {
|
||||
case DCCP_SOCKOPT_CCID_RX_INFO:
|
||||
if (len < sizeof(rx_info))
|
||||
return -EINVAL;
|
||||
rx_info.tfrcrx_x_recv = hc->rx_x_recv;
|
||||
rx_info.tfrcrx_rtt = hc->rx_rtt;
|
||||
rx_info.tfrcrx_p = tfrc_invert_loss_event_rate(hc->rx_pinv);
|
||||
len = sizeof(rx_info);
|
||||
val = &rx_info;
|
||||
break;
|
||||
default:
|
||||
return -ENOPROTOOPT;
|
||||
}
|
||||
|
||||
if (put_user(len, optlen) || copy_to_user(optval, val, len))
|
||||
return -EFAULT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct ccid_operations ccid3_ops = {
|
||||
.ccid_id = DCCPC_CCID3,
|
||||
.ccid_name = "TCP-Friendly Rate Control",
|
||||
.ccid_hc_tx_obj_size = sizeof(struct ccid3_hc_tx_sock),
|
||||
.ccid_hc_tx_init = ccid3_hc_tx_init,
|
||||
.ccid_hc_tx_exit = ccid3_hc_tx_exit,
|
||||
.ccid_hc_tx_send_packet = ccid3_hc_tx_send_packet,
|
||||
.ccid_hc_tx_packet_sent = ccid3_hc_tx_packet_sent,
|
||||
.ccid_hc_tx_packet_recv = ccid3_hc_tx_packet_recv,
|
||||
.ccid_hc_tx_parse_options = ccid3_hc_tx_parse_options,
|
||||
.ccid_hc_rx_obj_size = sizeof(struct ccid3_hc_rx_sock),
|
||||
.ccid_hc_rx_init = ccid3_hc_rx_init,
|
||||
.ccid_hc_rx_exit = ccid3_hc_rx_exit,
|
||||
.ccid_hc_rx_insert_options = ccid3_hc_rx_insert_options,
|
||||
.ccid_hc_rx_packet_recv = ccid3_hc_rx_packet_recv,
|
||||
.ccid_hc_rx_get_info = ccid3_hc_rx_get_info,
|
||||
.ccid_hc_tx_get_info = ccid3_hc_tx_get_info,
|
||||
.ccid_hc_rx_getsockopt = ccid3_hc_rx_getsockopt,
|
||||
.ccid_hc_tx_getsockopt = ccid3_hc_tx_getsockopt,
|
||||
};
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
|
||||
module_param(ccid3_debug, bool, 0644);
|
||||
MODULE_PARM_DESC(ccid3_debug, "Enable CCID-3 debug messages");
|
||||
#endif
|
|
@ -1,148 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
*
|
||||
* This code has been developed by the University of Waikato WAND
|
||||
* research group. For further information please see https://www.wand.net.nz/
|
||||
* or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
|
||||
*
|
||||
* This code also uses code from Lulea University, rereleased as GPL by its
|
||||
* authors:
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*
|
||||
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
|
||||
* and to make it work as a loadable module in the DCCP stack written by
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
|
||||
*
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
#ifndef _DCCP_CCID3_H_
|
||||
#define _DCCP_CCID3_H_
|
||||
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/tfrc.h>
|
||||
#include "lib/tfrc.h"
|
||||
#include "../ccid.h"
|
||||
|
||||
/* Two seconds as per RFC 5348, 4.2 */
|
||||
#define TFRC_INITIAL_TIMEOUT (2 * USEC_PER_SEC)
|
||||
|
||||
/* Parameter t_mbi from [RFC 3448, 4.3]: backoff interval in seconds */
|
||||
#define TFRC_T_MBI 64
|
||||
|
||||
/*
|
||||
* The t_delta parameter (RFC 5348, 8.3): delays of less than %USEC_PER_MSEC are
|
||||
* rounded down to 0, since sk_reset_timer() here uses millisecond granularity.
|
||||
* Hence we can use a constant t_delta = %USEC_PER_MSEC when HZ >= 500. A coarse
|
||||
* resolution of HZ < 500 means that the error is below one timer tick (t_gran)
|
||||
* when using the constant t_delta = t_gran / 2 = %USEC_PER_SEC / (2 * HZ).
|
||||
*/
|
||||
#if (HZ >= 500)
|
||||
# define TFRC_T_DELTA USEC_PER_MSEC
|
||||
#else
|
||||
# define TFRC_T_DELTA (USEC_PER_SEC / (2 * HZ))
|
||||
#endif
|
||||
|
||||
enum ccid3_options {
|
||||
TFRC_OPT_LOSS_EVENT_RATE = 192,
|
||||
TFRC_OPT_LOSS_INTERVALS = 193,
|
||||
TFRC_OPT_RECEIVE_RATE = 194,
|
||||
};
|
||||
|
||||
/* TFRC sender states */
|
||||
enum ccid3_hc_tx_states {
|
||||
TFRC_SSTATE_NO_SENT = 1,
|
||||
TFRC_SSTATE_NO_FBACK,
|
||||
TFRC_SSTATE_FBACK,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccid3_hc_tx_sock - CCID3 sender half-connection socket
|
||||
* @tx_x: Current sending rate in 64 * bytes per second
|
||||
* @tx_x_recv: Receive rate in 64 * bytes per second
|
||||
* @tx_x_calc: Calculated rate in bytes per second
|
||||
* @tx_rtt: Estimate of current round trip time in usecs
|
||||
* @tx_p: Current loss event rate (0-1) scaled by 1000000
|
||||
* @tx_s: Packet size in bytes
|
||||
* @tx_t_rto: Nofeedback Timer setting in usecs
|
||||
* @tx_t_ipi: Interpacket (send) interval (RFC 3448, 4.6) in usecs
|
||||
* @tx_state: Sender state, one of %ccid3_hc_tx_states
|
||||
* @tx_last_win_count: Last window counter sent
|
||||
* @tx_t_last_win_count: Timestamp of earliest packet
|
||||
* with last_win_count value sent
|
||||
* @tx_no_feedback_timer: Handle to no feedback timer
|
||||
* @tx_t_ld: Time last doubled during slow start
|
||||
* @tx_t_nom: Nominal send time of next packet
|
||||
* @tx_hist: Packet history
|
||||
*/
|
||||
struct ccid3_hc_tx_sock {
|
||||
u64 tx_x;
|
||||
u64 tx_x_recv;
|
||||
u32 tx_x_calc;
|
||||
u32 tx_rtt;
|
||||
u32 tx_p;
|
||||
u32 tx_t_rto;
|
||||
u32 tx_t_ipi;
|
||||
u16 tx_s;
|
||||
enum ccid3_hc_tx_states tx_state:8;
|
||||
u8 tx_last_win_count;
|
||||
ktime_t tx_t_last_win_count;
|
||||
struct timer_list tx_no_feedback_timer;
|
||||
struct sock *sk;
|
||||
ktime_t tx_t_ld;
|
||||
ktime_t tx_t_nom;
|
||||
struct tfrc_tx_hist_entry *tx_hist;
|
||||
};
|
||||
|
||||
static inline struct ccid3_hc_tx_sock *ccid3_hc_tx_sk(const struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_tx_sock *hctx = ccid_priv(dccp_sk(sk)->dccps_hc_tx_ccid);
|
||||
BUG_ON(hctx == NULL);
|
||||
return hctx;
|
||||
}
|
||||
|
||||
/* TFRC receiver states */
|
||||
enum ccid3_hc_rx_states {
|
||||
TFRC_RSTATE_NO_DATA = 1,
|
||||
TFRC_RSTATE_DATA,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct ccid3_hc_rx_sock - CCID3 receiver half-connection socket
|
||||
* @rx_last_counter: Tracks window counter (RFC 4342, 8.1)
|
||||
* @rx_state: Receiver state, one of %ccid3_hc_rx_states
|
||||
* @rx_bytes_recv: Total sum of DCCP payload bytes
|
||||
* @rx_x_recv: Receiver estimate of send rate (RFC 3448, sec. 4.3)
|
||||
* @rx_rtt: Receiver estimate of RTT
|
||||
* @rx_tstamp_last_feedback: Time at which last feedback was sent
|
||||
* @rx_hist: Packet history (loss detection + RTT sampling)
|
||||
* @rx_li_hist: Loss Interval database
|
||||
* @rx_s: Received packet size in bytes
|
||||
* @rx_pinv: Inverse of Loss Event Rate (RFC 4342, sec. 8.5)
|
||||
*/
|
||||
struct ccid3_hc_rx_sock {
|
||||
u8 rx_last_counter:4;
|
||||
enum ccid3_hc_rx_states rx_state:8;
|
||||
u32 rx_bytes_recv;
|
||||
u32 rx_x_recv;
|
||||
u32 rx_rtt;
|
||||
ktime_t rx_tstamp_last_feedback;
|
||||
struct tfrc_rx_hist rx_hist;
|
||||
struct tfrc_loss_hist rx_li_hist;
|
||||
u16 rx_s;
|
||||
#define rx_pinv rx_li_hist.i_mean
|
||||
};
|
||||
|
||||
static inline struct ccid3_hc_rx_sock *ccid3_hc_rx_sk(const struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hcrx = ccid_priv(dccp_sk(sk)->dccps_hc_rx_ccid);
|
||||
BUG_ON(hcrx == NULL);
|
||||
return hcrx;
|
||||
}
|
||||
|
||||
#endif /* _DCCP_CCID3_H_ */
|
|
@ -1,184 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2005-7 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
#include <net/sock.h>
|
||||
#include "tfrc.h"
|
||||
|
||||
static struct kmem_cache *tfrc_lh_slab __read_mostly;
|
||||
/* Loss Interval weights from [RFC 3448, 5.4], scaled by 10 */
|
||||
static const int tfrc_lh_weights[NINTERVAL] = { 10, 10, 10, 10, 8, 6, 4, 2 };
|
||||
|
||||
/* implements LIFO semantics on the array */
|
||||
static inline u8 LIH_INDEX(const u8 ctr)
|
||||
{
|
||||
return LIH_SIZE - 1 - (ctr % LIH_SIZE);
|
||||
}
|
||||
|
||||
/* the `counter' index always points at the next entry to be populated */
|
||||
static inline struct tfrc_loss_interval *tfrc_lh_peek(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
return lh->counter ? lh->ring[LIH_INDEX(lh->counter - 1)] : NULL;
|
||||
}
|
||||
|
||||
/* given i with 0 <= i <= k, return I_i as per the rfc3448bis notation */
|
||||
static inline u32 tfrc_lh_get_interval(struct tfrc_loss_hist *lh, const u8 i)
|
||||
{
|
||||
BUG_ON(i >= lh->counter);
|
||||
return lh->ring[LIH_INDEX(lh->counter - i - 1)]->li_length;
|
||||
}
|
||||
|
||||
/*
|
||||
* On-demand allocation and de-allocation of entries
|
||||
*/
|
||||
static struct tfrc_loss_interval *tfrc_lh_demand_next(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
if (lh->ring[LIH_INDEX(lh->counter)] == NULL)
|
||||
lh->ring[LIH_INDEX(lh->counter)] = kmem_cache_alloc(tfrc_lh_slab,
|
||||
GFP_ATOMIC);
|
||||
return lh->ring[LIH_INDEX(lh->counter)];
|
||||
}
|
||||
|
||||
void tfrc_lh_cleanup(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
if (!tfrc_lh_is_initialised(lh))
|
||||
return;
|
||||
|
||||
for (lh->counter = 0; lh->counter < LIH_SIZE; lh->counter++)
|
||||
if (lh->ring[LIH_INDEX(lh->counter)] != NULL) {
|
||||
kmem_cache_free(tfrc_lh_slab,
|
||||
lh->ring[LIH_INDEX(lh->counter)]);
|
||||
lh->ring[LIH_INDEX(lh->counter)] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void tfrc_lh_calc_i_mean(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
u32 i_i, i_tot0 = 0, i_tot1 = 0, w_tot = 0;
|
||||
int i, k = tfrc_lh_length(lh) - 1; /* k is as in rfc3448bis, 5.4 */
|
||||
|
||||
if (k <= 0)
|
||||
return;
|
||||
|
||||
for (i = 0; i <= k; i++) {
|
||||
i_i = tfrc_lh_get_interval(lh, i);
|
||||
|
||||
if (i < k) {
|
||||
i_tot0 += i_i * tfrc_lh_weights[i];
|
||||
w_tot += tfrc_lh_weights[i];
|
||||
}
|
||||
if (i > 0)
|
||||
i_tot1 += i_i * tfrc_lh_weights[i-1];
|
||||
}
|
||||
|
||||
lh->i_mean = max(i_tot0, i_tot1) / w_tot;
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_lh_update_i_mean - Update the `open' loss interval I_0
|
||||
* @lh: histogram to update
|
||||
* @skb: received socket triggering loss interval update
|
||||
*
|
||||
* For recomputing p: returns `true' if p > p_prev <=> 1/p < 1/p_prev
|
||||
*/
|
||||
u8 tfrc_lh_update_i_mean(struct tfrc_loss_hist *lh, struct sk_buff *skb)
|
||||
{
|
||||
struct tfrc_loss_interval *cur = tfrc_lh_peek(lh);
|
||||
u32 old_i_mean = lh->i_mean;
|
||||
s64 len;
|
||||
|
||||
if (cur == NULL) /* not initialised */
|
||||
return 0;
|
||||
|
||||
len = dccp_delta_seqno(cur->li_seqno, DCCP_SKB_CB(skb)->dccpd_seq) + 1;
|
||||
|
||||
if (len - (s64)cur->li_length <= 0) /* duplicate or reordered */
|
||||
return 0;
|
||||
|
||||
if (SUB16(dccp_hdr(skb)->dccph_ccval, cur->li_ccval) > 4)
|
||||
/*
|
||||
* Implements RFC 4342, 10.2:
|
||||
* If a packet S (skb) exists whose seqno comes `after' the one
|
||||
* starting the current loss interval (cur) and if the modulo-16
|
||||
* distance from C(cur) to C(S) is greater than 4, consider all
|
||||
* subsequent packets as belonging to a new loss interval. This
|
||||
* test is necessary since CCVal may wrap between intervals.
|
||||
*/
|
||||
cur->li_is_closed = 1;
|
||||
|
||||
if (tfrc_lh_length(lh) == 1) /* due to RFC 3448, 6.3.1 */
|
||||
return 0;
|
||||
|
||||
cur->li_length = len;
|
||||
tfrc_lh_calc_i_mean(lh);
|
||||
|
||||
return lh->i_mean < old_i_mean;
|
||||
}
|
||||
|
||||
/* Determine if `new_loss' does begin a new loss interval [RFC 4342, 10.2] */
|
||||
static inline u8 tfrc_lh_is_new_loss(struct tfrc_loss_interval *cur,
|
||||
struct tfrc_rx_hist_entry *new_loss)
|
||||
{
|
||||
return dccp_delta_seqno(cur->li_seqno, new_loss->tfrchrx_seqno) > 0 &&
|
||||
(cur->li_is_closed || SUB16(new_loss->tfrchrx_ccval, cur->li_ccval) > 4);
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_lh_interval_add - Insert new record into the Loss Interval database
|
||||
* @lh: Loss Interval database
|
||||
* @rh: Receive history containing a fresh loss event
|
||||
* @calc_first_li: Caller-dependent routine to compute length of first interval
|
||||
* @sk: Used by @calc_first_li in caller-specific way (subtyping)
|
||||
*
|
||||
* Updates I_mean and returns 1 if a new interval has in fact been added to @lh.
|
||||
*/
|
||||
int tfrc_lh_interval_add(struct tfrc_loss_hist *lh, struct tfrc_rx_hist *rh,
|
||||
u32 (*calc_first_li)(struct sock *), struct sock *sk)
|
||||
{
|
||||
struct tfrc_loss_interval *cur = tfrc_lh_peek(lh), *new;
|
||||
|
||||
if (cur != NULL && !tfrc_lh_is_new_loss(cur, tfrc_rx_hist_loss_prev(rh)))
|
||||
return 0;
|
||||
|
||||
new = tfrc_lh_demand_next(lh);
|
||||
if (unlikely(new == NULL)) {
|
||||
DCCP_CRIT("Cannot allocate/add loss record.");
|
||||
return 0;
|
||||
}
|
||||
|
||||
new->li_seqno = tfrc_rx_hist_loss_prev(rh)->tfrchrx_seqno;
|
||||
new->li_ccval = tfrc_rx_hist_loss_prev(rh)->tfrchrx_ccval;
|
||||
new->li_is_closed = 0;
|
||||
|
||||
if (++lh->counter == 1)
|
||||
lh->i_mean = new->li_length = (*calc_first_li)(sk);
|
||||
else {
|
||||
cur->li_length = dccp_delta_seqno(cur->li_seqno, new->li_seqno);
|
||||
new->li_length = dccp_delta_seqno(new->li_seqno,
|
||||
tfrc_rx_hist_last_rcv(rh)->tfrchrx_seqno) + 1;
|
||||
if (lh->counter > (2*LIH_SIZE))
|
||||
lh->counter -= LIH_SIZE;
|
||||
|
||||
tfrc_lh_calc_i_mean(lh);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
int __init tfrc_li_init(void)
|
||||
{
|
||||
tfrc_lh_slab = kmem_cache_create("tfrc_li_hist",
|
||||
sizeof(struct tfrc_loss_interval), 0,
|
||||
SLAB_HWCACHE_ALIGN, NULL);
|
||||
return tfrc_lh_slab == NULL ? -ENOBUFS : 0;
|
||||
}
|
||||
|
||||
void tfrc_li_exit(void)
|
||||
{
|
||||
if (tfrc_lh_slab != NULL) {
|
||||
kmem_cache_destroy(tfrc_lh_slab);
|
||||
tfrc_lh_slab = NULL;
|
||||
}
|
||||
}
|
|
@ -1,69 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
#ifndef _DCCP_LI_HIST_
|
||||
#define _DCCP_LI_HIST_
|
||||
/*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2005-7 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
/*
|
||||
* Number of loss intervals (RFC 4342, 8.6.1). The history size is one more than
|
||||
* NINTERVAL, since the `open' interval I_0 is always stored as the first entry.
|
||||
*/
|
||||
#define NINTERVAL 8
|
||||
#define LIH_SIZE (NINTERVAL + 1)
|
||||
|
||||
/**
|
||||
* tfrc_loss_interval - Loss history record for TFRC-based protocols
|
||||
* @li_seqno: Highest received seqno before the start of loss
|
||||
* @li_ccval: The CCVal belonging to @li_seqno
|
||||
* @li_is_closed: Whether @li_seqno is older than 1 RTT
|
||||
* @li_length: Loss interval sequence length
|
||||
*/
|
||||
struct tfrc_loss_interval {
|
||||
u64 li_seqno:48,
|
||||
li_ccval:4,
|
||||
li_is_closed:1;
|
||||
u32 li_length;
|
||||
};
|
||||
|
||||
/**
|
||||
* tfrc_loss_hist - Loss record database
|
||||
* @ring: Circular queue managed in LIFO manner
|
||||
* @counter: Current count of entries (can be more than %LIH_SIZE)
|
||||
* @i_mean: Current Average Loss Interval [RFC 3448, 5.4]
|
||||
*/
|
||||
struct tfrc_loss_hist {
|
||||
struct tfrc_loss_interval *ring[LIH_SIZE];
|
||||
u8 counter;
|
||||
u32 i_mean;
|
||||
};
|
||||
|
||||
static inline void tfrc_lh_init(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
memset(lh, 0, sizeof(struct tfrc_loss_hist));
|
||||
}
|
||||
|
||||
static inline u8 tfrc_lh_is_initialised(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
return lh->counter > 0;
|
||||
}
|
||||
|
||||
static inline u8 tfrc_lh_length(struct tfrc_loss_hist *lh)
|
||||
{
|
||||
return min(lh->counter, (u8)LIH_SIZE);
|
||||
}
|
||||
|
||||
struct tfrc_rx_hist;
|
||||
|
||||
int tfrc_lh_interval_add(struct tfrc_loss_hist *, struct tfrc_rx_hist *,
|
||||
u32 (*first_li)(struct sock *), struct sock *);
|
||||
u8 tfrc_lh_update_i_mean(struct tfrc_loss_hist *lh, struct sk_buff *);
|
||||
void tfrc_lh_cleanup(struct tfrc_loss_hist *lh);
|
||||
|
||||
#endif /* _DCCP_LI_HIST_ */
|
|
@ -1,439 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
*
|
||||
* This code has been developed by the University of Waikato WAND
|
||||
* research group. For further information please see https://www.wand.net.nz/
|
||||
* or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
|
||||
*
|
||||
* This code also uses code from Lulea University, rereleased as GPL by its
|
||||
* authors:
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*
|
||||
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
|
||||
* and to make it work as a loadable module in the DCCP stack written by
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
|
||||
*
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
#include <linux/string.h>
|
||||
#include <linux/slab.h>
|
||||
#include "packet_history.h"
|
||||
#include "../../dccp.h"
|
||||
|
||||
/*
|
||||
* Transmitter History Routines
|
||||
*/
|
||||
static struct kmem_cache *tfrc_tx_hist_slab;
|
||||
|
||||
int __init tfrc_tx_packet_history_init(void)
|
||||
{
|
||||
tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
|
||||
sizeof(struct tfrc_tx_hist_entry),
|
||||
0, SLAB_HWCACHE_ALIGN, NULL);
|
||||
return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
|
||||
}
|
||||
|
||||
void tfrc_tx_packet_history_exit(void)
|
||||
{
|
||||
if (tfrc_tx_hist_slab != NULL) {
|
||||
kmem_cache_destroy(tfrc_tx_hist_slab);
|
||||
tfrc_tx_hist_slab = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
|
||||
{
|
||||
struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
|
||||
|
||||
if (entry == NULL)
|
||||
return -ENOBUFS;
|
||||
entry->seqno = seqno;
|
||||
entry->stamp = ktime_get_real();
|
||||
entry->next = *headp;
|
||||
*headp = entry;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
|
||||
{
|
||||
struct tfrc_tx_hist_entry *head = *headp;
|
||||
|
||||
while (head != NULL) {
|
||||
struct tfrc_tx_hist_entry *next = head->next;
|
||||
|
||||
kmem_cache_free(tfrc_tx_hist_slab, head);
|
||||
head = next;
|
||||
}
|
||||
|
||||
*headp = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Receiver History Routines
|
||||
*/
|
||||
static struct kmem_cache *tfrc_rx_hist_slab;
|
||||
|
||||
int __init tfrc_rx_packet_history_init(void)
|
||||
{
|
||||
tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
|
||||
sizeof(struct tfrc_rx_hist_entry),
|
||||
0, SLAB_HWCACHE_ALIGN, NULL);
|
||||
return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
|
||||
}
|
||||
|
||||
void tfrc_rx_packet_history_exit(void)
|
||||
{
|
||||
if (tfrc_rx_hist_slab != NULL) {
|
||||
kmem_cache_destroy(tfrc_rx_hist_slab);
|
||||
tfrc_rx_hist_slab = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
|
||||
const struct sk_buff *skb,
|
||||
const u64 ndp)
|
||||
{
|
||||
const struct dccp_hdr *dh = dccp_hdr(skb);
|
||||
|
||||
entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
entry->tfrchrx_ccval = dh->dccph_ccval;
|
||||
entry->tfrchrx_type = dh->dccph_type;
|
||||
entry->tfrchrx_ndp = ndp;
|
||||
entry->tfrchrx_tstamp = ktime_get_real();
|
||||
}
|
||||
|
||||
void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
|
||||
const struct sk_buff *skb,
|
||||
const u64 ndp)
|
||||
{
|
||||
struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
|
||||
|
||||
tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
|
||||
}
|
||||
|
||||
/* has the packet contained in skb been seen before? */
|
||||
int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
|
||||
{
|
||||
const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
int i;
|
||||
|
||||
if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
|
||||
return 1;
|
||||
|
||||
for (i = 1; i <= h->loss_count; i++)
|
||||
if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
|
||||
{
|
||||
const u8 idx_a = tfrc_rx_hist_index(h, a),
|
||||
idx_b = tfrc_rx_hist_index(h, b);
|
||||
|
||||
swap(h->ring[idx_a], h->ring[idx_b]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Private helper functions for loss detection.
|
||||
*
|
||||
* In the descriptions, `Si' refers to the sequence number of entry number i,
|
||||
* whose NDP count is `Ni' (lower case is used for variables).
|
||||
* Note: All __xxx_loss functions expect that a test against duplicates has been
|
||||
* performed already: the seqno of the skb must not be less than the seqno
|
||||
* of loss_prev; and it must not equal that of any valid history entry.
|
||||
*/
|
||||
static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
|
||||
{
|
||||
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
|
||||
s1 = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
|
||||
if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
|
||||
h->loss_count = 1;
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
|
||||
}
|
||||
}
|
||||
|
||||
static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
|
||||
{
|
||||
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
|
||||
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
|
||||
s2 = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
|
||||
if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
|
||||
h->loss_count = 2;
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
|
||||
return;
|
||||
}
|
||||
|
||||
/* S0 < S2 < S1 */
|
||||
|
||||
if (dccp_loss_free(s0, s2, n2)) {
|
||||
u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
|
||||
|
||||
if (dccp_loss_free(s2, s1, n1)) {
|
||||
/* hole is filled: S0, S2, and S1 are consecutive */
|
||||
h->loss_count = 0;
|
||||
h->loss_start = tfrc_rx_hist_index(h, 1);
|
||||
} else
|
||||
/* gap between S2 and S1: just update loss_prev */
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
|
||||
|
||||
} else { /* gap between S0 and S2 */
|
||||
/*
|
||||
* Reorder history to insert S2 between S0 and S1
|
||||
*/
|
||||
tfrc_rx_hist_swap(h, 0, 3);
|
||||
h->loss_start = tfrc_rx_hist_index(h, 3);
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
|
||||
h->loss_count = 2;
|
||||
}
|
||||
}
|
||||
|
||||
/* return 1 if a new loss event has been identified */
|
||||
static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
|
||||
{
|
||||
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
|
||||
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
|
||||
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
|
||||
s3 = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
|
||||
if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
|
||||
h->loss_count = 3;
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* S3 < S2 */
|
||||
|
||||
if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
|
||||
/*
|
||||
* Reorder history to insert S3 between S1 and S2
|
||||
*/
|
||||
tfrc_rx_hist_swap(h, 2, 3);
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
|
||||
h->loss_count = 3;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* S0 < S3 < S1 */
|
||||
|
||||
if (dccp_loss_free(s0, s3, n3)) {
|
||||
u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
|
||||
|
||||
if (dccp_loss_free(s3, s1, n1)) {
|
||||
/* hole between S0 and S1 filled by S3 */
|
||||
u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
|
||||
|
||||
if (dccp_loss_free(s1, s2, n2)) {
|
||||
/* entire hole filled by S0, S3, S1, S2 */
|
||||
h->loss_start = tfrc_rx_hist_index(h, 2);
|
||||
h->loss_count = 0;
|
||||
} else {
|
||||
/* gap remains between S1 and S2 */
|
||||
h->loss_start = tfrc_rx_hist_index(h, 1);
|
||||
h->loss_count = 1;
|
||||
}
|
||||
|
||||
} else /* gap exists between S3 and S1, loss_count stays at 2 */
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
|
||||
* Reorder history to insert S3 between S0 and S1.
|
||||
*/
|
||||
tfrc_rx_hist_swap(h, 0, 3);
|
||||
h->loss_start = tfrc_rx_hist_index(h, 3);
|
||||
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
|
||||
h->loss_count = 3;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* recycle RX history records to continue loss detection if necessary */
|
||||
static void __three_after_loss(struct tfrc_rx_hist *h)
|
||||
{
|
||||
/*
|
||||
* At this stage we know already that there is a gap between S0 and S1
|
||||
* (since S0 was the highest sequence number received before detecting
|
||||
* the loss). To recycle the loss record, it is thus only necessary to
|
||||
* check for other possible gaps between S1/S2 and between S2/S3.
|
||||
*/
|
||||
u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
|
||||
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
|
||||
s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
|
||||
u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
|
||||
n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
|
||||
|
||||
if (dccp_loss_free(s1, s2, n2)) {
|
||||
|
||||
if (dccp_loss_free(s2, s3, n3)) {
|
||||
/* no gap between S2 and S3: entire hole is filled */
|
||||
h->loss_start = tfrc_rx_hist_index(h, 3);
|
||||
h->loss_count = 0;
|
||||
} else {
|
||||
/* gap between S2 and S3 */
|
||||
h->loss_start = tfrc_rx_hist_index(h, 2);
|
||||
h->loss_count = 1;
|
||||
}
|
||||
|
||||
} else { /* gap between S1 and S2 */
|
||||
h->loss_start = tfrc_rx_hist_index(h, 1);
|
||||
h->loss_count = 2;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_handle_loss - Loss detection and further processing
|
||||
* @h: The non-empty RX history object
|
||||
* @lh: Loss Intervals database to update
|
||||
* @skb: Currently received packet
|
||||
* @ndp: The NDP count belonging to @skb
|
||||
* @calc_first_li: Caller-dependent computation of first loss interval in @lh
|
||||
* @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
|
||||
*
|
||||
* Chooses action according to pending loss, updates LI database when a new
|
||||
* loss was detected, and does required post-processing. Returns 1 when caller
|
||||
* should send feedback, 0 otherwise.
|
||||
* Since it also takes care of reordering during loss detection and updates the
|
||||
* records accordingly, the caller should not perform any more RX history
|
||||
* operations when loss_count is greater than 0 after calling this function.
|
||||
*/
|
||||
int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
|
||||
struct tfrc_loss_hist *lh,
|
||||
struct sk_buff *skb, const u64 ndp,
|
||||
u32 (*calc_first_li)(struct sock *), struct sock *sk)
|
||||
{
|
||||
int is_new_loss = 0;
|
||||
|
||||
if (h->loss_count == 0) {
|
||||
__do_track_loss(h, skb, ndp);
|
||||
} else if (h->loss_count == 1) {
|
||||
__one_after_loss(h, skb, ndp);
|
||||
} else if (h->loss_count != 2) {
|
||||
DCCP_BUG("invalid loss_count %d", h->loss_count);
|
||||
} else if (__two_after_loss(h, skb, ndp)) {
|
||||
/*
|
||||
* Update Loss Interval database and recycle RX records
|
||||
*/
|
||||
is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
|
||||
__three_after_loss(h);
|
||||
}
|
||||
return is_new_loss;
|
||||
}
|
||||
|
||||
int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i <= TFRC_NDUPACK; i++) {
|
||||
h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
|
||||
if (h->ring[i] == NULL)
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
h->loss_count = h->loss_start = 0;
|
||||
return 0;
|
||||
|
||||
out_free:
|
||||
while (i-- != 0) {
|
||||
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
|
||||
h->ring[i] = NULL;
|
||||
}
|
||||
return -ENOBUFS;
|
||||
}
|
||||
|
||||
void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i <= TFRC_NDUPACK; ++i)
|
||||
if (h->ring[i] != NULL) {
|
||||
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
|
||||
h->ring[i] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
|
||||
* @h: The non-empty RX history object
|
||||
*/
|
||||
static inline struct tfrc_rx_hist_entry *
|
||||
tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
|
||||
{
|
||||
return h->ring[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry
|
||||
* @h: The non-empty RX history object
|
||||
*/
|
||||
static inline struct tfrc_rx_hist_entry *
|
||||
tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
|
||||
{
|
||||
return h->ring[h->rtt_sample_prev];
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
|
||||
* @h: receive histogram
|
||||
* @skb: packet containing timestamp.
|
||||
*
|
||||
* Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
|
||||
* to compute a sample with given data - calling function should check this.
|
||||
*/
|
||||
u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
|
||||
{
|
||||
u32 sample = 0,
|
||||
delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
|
||||
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
|
||||
|
||||
if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
|
||||
if (h->rtt_sample_prev == 2) { /* previous candidate stored */
|
||||
sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
|
||||
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
|
||||
if (sample)
|
||||
sample = 4 / sample *
|
||||
ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
|
||||
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
|
||||
else /*
|
||||
* FIXME: This condition is in principle not
|
||||
* possible but occurs when CCID is used for
|
||||
* two-way data traffic. I have tried to trace
|
||||
* it, but the cause does not seem to be here.
|
||||
*/
|
||||
DCCP_BUG("please report to dccp@vger.kernel.org"
|
||||
" => prev = %u, last = %u",
|
||||
tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
|
||||
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
|
||||
} else if (delta_v < 1) {
|
||||
h->rtt_sample_prev = 1;
|
||||
goto keep_ref_for_next_time;
|
||||
}
|
||||
|
||||
} else if (delta_v == 4) /* optimal match */
|
||||
sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
|
||||
else { /* suboptimal match */
|
||||
h->rtt_sample_prev = 2;
|
||||
goto keep_ref_for_next_time;
|
||||
}
|
||||
|
||||
if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
|
||||
DCCP_WARN("RTT sample %u too large, using max\n", sample);
|
||||
sample = DCCP_SANE_RTT_MAX;
|
||||
}
|
||||
|
||||
h->rtt_sample_prev = 0; /* use current entry as next reference */
|
||||
keep_ref_for_next_time:
|
||||
|
||||
return sample;
|
||||
}
|
|
@ -1,142 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
/*
|
||||
* Packet RX/TX history data structures and routines for TFRC-based protocols.
|
||||
*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005-6 The University of Waikato, Hamilton, New Zealand.
|
||||
*
|
||||
* This code has been developed by the University of Waikato WAND
|
||||
* research group. For further information please see https://www.wand.net.nz/
|
||||
* or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
|
||||
*
|
||||
* This code also uses code from Lulea University, rereleased as GPL by its
|
||||
* authors:
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*
|
||||
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
|
||||
* and to make it work as a loadable module in the DCCP stack written by
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
|
||||
*
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
#ifndef _DCCP_PKT_HIST_
|
||||
#define _DCCP_PKT_HIST_
|
||||
|
||||
#include <linux/list.h>
|
||||
#include <linux/slab.h>
|
||||
#include "tfrc.h"
|
||||
|
||||
/**
|
||||
* tfrc_tx_hist_entry - Simple singly-linked TX history list
|
||||
* @next: next oldest entry (LIFO order)
|
||||
* @seqno: sequence number of this entry
|
||||
* @stamp: send time of packet with sequence number @seqno
|
||||
*/
|
||||
struct tfrc_tx_hist_entry {
|
||||
struct tfrc_tx_hist_entry *next;
|
||||
u64 seqno;
|
||||
ktime_t stamp;
|
||||
};
|
||||
|
||||
static inline struct tfrc_tx_hist_entry *
|
||||
tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
|
||||
{
|
||||
while (head != NULL && head->seqno != seqno)
|
||||
head = head->next;
|
||||
return head;
|
||||
}
|
||||
|
||||
int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno);
|
||||
void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp);
|
||||
|
||||
/* Subtraction a-b modulo-16, respects circular wrap-around */
|
||||
#define SUB16(a, b) (((a) + 16 - (b)) & 0xF)
|
||||
|
||||
/* Number of packets to wait after a missing packet (RFC 4342, 6.1) */
|
||||
#define TFRC_NDUPACK 3
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_entry - Store information about a single received packet
|
||||
* @tfrchrx_seqno: DCCP packet sequence number
|
||||
* @tfrchrx_ccval: window counter value of packet (RFC 4342, 8.1)
|
||||
* @tfrchrx_ndp: the NDP count (if any) of the packet
|
||||
* @tfrchrx_tstamp: actual receive time of packet
|
||||
*/
|
||||
struct tfrc_rx_hist_entry {
|
||||
u64 tfrchrx_seqno:48,
|
||||
tfrchrx_ccval:4,
|
||||
tfrchrx_type:4;
|
||||
u64 tfrchrx_ndp:48;
|
||||
ktime_t tfrchrx_tstamp;
|
||||
};
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist - RX history structure for TFRC-based protocols
|
||||
* @ring: Packet history for RTT sampling and loss detection
|
||||
* @loss_count: Number of entries in circular history
|
||||
* @loss_start: Movable index (for loss detection)
|
||||
* @rtt_sample_prev: Used during RTT sampling, points to candidate entry
|
||||
*/
|
||||
struct tfrc_rx_hist {
|
||||
struct tfrc_rx_hist_entry *ring[TFRC_NDUPACK + 1];
|
||||
u8 loss_count:2,
|
||||
loss_start:2;
|
||||
#define rtt_sample_prev loss_start
|
||||
};
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_index - index to reach n-th entry after loss_start
|
||||
*/
|
||||
static inline u8 tfrc_rx_hist_index(const struct tfrc_rx_hist *h, const u8 n)
|
||||
{
|
||||
return (h->loss_start + n) & TFRC_NDUPACK;
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_last_rcv - entry with highest-received-seqno so far
|
||||
*/
|
||||
static inline struct tfrc_rx_hist_entry *
|
||||
tfrc_rx_hist_last_rcv(const struct tfrc_rx_hist *h)
|
||||
{
|
||||
return h->ring[tfrc_rx_hist_index(h, h->loss_count)];
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_entry - return the n-th history entry after loss_start
|
||||
*/
|
||||
static inline struct tfrc_rx_hist_entry *
|
||||
tfrc_rx_hist_entry(const struct tfrc_rx_hist *h, const u8 n)
|
||||
{
|
||||
return h->ring[tfrc_rx_hist_index(h, n)];
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_rx_hist_loss_prev - entry with highest-received-seqno before loss was detected
|
||||
*/
|
||||
static inline struct tfrc_rx_hist_entry *
|
||||
tfrc_rx_hist_loss_prev(const struct tfrc_rx_hist *h)
|
||||
{
|
||||
return h->ring[h->loss_start];
|
||||
}
|
||||
|
||||
/* indicate whether previously a packet was detected missing */
|
||||
static inline bool tfrc_rx_hist_loss_pending(const struct tfrc_rx_hist *h)
|
||||
{
|
||||
return h->loss_count > 0;
|
||||
}
|
||||
|
||||
void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h, const struct sk_buff *skb,
|
||||
const u64 ndp);
|
||||
|
||||
int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb);
|
||||
|
||||
struct tfrc_loss_hist;
|
||||
int tfrc_rx_handle_loss(struct tfrc_rx_hist *h, struct tfrc_loss_hist *lh,
|
||||
struct sk_buff *skb, const u64 ndp,
|
||||
u32 (*first_li)(struct sock *sk), struct sock *sk);
|
||||
u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb);
|
||||
int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h);
|
||||
void tfrc_rx_hist_purge(struct tfrc_rx_hist *h);
|
||||
|
||||
#endif /* _DCCP_PKT_HIST_ */
|
|
@ -1,46 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* TFRC library initialisation
|
||||
*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
|
||||
*/
|
||||
#include <linux/moduleparam.h>
|
||||
#include "tfrc.h"
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_TFRC_DEBUG
|
||||
bool tfrc_debug;
|
||||
module_param(tfrc_debug, bool, 0644);
|
||||
MODULE_PARM_DESC(tfrc_debug, "Enable TFRC debug messages");
|
||||
#endif
|
||||
|
||||
int __init tfrc_lib_init(void)
|
||||
{
|
||||
int rc = tfrc_li_init();
|
||||
|
||||
if (rc)
|
||||
goto out;
|
||||
|
||||
rc = tfrc_tx_packet_history_init();
|
||||
if (rc)
|
||||
goto out_free_loss_intervals;
|
||||
|
||||
rc = tfrc_rx_packet_history_init();
|
||||
if (rc)
|
||||
goto out_free_tx_history;
|
||||
return 0;
|
||||
|
||||
out_free_tx_history:
|
||||
tfrc_tx_packet_history_exit();
|
||||
out_free_loss_intervals:
|
||||
tfrc_li_exit();
|
||||
out:
|
||||
return rc;
|
||||
}
|
||||
|
||||
void tfrc_lib_exit(void)
|
||||
{
|
||||
tfrc_rx_packet_history_exit();
|
||||
tfrc_tx_packet_history_exit();
|
||||
tfrc_li_exit();
|
||||
}
|
|
@ -1,73 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||||
#ifndef _TFRC_H_
|
||||
#define _TFRC_H_
|
||||
/*
|
||||
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
|
||||
* Copyright (c) 2005-6 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2005-6 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*/
|
||||
#include <linux/types.h>
|
||||
#include <linux/math64.h>
|
||||
#include "../../dccp.h"
|
||||
|
||||
/* internal includes that this library exports: */
|
||||
#include "loss_interval.h"
|
||||
#include "packet_history.h"
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_TFRC_DEBUG
|
||||
extern bool tfrc_debug;
|
||||
#define tfrc_pr_debug(format, a...) DCCP_PR_DEBUG(tfrc_debug, format, ##a)
|
||||
#else
|
||||
#define tfrc_pr_debug(format, a...)
|
||||
#endif
|
||||
|
||||
/* integer-arithmetic divisions of type (a * 1000000)/b */
|
||||
static inline u64 scaled_div(u64 a, u64 b)
|
||||
{
|
||||
BUG_ON(b == 0);
|
||||
return div64_u64(a * 1000000, b);
|
||||
}
|
||||
|
||||
static inline u32 scaled_div32(u64 a, u64 b)
|
||||
{
|
||||
u64 result = scaled_div(a, b);
|
||||
|
||||
if (result > UINT_MAX) {
|
||||
DCCP_CRIT("Overflow: %llu/%llu > UINT_MAX",
|
||||
(unsigned long long)a, (unsigned long long)b);
|
||||
return UINT_MAX;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_ewma - Exponentially weighted moving average
|
||||
* @weight: Weight to be used as damping factor, in units of 1/10
|
||||
*/
|
||||
static inline u32 tfrc_ewma(const u32 avg, const u32 newval, const u8 weight)
|
||||
{
|
||||
return avg ? (weight * avg + (10 - weight) * newval) / 10 : newval;
|
||||
}
|
||||
|
||||
u32 tfrc_calc_x(u16 s, u32 R, u32 p);
|
||||
u32 tfrc_calc_x_reverse_lookup(u32 fvalue);
|
||||
u32 tfrc_invert_loss_event_rate(u32 loss_event_rate);
|
||||
|
||||
int tfrc_tx_packet_history_init(void);
|
||||
void tfrc_tx_packet_history_exit(void);
|
||||
int tfrc_rx_packet_history_init(void);
|
||||
void tfrc_rx_packet_history_exit(void);
|
||||
|
||||
int tfrc_li_init(void);
|
||||
void tfrc_li_exit(void);
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_TFRC_LIB
|
||||
int tfrc_lib_init(void);
|
||||
void tfrc_lib_exit(void);
|
||||
#else
|
||||
#define tfrc_lib_init() (0)
|
||||
#define tfrc_lib_exit()
|
||||
#endif
|
||||
#endif /* _TFRC_H_ */
|
|
@ -1,702 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* Copyright (c) 2005 The University of Waikato, Hamilton, New Zealand.
|
||||
* Copyright (c) 2005 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include "../../dccp.h"
|
||||
#include "tfrc.h"
|
||||
|
||||
#define TFRC_CALC_X_ARRSIZE 500
|
||||
#define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */
|
||||
#define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE)
|
||||
|
||||
/*
|
||||
TFRC TCP Reno Throughput Equation Lookup Table for f(p)
|
||||
|
||||
The following two-column lookup table implements a part of the TCP throughput
|
||||
equation from [RFC 3448, sec. 3.1]:
|
||||
|
||||
s
|
||||
X_calc = --------------------------------------------------------------
|
||||
R * sqrt(2*b*p/3) + (3 * t_RTO * sqrt(3*b*p/8) * (p + 32*p^3))
|
||||
|
||||
Where:
|
||||
X is the transmit rate in bytes/second
|
||||
s is the packet size in bytes
|
||||
R is the round trip time in seconds
|
||||
p is the loss event rate, between 0 and 1.0, of the number of loss
|
||||
events as a fraction of the number of packets transmitted
|
||||
t_RTO is the TCP retransmission timeout value in seconds
|
||||
b is the number of packets acknowledged by a single TCP ACK
|
||||
|
||||
We can assume that b = 1 and t_RTO is 4 * R. The equation now becomes:
|
||||
|
||||
s
|
||||
X_calc = -------------------------------------------------------
|
||||
R * sqrt(p*2/3) + (12 * R * sqrt(p*3/8) * (p + 32*p^3))
|
||||
|
||||
which we can break down into:
|
||||
|
||||
s
|
||||
X_calc = ---------
|
||||
R * f(p)
|
||||
|
||||
where f(p) is given for 0 < p <= 1 by:
|
||||
|
||||
f(p) = sqrt(2*p/3) + 12 * sqrt(3*p/8) * (p + 32*p^3)
|
||||
|
||||
Since this is kernel code, floating-point arithmetic is avoided in favour of
|
||||
integer arithmetic. This means that nearly all fractional parameters are
|
||||
scaled by 1000000:
|
||||
* the parameters p and R
|
||||
* the return result f(p)
|
||||
The lookup table therefore actually tabulates the following function g(q):
|
||||
|
||||
g(q) = 1000000 * f(q/1000000)
|
||||
|
||||
Hence, when p <= 1, q must be less than or equal to 1000000. To achieve finer
|
||||
granularity for the practically more relevant case of small values of p (up to
|
||||
5%), the second column is used; the first one ranges up to 100%. This split
|
||||
corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also
|
||||
determines the smallest resolution possible with this lookup table:
|
||||
|
||||
TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE
|
||||
|
||||
The entire table is generated by:
|
||||
for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) {
|
||||
lookup[i][0] = g((i+1) * 1000000/TFRC_CALC_X_ARRSIZE);
|
||||
lookup[i][1] = g((i+1) * TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE);
|
||||
}
|
||||
|
||||
With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1,
|
||||
lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%)
|
||||
lookup[M][0] = g(1000000) = 1000000 * f(100%)
|
||||
lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%)
|
||||
lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%)
|
||||
|
||||
In summary, the two columns represent f(p) for the following ranges:
|
||||
* The first column is for 0.002 <= p <= 1.0
|
||||
* The second column is for 0.0001 <= p <= 0.05
|
||||
Where the columns overlap, the second (finer-grained) is given preference,
|
||||
i.e. the first column is used only for p >= 0.05.
|
||||
*/
|
||||
static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = {
|
||||
{ 37172, 8172 },
|
||||
{ 53499, 11567 },
|
||||
{ 66664, 14180 },
|
||||
{ 78298, 16388 },
|
||||
{ 89021, 18339 },
|
||||
{ 99147, 20108 },
|
||||
{ 108858, 21738 },
|
||||
{ 118273, 23260 },
|
||||
{ 127474, 24693 },
|
||||
{ 136520, 26052 },
|
||||
{ 145456, 27348 },
|
||||
{ 154316, 28589 },
|
||||
{ 163130, 29783 },
|
||||
{ 171919, 30935 },
|
||||
{ 180704, 32049 },
|
||||
{ 189502, 33130 },
|
||||
{ 198328, 34180 },
|
||||
{ 207194, 35202 },
|
||||
{ 216114, 36198 },
|
||||
{ 225097, 37172 },
|
||||
{ 234153, 38123 },
|
||||
{ 243294, 39055 },
|
||||
{ 252527, 39968 },
|
||||
{ 261861, 40864 },
|
||||
{ 271305, 41743 },
|
||||
{ 280866, 42607 },
|
||||
{ 290553, 43457 },
|
||||
{ 300372, 44293 },
|
||||
{ 310333, 45117 },
|
||||
{ 320441, 45929 },
|
||||
{ 330705, 46729 },
|
||||
{ 341131, 47518 },
|
||||
{ 351728, 48297 },
|
||||
{ 362501, 49066 },
|
||||
{ 373460, 49826 },
|
||||
{ 384609, 50577 },
|
||||
{ 395958, 51320 },
|
||||
{ 407513, 52054 },
|
||||
{ 419281, 52780 },
|
||||
{ 431270, 53499 },
|
||||
{ 443487, 54211 },
|
||||
{ 455940, 54916 },
|
||||
{ 468635, 55614 },
|
||||
{ 481581, 56306 },
|
||||
{ 494785, 56991 },
|
||||
{ 508254, 57671 },
|
||||
{ 521996, 58345 },
|
||||
{ 536019, 59014 },
|
||||
{ 550331, 59677 },
|
||||
{ 564939, 60335 },
|
||||
{ 579851, 60988 },
|
||||
{ 595075, 61636 },
|
||||
{ 610619, 62279 },
|
||||
{ 626491, 62918 },
|
||||
{ 642700, 63553 },
|
||||
{ 659253, 64183 },
|
||||
{ 676158, 64809 },
|
||||
{ 693424, 65431 },
|
||||
{ 711060, 66050 },
|
||||
{ 729073, 66664 },
|
||||
{ 747472, 67275 },
|
||||
{ 766266, 67882 },
|
||||
{ 785464, 68486 },
|
||||
{ 805073, 69087 },
|
||||
{ 825103, 69684 },
|
||||
{ 845562, 70278 },
|
||||
{ 866460, 70868 },
|
||||
{ 887805, 71456 },
|
||||
{ 909606, 72041 },
|
||||
{ 931873, 72623 },
|
||||
{ 954614, 73202 },
|
||||
{ 977839, 73778 },
|
||||
{ 1001557, 74352 },
|
||||
{ 1025777, 74923 },
|
||||
{ 1050508, 75492 },
|
||||
{ 1075761, 76058 },
|
||||
{ 1101544, 76621 },
|
||||
{ 1127867, 77183 },
|
||||
{ 1154739, 77741 },
|
||||
{ 1182172, 78298 },
|
||||
{ 1210173, 78852 },
|
||||
{ 1238753, 79405 },
|
||||
{ 1267922, 79955 },
|
||||
{ 1297689, 80503 },
|
||||
{ 1328066, 81049 },
|
||||
{ 1359060, 81593 },
|
||||
{ 1390684, 82135 },
|
||||
{ 1422947, 82675 },
|
||||
{ 1455859, 83213 },
|
||||
{ 1489430, 83750 },
|
||||
{ 1523671, 84284 },
|
||||
{ 1558593, 84817 },
|
||||
{ 1594205, 85348 },
|
||||
{ 1630518, 85878 },
|
||||
{ 1667543, 86406 },
|
||||
{ 1705290, 86932 },
|
||||
{ 1743770, 87457 },
|
||||
{ 1782994, 87980 },
|
||||
{ 1822973, 88501 },
|
||||
{ 1863717, 89021 },
|
||||
{ 1905237, 89540 },
|
||||
{ 1947545, 90057 },
|
||||
{ 1990650, 90573 },
|
||||
{ 2034566, 91087 },
|
||||
{ 2079301, 91600 },
|
||||
{ 2124869, 92111 },
|
||||
{ 2171279, 92622 },
|
||||
{ 2218543, 93131 },
|
||||
{ 2266673, 93639 },
|
||||
{ 2315680, 94145 },
|
||||
{ 2365575, 94650 },
|
||||
{ 2416371, 95154 },
|
||||
{ 2468077, 95657 },
|
||||
{ 2520707, 96159 },
|
||||
{ 2574271, 96660 },
|
||||
{ 2628782, 97159 },
|
||||
{ 2684250, 97658 },
|
||||
{ 2740689, 98155 },
|
||||
{ 2798110, 98651 },
|
||||
{ 2856524, 99147 },
|
||||
{ 2915944, 99641 },
|
||||
{ 2976382, 100134 },
|
||||
{ 3037850, 100626 },
|
||||
{ 3100360, 101117 },
|
||||
{ 3163924, 101608 },
|
||||
{ 3228554, 102097 },
|
||||
{ 3294263, 102586 },
|
||||
{ 3361063, 103073 },
|
||||
{ 3428966, 103560 },
|
||||
{ 3497984, 104045 },
|
||||
{ 3568131, 104530 },
|
||||
{ 3639419, 105014 },
|
||||
{ 3711860, 105498 },
|
||||
{ 3785467, 105980 },
|
||||
{ 3860253, 106462 },
|
||||
{ 3936229, 106942 },
|
||||
{ 4013410, 107422 },
|
||||
{ 4091808, 107902 },
|
||||
{ 4171435, 108380 },
|
||||
{ 4252306, 108858 },
|
||||
{ 4334431, 109335 },
|
||||
{ 4417825, 109811 },
|
||||
{ 4502501, 110287 },
|
||||
{ 4588472, 110762 },
|
||||
{ 4675750, 111236 },
|
||||
{ 4764349, 111709 },
|
||||
{ 4854283, 112182 },
|
||||
{ 4945564, 112654 },
|
||||
{ 5038206, 113126 },
|
||||
{ 5132223, 113597 },
|
||||
{ 5227627, 114067 },
|
||||
{ 5324432, 114537 },
|
||||
{ 5422652, 115006 },
|
||||
{ 5522299, 115474 },
|
||||
{ 5623389, 115942 },
|
||||
{ 5725934, 116409 },
|
||||
{ 5829948, 116876 },
|
||||
{ 5935446, 117342 },
|
||||
{ 6042439, 117808 },
|
||||
{ 6150943, 118273 },
|
||||
{ 6260972, 118738 },
|
||||
{ 6372538, 119202 },
|
||||
{ 6485657, 119665 },
|
||||
{ 6600342, 120128 },
|
||||
{ 6716607, 120591 },
|
||||
{ 6834467, 121053 },
|
||||
{ 6953935, 121514 },
|
||||
{ 7075025, 121976 },
|
||||
{ 7197752, 122436 },
|
||||
{ 7322131, 122896 },
|
||||
{ 7448175, 123356 },
|
||||
{ 7575898, 123815 },
|
||||
{ 7705316, 124274 },
|
||||
{ 7836442, 124733 },
|
||||
{ 7969291, 125191 },
|
||||
{ 8103877, 125648 },
|
||||
{ 8240216, 126105 },
|
||||
{ 8378321, 126562 },
|
||||
{ 8518208, 127018 },
|
||||
{ 8659890, 127474 },
|
||||
{ 8803384, 127930 },
|
||||
{ 8948702, 128385 },
|
||||
{ 9095861, 128840 },
|
||||
{ 9244875, 129294 },
|
||||
{ 9395760, 129748 },
|
||||
{ 9548529, 130202 },
|
||||
{ 9703198, 130655 },
|
||||
{ 9859782, 131108 },
|
||||
{ 10018296, 131561 },
|
||||
{ 10178755, 132014 },
|
||||
{ 10341174, 132466 },
|
||||
{ 10505569, 132917 },
|
||||
{ 10671954, 133369 },
|
||||
{ 10840345, 133820 },
|
||||
{ 11010757, 134271 },
|
||||
{ 11183206, 134721 },
|
||||
{ 11357706, 135171 },
|
||||
{ 11534274, 135621 },
|
||||
{ 11712924, 136071 },
|
||||
{ 11893673, 136520 },
|
||||
{ 12076536, 136969 },
|
||||
{ 12261527, 137418 },
|
||||
{ 12448664, 137867 },
|
||||
{ 12637961, 138315 },
|
||||
{ 12829435, 138763 },
|
||||
{ 13023101, 139211 },
|
||||
{ 13218974, 139658 },
|
||||
{ 13417071, 140106 },
|
||||
{ 13617407, 140553 },
|
||||
{ 13819999, 140999 },
|
||||
{ 14024862, 141446 },
|
||||
{ 14232012, 141892 },
|
||||
{ 14441465, 142339 },
|
||||
{ 14653238, 142785 },
|
||||
{ 14867346, 143230 },
|
||||
{ 15083805, 143676 },
|
||||
{ 15302632, 144121 },
|
||||
{ 15523842, 144566 },
|
||||
{ 15747453, 145011 },
|
||||
{ 15973479, 145456 },
|
||||
{ 16201939, 145900 },
|
||||
{ 16432847, 146345 },
|
||||
{ 16666221, 146789 },
|
||||
{ 16902076, 147233 },
|
||||
{ 17140429, 147677 },
|
||||
{ 17381297, 148121 },
|
||||
{ 17624696, 148564 },
|
||||
{ 17870643, 149007 },
|
||||
{ 18119154, 149451 },
|
||||
{ 18370247, 149894 },
|
||||
{ 18623936, 150336 },
|
||||
{ 18880241, 150779 },
|
||||
{ 19139176, 151222 },
|
||||
{ 19400759, 151664 },
|
||||
{ 19665007, 152107 },
|
||||
{ 19931936, 152549 },
|
||||
{ 20201564, 152991 },
|
||||
{ 20473907, 153433 },
|
||||
{ 20748982, 153875 },
|
||||
{ 21026807, 154316 },
|
||||
{ 21307399, 154758 },
|
||||
{ 21590773, 155199 },
|
||||
{ 21876949, 155641 },
|
||||
{ 22165941, 156082 },
|
||||
{ 22457769, 156523 },
|
||||
{ 22752449, 156964 },
|
||||
{ 23049999, 157405 },
|
||||
{ 23350435, 157846 },
|
||||
{ 23653774, 158287 },
|
||||
{ 23960036, 158727 },
|
||||
{ 24269236, 159168 },
|
||||
{ 24581392, 159608 },
|
||||
{ 24896521, 160049 },
|
||||
{ 25214642, 160489 },
|
||||
{ 25535772, 160929 },
|
||||
{ 25859927, 161370 },
|
||||
{ 26187127, 161810 },
|
||||
{ 26517388, 162250 },
|
||||
{ 26850728, 162690 },
|
||||
{ 27187165, 163130 },
|
||||
{ 27526716, 163569 },
|
||||
{ 27869400, 164009 },
|
||||
{ 28215234, 164449 },
|
||||
{ 28564236, 164889 },
|
||||
{ 28916423, 165328 },
|
||||
{ 29271815, 165768 },
|
||||
{ 29630428, 166208 },
|
||||
{ 29992281, 166647 },
|
||||
{ 30357392, 167087 },
|
||||
{ 30725779, 167526 },
|
||||
{ 31097459, 167965 },
|
||||
{ 31472452, 168405 },
|
||||
{ 31850774, 168844 },
|
||||
{ 32232445, 169283 },
|
||||
{ 32617482, 169723 },
|
||||
{ 33005904, 170162 },
|
||||
{ 33397730, 170601 },
|
||||
{ 33792976, 171041 },
|
||||
{ 34191663, 171480 },
|
||||
{ 34593807, 171919 },
|
||||
{ 34999428, 172358 },
|
||||
{ 35408544, 172797 },
|
||||
{ 35821174, 173237 },
|
||||
{ 36237335, 173676 },
|
||||
{ 36657047, 174115 },
|
||||
{ 37080329, 174554 },
|
||||
{ 37507197, 174993 },
|
||||
{ 37937673, 175433 },
|
||||
{ 38371773, 175872 },
|
||||
{ 38809517, 176311 },
|
||||
{ 39250924, 176750 },
|
||||
{ 39696012, 177190 },
|
||||
{ 40144800, 177629 },
|
||||
{ 40597308, 178068 },
|
||||
{ 41053553, 178507 },
|
||||
{ 41513554, 178947 },
|
||||
{ 41977332, 179386 },
|
||||
{ 42444904, 179825 },
|
||||
{ 42916290, 180265 },
|
||||
{ 43391509, 180704 },
|
||||
{ 43870579, 181144 },
|
||||
{ 44353520, 181583 },
|
||||
{ 44840352, 182023 },
|
||||
{ 45331092, 182462 },
|
||||
{ 45825761, 182902 },
|
||||
{ 46324378, 183342 },
|
||||
{ 46826961, 183781 },
|
||||
{ 47333531, 184221 },
|
||||
{ 47844106, 184661 },
|
||||
{ 48358706, 185101 },
|
||||
{ 48877350, 185541 },
|
||||
{ 49400058, 185981 },
|
||||
{ 49926849, 186421 },
|
||||
{ 50457743, 186861 },
|
||||
{ 50992759, 187301 },
|
||||
{ 51531916, 187741 },
|
||||
{ 52075235, 188181 },
|
||||
{ 52622735, 188622 },
|
||||
{ 53174435, 189062 },
|
||||
{ 53730355, 189502 },
|
||||
{ 54290515, 189943 },
|
||||
{ 54854935, 190383 },
|
||||
{ 55423634, 190824 },
|
||||
{ 55996633, 191265 },
|
||||
{ 56573950, 191706 },
|
||||
{ 57155606, 192146 },
|
||||
{ 57741621, 192587 },
|
||||
{ 58332014, 193028 },
|
||||
{ 58926806, 193470 },
|
||||
{ 59526017, 193911 },
|
||||
{ 60129666, 194352 },
|
||||
{ 60737774, 194793 },
|
||||
{ 61350361, 195235 },
|
||||
{ 61967446, 195677 },
|
||||
{ 62589050, 196118 },
|
||||
{ 63215194, 196560 },
|
||||
{ 63845897, 197002 },
|
||||
{ 64481179, 197444 },
|
||||
{ 65121061, 197886 },
|
||||
{ 65765563, 198328 },
|
||||
{ 66414705, 198770 },
|
||||
{ 67068508, 199213 },
|
||||
{ 67726992, 199655 },
|
||||
{ 68390177, 200098 },
|
||||
{ 69058085, 200540 },
|
||||
{ 69730735, 200983 },
|
||||
{ 70408147, 201426 },
|
||||
{ 71090343, 201869 },
|
||||
{ 71777343, 202312 },
|
||||
{ 72469168, 202755 },
|
||||
{ 73165837, 203199 },
|
||||
{ 73867373, 203642 },
|
||||
{ 74573795, 204086 },
|
||||
{ 75285124, 204529 },
|
||||
{ 76001380, 204973 },
|
||||
{ 76722586, 205417 },
|
||||
{ 77448761, 205861 },
|
||||
{ 78179926, 206306 },
|
||||
{ 78916102, 206750 },
|
||||
{ 79657310, 207194 },
|
||||
{ 80403571, 207639 },
|
||||
{ 81154906, 208084 },
|
||||
{ 81911335, 208529 },
|
||||
{ 82672880, 208974 },
|
||||
{ 83439562, 209419 },
|
||||
{ 84211402, 209864 },
|
||||
{ 84988421, 210309 },
|
||||
{ 85770640, 210755 },
|
||||
{ 86558080, 211201 },
|
||||
{ 87350762, 211647 },
|
||||
{ 88148708, 212093 },
|
||||
{ 88951938, 212539 },
|
||||
{ 89760475, 212985 },
|
||||
{ 90574339, 213432 },
|
||||
{ 91393551, 213878 },
|
||||
{ 92218133, 214325 },
|
||||
{ 93048107, 214772 },
|
||||
{ 93883493, 215219 },
|
||||
{ 94724314, 215666 },
|
||||
{ 95570590, 216114 },
|
||||
{ 96422343, 216561 },
|
||||
{ 97279594, 217009 },
|
||||
{ 98142366, 217457 },
|
||||
{ 99010679, 217905 },
|
||||
{ 99884556, 218353 },
|
||||
{ 100764018, 218801 },
|
||||
{ 101649086, 219250 },
|
||||
{ 102539782, 219698 },
|
||||
{ 103436128, 220147 },
|
||||
{ 104338146, 220596 },
|
||||
{ 105245857, 221046 },
|
||||
{ 106159284, 221495 },
|
||||
{ 107078448, 221945 },
|
||||
{ 108003370, 222394 },
|
||||
{ 108934074, 222844 },
|
||||
{ 109870580, 223294 },
|
||||
{ 110812910, 223745 },
|
||||
{ 111761087, 224195 },
|
||||
{ 112715133, 224646 },
|
||||
{ 113675069, 225097 },
|
||||
{ 114640918, 225548 },
|
||||
{ 115612702, 225999 },
|
||||
{ 116590442, 226450 },
|
||||
{ 117574162, 226902 },
|
||||
{ 118563882, 227353 },
|
||||
{ 119559626, 227805 },
|
||||
{ 120561415, 228258 },
|
||||
{ 121569272, 228710 },
|
||||
{ 122583219, 229162 },
|
||||
{ 123603278, 229615 },
|
||||
{ 124629471, 230068 },
|
||||
{ 125661822, 230521 },
|
||||
{ 126700352, 230974 },
|
||||
{ 127745083, 231428 },
|
||||
{ 128796039, 231882 },
|
||||
{ 129853241, 232336 },
|
||||
{ 130916713, 232790 },
|
||||
{ 131986475, 233244 },
|
||||
{ 133062553, 233699 },
|
||||
{ 134144966, 234153 },
|
||||
{ 135233739, 234608 },
|
||||
{ 136328894, 235064 },
|
||||
{ 137430453, 235519 },
|
||||
{ 138538440, 235975 },
|
||||
{ 139652876, 236430 },
|
||||
{ 140773786, 236886 },
|
||||
{ 141901190, 237343 },
|
||||
{ 143035113, 237799 },
|
||||
{ 144175576, 238256 },
|
||||
{ 145322604, 238713 },
|
||||
{ 146476218, 239170 },
|
||||
{ 147636442, 239627 },
|
||||
{ 148803298, 240085 },
|
||||
{ 149976809, 240542 },
|
||||
{ 151156999, 241000 },
|
||||
{ 152343890, 241459 },
|
||||
{ 153537506, 241917 },
|
||||
{ 154737869, 242376 },
|
||||
{ 155945002, 242835 },
|
||||
{ 157158929, 243294 },
|
||||
{ 158379673, 243753 },
|
||||
{ 159607257, 244213 },
|
||||
{ 160841704, 244673 },
|
||||
{ 162083037, 245133 },
|
||||
{ 163331279, 245593 },
|
||||
{ 164586455, 246054 },
|
||||
{ 165848586, 246514 },
|
||||
{ 167117696, 246975 },
|
||||
{ 168393810, 247437 },
|
||||
{ 169676949, 247898 },
|
||||
{ 170967138, 248360 },
|
||||
{ 172264399, 248822 },
|
||||
{ 173568757, 249284 },
|
||||
{ 174880235, 249747 },
|
||||
{ 176198856, 250209 },
|
||||
{ 177524643, 250672 },
|
||||
{ 178857621, 251136 },
|
||||
{ 180197813, 251599 },
|
||||
{ 181545242, 252063 },
|
||||
{ 182899933, 252527 },
|
||||
{ 184261908, 252991 },
|
||||
{ 185631191, 253456 },
|
||||
{ 187007807, 253920 },
|
||||
{ 188391778, 254385 },
|
||||
{ 189783129, 254851 },
|
||||
{ 191181884, 255316 },
|
||||
{ 192588065, 255782 },
|
||||
{ 194001698, 256248 },
|
||||
{ 195422805, 256714 },
|
||||
{ 196851411, 257181 },
|
||||
{ 198287540, 257648 },
|
||||
{ 199731215, 258115 },
|
||||
{ 201182461, 258582 },
|
||||
{ 202641302, 259050 },
|
||||
{ 204107760, 259518 },
|
||||
{ 205581862, 259986 },
|
||||
{ 207063630, 260454 },
|
||||
{ 208553088, 260923 },
|
||||
{ 210050262, 261392 },
|
||||
{ 211555174, 261861 },
|
||||
{ 213067849, 262331 },
|
||||
{ 214588312, 262800 },
|
||||
{ 216116586, 263270 },
|
||||
{ 217652696, 263741 },
|
||||
{ 219196666, 264211 },
|
||||
{ 220748520, 264682 },
|
||||
{ 222308282, 265153 },
|
||||
{ 223875978, 265625 },
|
||||
{ 225451630, 266097 },
|
||||
{ 227035265, 266569 },
|
||||
{ 228626905, 267041 },
|
||||
{ 230226576, 267514 },
|
||||
{ 231834302, 267986 },
|
||||
{ 233450107, 268460 },
|
||||
{ 235074016, 268933 },
|
||||
{ 236706054, 269407 },
|
||||
{ 238346244, 269881 },
|
||||
{ 239994613, 270355 },
|
||||
{ 241651183, 270830 },
|
||||
{ 243315981, 271305 }
|
||||
};
|
||||
|
||||
/* return largest index i such that fval <= lookup[i][small] */
|
||||
static inline u32 tfrc_binsearch(u32 fval, u8 small)
|
||||
{
|
||||
u32 try, low = 0, high = TFRC_CALC_X_ARRSIZE - 1;
|
||||
|
||||
while (low < high) {
|
||||
try = (low + high) / 2;
|
||||
if (fval <= tfrc_calc_x_lookup[try][small])
|
||||
high = try;
|
||||
else
|
||||
low = try + 1;
|
||||
}
|
||||
return high;
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_calc_x - Calculate the send rate as per section 3.1 of RFC3448
|
||||
* @s: packet size in bytes
|
||||
* @R: RTT scaled by 1000000 (i.e., microseconds)
|
||||
* @p: loss ratio estimate scaled by 1000000
|
||||
*
|
||||
* Returns X_calc in bytes per second (not scaled).
|
||||
*/
|
||||
u32 tfrc_calc_x(u16 s, u32 R, u32 p)
|
||||
{
|
||||
u16 index;
|
||||
u32 f;
|
||||
u64 result;
|
||||
|
||||
/* check against invalid parameters and divide-by-zero */
|
||||
BUG_ON(p > 1000000); /* p must not exceed 100% */
|
||||
BUG_ON(p == 0); /* f(0) = 0, divide by zero */
|
||||
if (R == 0) { /* possible divide by zero */
|
||||
DCCP_CRIT("WARNING: RTT is 0, returning maximum X_calc.");
|
||||
return ~0U;
|
||||
}
|
||||
|
||||
if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */
|
||||
if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */
|
||||
DCCP_WARN("Value of p (%d) below resolution. "
|
||||
"Substituting %d\n", p, TFRC_SMALLEST_P);
|
||||
index = 0;
|
||||
} else /* 0.0001 <= p <= 0.05 */
|
||||
index = p/TFRC_SMALLEST_P - 1;
|
||||
|
||||
f = tfrc_calc_x_lookup[index][1];
|
||||
|
||||
} else { /* 0.05 < p <= 1.00 */
|
||||
index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1;
|
||||
|
||||
f = tfrc_calc_x_lookup[index][0];
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute X = s/(R*f(p)) in bytes per second.
|
||||
* Since f(p) and R are both scaled by 1000000, we need to multiply by
|
||||
* 1000000^2. To avoid overflow, the result is computed in two stages.
|
||||
* This works under almost all reasonable operational conditions, for a
|
||||
* wide range of parameters. Yet, should some strange combination of
|
||||
* parameters result in overflow, the use of scaled_div32 will catch
|
||||
* this and return UINT_MAX - which is a logically adequate consequence.
|
||||
*/
|
||||
result = scaled_div(s, R);
|
||||
return scaled_div32(result, f);
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_calc_x_reverse_lookup - try to find p given f(p)
|
||||
* @fvalue: function value to match, scaled by 1000000
|
||||
*
|
||||
* Returns closest match for p, also scaled by 1000000
|
||||
*/
|
||||
u32 tfrc_calc_x_reverse_lookup(u32 fvalue)
|
||||
{
|
||||
int index;
|
||||
|
||||
if (fvalue == 0) /* f(p) = 0 whenever p = 0 */
|
||||
return 0;
|
||||
|
||||
/* Error cases. */
|
||||
if (fvalue < tfrc_calc_x_lookup[0][1]) {
|
||||
DCCP_WARN("fvalue %u smaller than resolution\n", fvalue);
|
||||
return TFRC_SMALLEST_P;
|
||||
}
|
||||
if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) {
|
||||
DCCP_WARN("fvalue %u exceeds bounds!\n", fvalue);
|
||||
return 1000000;
|
||||
}
|
||||
|
||||
if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) {
|
||||
index = tfrc_binsearch(fvalue, 1);
|
||||
return (index + 1) * TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE;
|
||||
}
|
||||
|
||||
/* else ... it must be in the coarse-grained column */
|
||||
index = tfrc_binsearch(fvalue, 0);
|
||||
return (index + 1) * 1000000 / TFRC_CALC_X_ARRSIZE;
|
||||
}
|
||||
|
||||
/**
|
||||
* tfrc_invert_loss_event_rate - Compute p so that 10^6 corresponds to 100%
|
||||
* @loss_event_rate: loss event rate to invert
|
||||
* When @loss_event_rate is large, there is a chance that p is truncated to 0.
|
||||
* To avoid re-entering slow-start in that case, we set p = TFRC_SMALLEST_P > 0.
|
||||
*/
|
||||
u32 tfrc_invert_loss_event_rate(u32 loss_event_rate)
|
||||
{
|
||||
if (loss_event_rate == UINT_MAX) /* see RFC 4342, 8.5 */
|
||||
return 0;
|
||||
if (unlikely(loss_event_rate == 0)) /* map 1/0 into 100% */
|
||||
return 1000000;
|
||||
return max_t(u32, scaled_div(1, loss_event_rate), TFRC_SMALLEST_P);
|
||||
}
|
483
net/dccp/dccp.h
483
net/dccp/dccp.h
|
@ -1,483 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
#ifndef _DCCP_H
|
||||
#define _DCCP_H
|
||||
/*
|
||||
* net/dccp/dccp.h
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
* Copyright (c) 2005-6 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <net/snmp.h>
|
||||
#include <net/sock.h>
|
||||
#include <net/tcp.h>
|
||||
#include "ackvec.h"
|
||||
|
||||
/*
|
||||
* DCCP - specific warning and debugging macros.
|
||||
*/
|
||||
#define DCCP_WARN(fmt, ...) \
|
||||
net_warn_ratelimited("%s: " fmt, __func__, ##__VA_ARGS__)
|
||||
#define DCCP_CRIT(fmt, a...) printk(KERN_CRIT fmt " at %s:%d/%s()\n", ##a, \
|
||||
__FILE__, __LINE__, __func__)
|
||||
#define DCCP_BUG(a...) do { DCCP_CRIT("BUG: " a); dump_stack(); } while(0)
|
||||
#define DCCP_BUG_ON(cond) do { if (unlikely((cond) != 0)) \
|
||||
DCCP_BUG("\"%s\" holds (exception!)", \
|
||||
__stringify(cond)); \
|
||||
} while (0)
|
||||
|
||||
#define DCCP_PRINTK(enable, fmt, args...) do { if (enable) \
|
||||
printk(fmt, ##args); \
|
||||
} while(0)
|
||||
#define DCCP_PR_DEBUG(enable, fmt, a...) DCCP_PRINTK(enable, KERN_DEBUG \
|
||||
"%s: " fmt, __func__, ##a)
|
||||
|
||||
#ifdef CONFIG_IP_DCCP_DEBUG
|
||||
extern bool dccp_debug;
|
||||
#define dccp_pr_debug(format, a...) DCCP_PR_DEBUG(dccp_debug, format, ##a)
|
||||
#define dccp_pr_debug_cat(format, a...) DCCP_PRINTK(dccp_debug, format, ##a)
|
||||
#define dccp_debug(fmt, a...) dccp_pr_debug_cat(KERN_DEBUG fmt, ##a)
|
||||
#else
|
||||
#define dccp_pr_debug(format, a...) do {} while (0)
|
||||
#define dccp_pr_debug_cat(format, a...) do {} while (0)
|
||||
#define dccp_debug(format, a...) do {} while (0)
|
||||
#endif
|
||||
|
||||
extern struct inet_hashinfo dccp_hashinfo;
|
||||
|
||||
DECLARE_PER_CPU(unsigned int, dccp_orphan_count);
|
||||
|
||||
void dccp_time_wait(struct sock *sk, int state, int timeo);
|
||||
|
||||
/*
|
||||
* Set safe upper bounds for header and option length. Since Data Offset is 8
|
||||
* bits (RFC 4340, sec. 5.1), the total header length can never be more than
|
||||
* 4 * 255 = 1020 bytes. The largest possible header length is 28 bytes (X=1):
|
||||
* - DCCP-Response with ACK Subheader and 4 bytes of Service code OR
|
||||
* - DCCP-Reset with ACK Subheader and 4 bytes of Reset Code fields
|
||||
* Hence a safe upper bound for the maximum option length is 1020-28 = 992
|
||||
*/
|
||||
#define MAX_DCCP_SPECIFIC_HEADER (255 * sizeof(uint32_t))
|
||||
#define DCCP_MAX_PACKET_HDR 28
|
||||
#define DCCP_MAX_OPT_LEN (MAX_DCCP_SPECIFIC_HEADER - DCCP_MAX_PACKET_HDR)
|
||||
#define MAX_DCCP_HEADER (MAX_DCCP_SPECIFIC_HEADER + MAX_HEADER)
|
||||
|
||||
/* Upper bound for initial feature-negotiation overhead (padded to 32 bits) */
|
||||
#define DCCP_FEATNEG_OVERHEAD (32 * sizeof(uint32_t))
|
||||
|
||||
#define DCCP_TIMEWAIT_LEN (60 * HZ) /* how long to wait to destroy TIME-WAIT
|
||||
* state, about 60 seconds */
|
||||
|
||||
/* RFC 1122, 4.2.3.1 initial RTO value */
|
||||
#define DCCP_TIMEOUT_INIT ((unsigned int)(3 * HZ))
|
||||
|
||||
/*
|
||||
* The maximum back-off value for retransmissions. This is needed for
|
||||
* - retransmitting client-Requests (sec. 8.1.1),
|
||||
* - retransmitting Close/CloseReq when closing (sec. 8.3),
|
||||
* - feature-negotiation retransmission (sec. 6.6.3),
|
||||
* - Acks in client-PARTOPEN state (sec. 8.1.5).
|
||||
*/
|
||||
#define DCCP_RTO_MAX ((unsigned int)(64 * HZ))
|
||||
|
||||
/*
|
||||
* RTT sampling: sanity bounds and fallback RTT value from RFC 4340, section 3.4
|
||||
*/
|
||||
#define DCCP_SANE_RTT_MIN 100
|
||||
#define DCCP_FALLBACK_RTT (USEC_PER_SEC / 5)
|
||||
#define DCCP_SANE_RTT_MAX (3 * USEC_PER_SEC)
|
||||
|
||||
/* sysctl variables for DCCP */
|
||||
extern int sysctl_dccp_request_retries;
|
||||
extern int sysctl_dccp_retries1;
|
||||
extern int sysctl_dccp_retries2;
|
||||
extern int sysctl_dccp_tx_qlen;
|
||||
extern int sysctl_dccp_sync_ratelimit;
|
||||
|
||||
/*
|
||||
* 48-bit sequence number arithmetic (signed and unsigned)
|
||||
*/
|
||||
#define INT48_MIN 0x800000000000LL /* 2^47 */
|
||||
#define UINT48_MAX 0xFFFFFFFFFFFFLL /* 2^48 - 1 */
|
||||
#define COMPLEMENT48(x) (0x1000000000000LL - (x)) /* 2^48 - x */
|
||||
#define TO_SIGNED48(x) (((x) < INT48_MIN)? (x) : -COMPLEMENT48( (x)))
|
||||
#define TO_UNSIGNED48(x) (((x) >= 0)? (x) : COMPLEMENT48(-(x)))
|
||||
#define ADD48(a, b) (((a) + (b)) & UINT48_MAX)
|
||||
#define SUB48(a, b) ADD48((a), COMPLEMENT48(b))
|
||||
|
||||
static inline void dccp_inc_seqno(u64 *seqno)
|
||||
{
|
||||
*seqno = ADD48(*seqno, 1);
|
||||
}
|
||||
|
||||
/* signed mod-2^48 distance: pos. if seqno1 < seqno2, neg. if seqno1 > seqno2 */
|
||||
static inline s64 dccp_delta_seqno(const u64 seqno1, const u64 seqno2)
|
||||
{
|
||||
u64 delta = SUB48(seqno2, seqno1);
|
||||
|
||||
return TO_SIGNED48(delta);
|
||||
}
|
||||
|
||||
/* is seq1 < seq2 ? */
|
||||
static inline int before48(const u64 seq1, const u64 seq2)
|
||||
{
|
||||
return (s64)((seq2 << 16) - (seq1 << 16)) > 0;
|
||||
}
|
||||
|
||||
/* is seq1 > seq2 ? */
|
||||
#define after48(seq1, seq2) before48(seq2, seq1)
|
||||
|
||||
/* is seq2 <= seq1 <= seq3 ? */
|
||||
static inline int between48(const u64 seq1, const u64 seq2, const u64 seq3)
|
||||
{
|
||||
return (seq3 << 16) - (seq2 << 16) >= (seq1 << 16) - (seq2 << 16);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_loss_count - Approximate the number of lost data packets in a burst loss
|
||||
* @s1: last known sequence number before the loss ('hole')
|
||||
* @s2: first sequence number seen after the 'hole'
|
||||
* @ndp: NDP count on packet with sequence number @s2
|
||||
*/
|
||||
static inline u64 dccp_loss_count(const u64 s1, const u64 s2, const u64 ndp)
|
||||
{
|
||||
s64 delta = dccp_delta_seqno(s1, s2);
|
||||
|
||||
WARN_ON(delta < 0);
|
||||
delta -= ndp + 1;
|
||||
|
||||
return delta > 0 ? delta : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_loss_free - Evaluate condition for data loss from RFC 4340, 7.7.1
|
||||
*/
|
||||
static inline bool dccp_loss_free(const u64 s1, const u64 s2, const u64 ndp)
|
||||
{
|
||||
return dccp_loss_count(s1, s2, ndp) == 0;
|
||||
}
|
||||
|
||||
enum {
|
||||
DCCP_MIB_NUM = 0,
|
||||
DCCP_MIB_ACTIVEOPENS, /* ActiveOpens */
|
||||
DCCP_MIB_ESTABRESETS, /* EstabResets */
|
||||
DCCP_MIB_CURRESTAB, /* CurrEstab */
|
||||
DCCP_MIB_OUTSEGS, /* OutSegs */
|
||||
DCCP_MIB_OUTRSTS,
|
||||
DCCP_MIB_ABORTONTIMEOUT,
|
||||
DCCP_MIB_TIMEOUTS,
|
||||
DCCP_MIB_ABORTFAILED,
|
||||
DCCP_MIB_PASSIVEOPENS,
|
||||
DCCP_MIB_ATTEMPTFAILS,
|
||||
DCCP_MIB_OUTDATAGRAMS,
|
||||
DCCP_MIB_INERRS,
|
||||
DCCP_MIB_OPTMANDATORYERROR,
|
||||
DCCP_MIB_INVALIDOPT,
|
||||
__DCCP_MIB_MAX
|
||||
};
|
||||
|
||||
#define DCCP_MIB_MAX __DCCP_MIB_MAX
|
||||
struct dccp_mib {
|
||||
unsigned long mibs[DCCP_MIB_MAX];
|
||||
};
|
||||
|
||||
DECLARE_SNMP_STAT(struct dccp_mib, dccp_statistics);
|
||||
#define DCCP_INC_STATS(field) SNMP_INC_STATS(dccp_statistics, field)
|
||||
#define __DCCP_INC_STATS(field) __SNMP_INC_STATS(dccp_statistics, field)
|
||||
#define DCCP_DEC_STATS(field) SNMP_DEC_STATS(dccp_statistics, field)
|
||||
|
||||
/*
|
||||
* Checksumming routines
|
||||
*/
|
||||
static inline unsigned int dccp_csum_coverage(const struct sk_buff *skb)
|
||||
{
|
||||
const struct dccp_hdr* dh = dccp_hdr(skb);
|
||||
|
||||
if (dh->dccph_cscov == 0)
|
||||
return skb->len;
|
||||
return (dh->dccph_doff + dh->dccph_cscov - 1) * sizeof(u32);
|
||||
}
|
||||
|
||||
static inline void dccp_csum_outgoing(struct sk_buff *skb)
|
||||
{
|
||||
unsigned int cov = dccp_csum_coverage(skb);
|
||||
|
||||
if (cov >= skb->len)
|
||||
dccp_hdr(skb)->dccph_cscov = 0;
|
||||
|
||||
skb->csum = skb_checksum(skb, 0, (cov > skb->len)? skb->len : cov, 0);
|
||||
}
|
||||
|
||||
void dccp_v4_send_check(struct sock *sk, struct sk_buff *skb);
|
||||
|
||||
int dccp_retransmit_skb(struct sock *sk);
|
||||
|
||||
void dccp_send_ack(struct sock *sk);
|
||||
void dccp_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
|
||||
struct request_sock *rsk);
|
||||
|
||||
void dccp_send_sync(struct sock *sk, const u64 seq,
|
||||
const enum dccp_pkt_type pkt_type);
|
||||
|
||||
/*
|
||||
* TX Packet Dequeueing Interface
|
||||
*/
|
||||
void dccp_qpolicy_push(struct sock *sk, struct sk_buff *skb);
|
||||
bool dccp_qpolicy_full(struct sock *sk);
|
||||
void dccp_qpolicy_drop(struct sock *sk, struct sk_buff *skb);
|
||||
struct sk_buff *dccp_qpolicy_top(struct sock *sk);
|
||||
struct sk_buff *dccp_qpolicy_pop(struct sock *sk);
|
||||
bool dccp_qpolicy_param_ok(struct sock *sk, __be32 param);
|
||||
|
||||
/*
|
||||
* TX Packet Output and TX Timers
|
||||
*/
|
||||
void dccp_write_xmit(struct sock *sk);
|
||||
void dccp_write_space(struct sock *sk);
|
||||
void dccp_flush_write_queue(struct sock *sk, long *time_budget);
|
||||
|
||||
void dccp_init_xmit_timers(struct sock *sk);
|
||||
static inline void dccp_clear_xmit_timers(struct sock *sk)
|
||||
{
|
||||
inet_csk_clear_xmit_timers(sk);
|
||||
}
|
||||
|
||||
unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu);
|
||||
|
||||
const char *dccp_packet_name(const int type);
|
||||
|
||||
void dccp_set_state(struct sock *sk, const int state);
|
||||
void dccp_done(struct sock *sk);
|
||||
|
||||
int dccp_reqsk_init(struct request_sock *rq, struct dccp_sock const *dp,
|
||||
struct sk_buff const *skb);
|
||||
|
||||
int dccp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
|
||||
|
||||
struct sock *dccp_create_openreq_child(const struct sock *sk,
|
||||
const struct request_sock *req,
|
||||
const struct sk_buff *skb);
|
||||
|
||||
int dccp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
|
||||
|
||||
struct sock *dccp_v4_request_recv_sock(const struct sock *sk, struct sk_buff *skb,
|
||||
struct request_sock *req,
|
||||
struct dst_entry *dst,
|
||||
struct request_sock *req_unhash,
|
||||
bool *own_req);
|
||||
struct sock *dccp_check_req(struct sock *sk, struct sk_buff *skb,
|
||||
struct request_sock *req);
|
||||
|
||||
int dccp_child_process(struct sock *parent, struct sock *child,
|
||||
struct sk_buff *skb);
|
||||
int dccp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
||||
struct dccp_hdr *dh, unsigned int len);
|
||||
int dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
|
||||
const struct dccp_hdr *dh, const unsigned int len);
|
||||
|
||||
void dccp_destruct_common(struct sock *sk);
|
||||
int dccp_init_sock(struct sock *sk, const __u8 ctl_sock_initialized);
|
||||
void dccp_destroy_sock(struct sock *sk);
|
||||
|
||||
void dccp_close(struct sock *sk, long timeout);
|
||||
struct sk_buff *dccp_make_response(const struct sock *sk, struct dst_entry *dst,
|
||||
struct request_sock *req);
|
||||
|
||||
int dccp_connect(struct sock *sk);
|
||||
int dccp_disconnect(struct sock *sk, int flags);
|
||||
int dccp_getsockopt(struct sock *sk, int level, int optname,
|
||||
char __user *optval, int __user *optlen);
|
||||
int dccp_setsockopt(struct sock *sk, int level, int optname,
|
||||
sockptr_t optval, unsigned int optlen);
|
||||
int dccp_ioctl(struct sock *sk, int cmd, int *karg);
|
||||
int dccp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
|
||||
int dccp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
|
||||
int *addr_len);
|
||||
void dccp_shutdown(struct sock *sk, int how);
|
||||
int inet_dccp_listen(struct socket *sock, int backlog);
|
||||
__poll_t dccp_poll(struct file *file, struct socket *sock,
|
||||
poll_table *wait);
|
||||
int dccp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
|
||||
void dccp_req_err(struct sock *sk, u64 seq);
|
||||
|
||||
struct sk_buff *dccp_ctl_make_reset(struct sock *sk, struct sk_buff *skb);
|
||||
int dccp_send_reset(struct sock *sk, enum dccp_reset_codes code);
|
||||
void dccp_send_close(struct sock *sk, const int active);
|
||||
int dccp_invalid_packet(struct sk_buff *skb);
|
||||
u32 dccp_sample_rtt(struct sock *sk, long delta);
|
||||
|
||||
static inline bool dccp_bad_service_code(const struct sock *sk,
|
||||
const __be32 service)
|
||||
{
|
||||
const struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
if (dp->dccps_service == service)
|
||||
return false;
|
||||
return !dccp_list_has_service(dp->dccps_service_list, service);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_skb_cb - DCCP per-packet control information
|
||||
* @dccpd_type: one of %dccp_pkt_type (or unknown)
|
||||
* @dccpd_ccval: CCVal field (5.1), see e.g. RFC 4342, 8.1
|
||||
* @dccpd_reset_code: one of %dccp_reset_codes
|
||||
* @dccpd_reset_data: Data1..3 fields (depend on @dccpd_reset_code)
|
||||
* @dccpd_opt_len: total length of all options (5.8) in the packet
|
||||
* @dccpd_seq: sequence number
|
||||
* @dccpd_ack_seq: acknowledgment number subheader field value
|
||||
*
|
||||
* This is used for transmission as well as for reception.
|
||||
*/
|
||||
struct dccp_skb_cb {
|
||||
union {
|
||||
struct inet_skb_parm h4;
|
||||
#if IS_ENABLED(CONFIG_IPV6)
|
||||
struct inet6_skb_parm h6;
|
||||
#endif
|
||||
} header;
|
||||
__u8 dccpd_type:4;
|
||||
__u8 dccpd_ccval:4;
|
||||
__u8 dccpd_reset_code,
|
||||
dccpd_reset_data[3];
|
||||
__u16 dccpd_opt_len;
|
||||
__u64 dccpd_seq;
|
||||
__u64 dccpd_ack_seq;
|
||||
};
|
||||
|
||||
#define DCCP_SKB_CB(__skb) ((struct dccp_skb_cb *)&((__skb)->cb[0]))
|
||||
|
||||
/* RFC 4340, sec. 7.7 */
|
||||
static inline int dccp_non_data_packet(const struct sk_buff *skb)
|
||||
{
|
||||
const __u8 type = DCCP_SKB_CB(skb)->dccpd_type;
|
||||
|
||||
return type == DCCP_PKT_ACK ||
|
||||
type == DCCP_PKT_CLOSE ||
|
||||
type == DCCP_PKT_CLOSEREQ ||
|
||||
type == DCCP_PKT_RESET ||
|
||||
type == DCCP_PKT_SYNC ||
|
||||
type == DCCP_PKT_SYNCACK;
|
||||
}
|
||||
|
||||
/* RFC 4340, sec. 7.7 */
|
||||
static inline int dccp_data_packet(const struct sk_buff *skb)
|
||||
{
|
||||
const __u8 type = DCCP_SKB_CB(skb)->dccpd_type;
|
||||
|
||||
return type == DCCP_PKT_DATA ||
|
||||
type == DCCP_PKT_DATAACK ||
|
||||
type == DCCP_PKT_REQUEST ||
|
||||
type == DCCP_PKT_RESPONSE;
|
||||
}
|
||||
|
||||
static inline int dccp_packet_without_ack(const struct sk_buff *skb)
|
||||
{
|
||||
const __u8 type = DCCP_SKB_CB(skb)->dccpd_type;
|
||||
|
||||
return type == DCCP_PKT_DATA || type == DCCP_PKT_REQUEST;
|
||||
}
|
||||
|
||||
#define DCCP_PKT_WITHOUT_ACK_SEQ (UINT48_MAX << 2)
|
||||
|
||||
static inline void dccp_hdr_set_seq(struct dccp_hdr *dh, const u64 gss)
|
||||
{
|
||||
struct dccp_hdr_ext *dhx = (struct dccp_hdr_ext *)((void *)dh +
|
||||
sizeof(*dh));
|
||||
dh->dccph_seq2 = 0;
|
||||
dh->dccph_seq = htons((gss >> 32) & 0xfffff);
|
||||
dhx->dccph_seq_low = htonl(gss & 0xffffffff);
|
||||
}
|
||||
|
||||
static inline void dccp_hdr_set_ack(struct dccp_hdr_ack_bits *dhack,
|
||||
const u64 gsr)
|
||||
{
|
||||
dhack->dccph_reserved1 = 0;
|
||||
dhack->dccph_ack_nr_high = htons(gsr >> 32);
|
||||
dhack->dccph_ack_nr_low = htonl(gsr & 0xffffffff);
|
||||
}
|
||||
|
||||
static inline void dccp_update_gsr(struct sock *sk, u64 seq)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
if (after48(seq, dp->dccps_gsr))
|
||||
dp->dccps_gsr = seq;
|
||||
/* Sequence validity window depends on remote Sequence Window (7.5.1) */
|
||||
dp->dccps_swl = SUB48(ADD48(dp->dccps_gsr, 1), dp->dccps_r_seq_win / 4);
|
||||
/*
|
||||
* Adjust SWL so that it is not below ISR. In contrast to RFC 4340,
|
||||
* 7.5.1 we perform this check beyond the initial handshake: W/W' are
|
||||
* always > 32, so for the first W/W' packets in the lifetime of a
|
||||
* connection we always have to adjust SWL.
|
||||
* A second reason why we are doing this is that the window depends on
|
||||
* the feature-remote value of Sequence Window: nothing stops the peer
|
||||
* from updating this value while we are busy adjusting SWL for the
|
||||
* first W packets (we would have to count from scratch again then).
|
||||
* Therefore it is safer to always make sure that the Sequence Window
|
||||
* is not artificially extended by a peer who grows SWL downwards by
|
||||
* continually updating the feature-remote Sequence-Window.
|
||||
* If sequence numbers wrap it is bad luck. But that will take a while
|
||||
* (48 bit), and this measure prevents Sequence-number attacks.
|
||||
*/
|
||||
if (before48(dp->dccps_swl, dp->dccps_isr))
|
||||
dp->dccps_swl = dp->dccps_isr;
|
||||
dp->dccps_swh = ADD48(dp->dccps_gsr, (3 * dp->dccps_r_seq_win) / 4);
|
||||
}
|
||||
|
||||
static inline void dccp_update_gss(struct sock *sk, u64 seq)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
dp->dccps_gss = seq;
|
||||
/* Ack validity window depends on local Sequence Window value (7.5.1) */
|
||||
dp->dccps_awl = SUB48(ADD48(dp->dccps_gss, 1), dp->dccps_l_seq_win);
|
||||
/* Adjust AWL so that it is not below ISS - see comment above for SWL */
|
||||
if (before48(dp->dccps_awl, dp->dccps_iss))
|
||||
dp->dccps_awl = dp->dccps_iss;
|
||||
dp->dccps_awh = dp->dccps_gss;
|
||||
}
|
||||
|
||||
static inline int dccp_ackvec_pending(const struct sock *sk)
|
||||
{
|
||||
return dccp_sk(sk)->dccps_hc_rx_ackvec != NULL &&
|
||||
!dccp_ackvec_is_empty(dccp_sk(sk)->dccps_hc_rx_ackvec);
|
||||
}
|
||||
|
||||
static inline int dccp_ack_pending(const struct sock *sk)
|
||||
{
|
||||
return dccp_ackvec_pending(sk) || inet_csk_ack_scheduled(sk);
|
||||
}
|
||||
|
||||
int dccp_feat_signal_nn_change(struct sock *sk, u8 feat, u64 nn_val);
|
||||
int dccp_feat_finalise_settings(struct dccp_sock *dp);
|
||||
int dccp_feat_server_ccid_dependencies(struct dccp_request_sock *dreq);
|
||||
int dccp_feat_insert_opts(struct dccp_sock*, struct dccp_request_sock*,
|
||||
struct sk_buff *skb);
|
||||
int dccp_feat_activate_values(struct sock *sk, struct list_head *fn);
|
||||
void dccp_feat_list_purge(struct list_head *fn_list);
|
||||
|
||||
int dccp_insert_options(struct sock *sk, struct sk_buff *skb);
|
||||
int dccp_insert_options_rsk(struct dccp_request_sock *, struct sk_buff *);
|
||||
u32 dccp_timestamp(void);
|
||||
void dccp_timestamping_init(void);
|
||||
int dccp_insert_option(struct sk_buff *skb, unsigned char option,
|
||||
const void *value, unsigned char len);
|
||||
|
||||
#ifdef CONFIG_SYSCTL
|
||||
int dccp_sysctl_init(void);
|
||||
void dccp_sysctl_exit(void);
|
||||
#else
|
||||
static inline int dccp_sysctl_init(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void dccp_sysctl_exit(void)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _DCCP_H */
|
|
@ -1,85 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* net/dccp/diag.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@mandriva.com>
|
||||
*/
|
||||
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/inet_diag.h>
|
||||
|
||||
#include "ccid.h"
|
||||
#include "dccp.h"
|
||||
|
||||
static void dccp_get_info(struct sock *sk, struct tcp_info *info)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
|
||||
memset(info, 0, sizeof(*info));
|
||||
|
||||
info->tcpi_state = sk->sk_state;
|
||||
info->tcpi_retransmits = icsk->icsk_retransmits;
|
||||
info->tcpi_probes = icsk->icsk_probes_out;
|
||||
info->tcpi_backoff = icsk->icsk_backoff;
|
||||
info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
|
||||
|
||||
if (dp->dccps_hc_rx_ackvec != NULL)
|
||||
info->tcpi_options |= TCPI_OPT_SACK;
|
||||
|
||||
if (dp->dccps_hc_rx_ccid != NULL)
|
||||
ccid_hc_rx_get_info(dp->dccps_hc_rx_ccid, sk, info);
|
||||
|
||||
if (dp->dccps_hc_tx_ccid != NULL)
|
||||
ccid_hc_tx_get_info(dp->dccps_hc_tx_ccid, sk, info);
|
||||
}
|
||||
|
||||
static void dccp_diag_get_info(struct sock *sk, struct inet_diag_msg *r,
|
||||
void *_info)
|
||||
{
|
||||
r->idiag_rqueue = r->idiag_wqueue = 0;
|
||||
|
||||
if (_info != NULL)
|
||||
dccp_get_info(sk, _info);
|
||||
}
|
||||
|
||||
static void dccp_diag_dump(struct sk_buff *skb, struct netlink_callback *cb,
|
||||
const struct inet_diag_req_v2 *r)
|
||||
{
|
||||
inet_diag_dump_icsk(&dccp_hashinfo, skb, cb, r);
|
||||
}
|
||||
|
||||
static int dccp_diag_dump_one(struct netlink_callback *cb,
|
||||
const struct inet_diag_req_v2 *req)
|
||||
{
|
||||
return inet_diag_dump_one_icsk(&dccp_hashinfo, cb, req);
|
||||
}
|
||||
|
||||
static const struct inet_diag_handler dccp_diag_handler = {
|
||||
.owner = THIS_MODULE,
|
||||
.dump = dccp_diag_dump,
|
||||
.dump_one = dccp_diag_dump_one,
|
||||
.idiag_get_info = dccp_diag_get_info,
|
||||
.idiag_type = IPPROTO_DCCP,
|
||||
.idiag_info_size = sizeof(struct tcp_info),
|
||||
};
|
||||
|
||||
static int __init dccp_diag_init(void)
|
||||
{
|
||||
return inet_diag_register(&dccp_diag_handler);
|
||||
}
|
||||
|
||||
static void __exit dccp_diag_fini(void)
|
||||
{
|
||||
inet_diag_unregister(&dccp_diag_handler);
|
||||
}
|
||||
|
||||
module_init(dccp_diag_init);
|
||||
module_exit(dccp_diag_fini);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Arnaldo Carvalho de Melo <acme@mandriva.com>");
|
||||
MODULE_DESCRIPTION("DCCP inet_diag handler");
|
||||
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, 2-33 /* AF_INET - IPPROTO_DCCP */);
|
1581
net/dccp/feat.c
1581
net/dccp/feat.c
File diff suppressed because it is too large
Load diff
133
net/dccp/feat.h
133
net/dccp/feat.h
|
@ -1,133 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
#ifndef _DCCP_FEAT_H
|
||||
#define _DCCP_FEAT_H
|
||||
/*
|
||||
* net/dccp/feat.h
|
||||
*
|
||||
* Feature negotiation for the DCCP protocol (RFC 4340, section 6)
|
||||
* Copyright (c) 2008 Gerrit Renker <gerrit@erg.abdn.ac.uk>
|
||||
* Copyright (c) 2005 Andrea Bittau <a.bittau@cs.ucl.ac.uk>
|
||||
*/
|
||||
#include <linux/types.h>
|
||||
#include "dccp.h"
|
||||
|
||||
/*
|
||||
* Known limit values
|
||||
*/
|
||||
/* Ack Ratio takes 2-byte integer values (11.3) */
|
||||
#define DCCPF_ACK_RATIO_MAX 0xFFFF
|
||||
/* Wmin=32 and Wmax=2^46-1 from 7.5.2 */
|
||||
#define DCCPF_SEQ_WMIN 32
|
||||
#define DCCPF_SEQ_WMAX 0x3FFFFFFFFFFFull
|
||||
/* Maximum number of SP values that fit in a single (Confirm) option */
|
||||
#define DCCP_FEAT_MAX_SP_VALS (DCCP_SINGLE_OPT_MAXLEN - 2)
|
||||
|
||||
enum dccp_feat_type {
|
||||
FEAT_AT_RX = 1, /* located at RX side of half-connection */
|
||||
FEAT_AT_TX = 2, /* located at TX side of half-connection */
|
||||
FEAT_SP = 4, /* server-priority reconciliation (6.3.1) */
|
||||
FEAT_NN = 8, /* non-negotiable reconciliation (6.3.2) */
|
||||
FEAT_UNKNOWN = 0xFF /* not understood or invalid feature */
|
||||
};
|
||||
|
||||
enum dccp_feat_state {
|
||||
FEAT_DEFAULT = 0, /* using default values from 6.4 */
|
||||
FEAT_INITIALISING, /* feature is being initialised */
|
||||
FEAT_CHANGING, /* Change sent but not confirmed yet */
|
||||
FEAT_UNSTABLE, /* local modification in state CHANGING */
|
||||
FEAT_STABLE /* both ends (think they) agree */
|
||||
};
|
||||
|
||||
/**
|
||||
* dccp_feat_val - Container for SP or NN feature values
|
||||
* @nn: single NN value
|
||||
* @sp.vec: single SP value plus optional preference list
|
||||
* @sp.len: length of @sp.vec in bytes
|
||||
*/
|
||||
typedef union {
|
||||
u64 nn;
|
||||
struct {
|
||||
u8 *vec;
|
||||
u8 len;
|
||||
} sp;
|
||||
} dccp_feat_val;
|
||||
|
||||
/**
|
||||
* struct feat_entry - Data structure to perform feature negotiation
|
||||
* @val: feature's current value (SP features may have preference list)
|
||||
* @state: feature's current state
|
||||
* @feat_num: one of %dccp_feature_numbers
|
||||
* @needs_mandatory: whether Mandatory options should be sent
|
||||
* @needs_confirm: whether to send a Confirm instead of a Change
|
||||
* @empty_confirm: whether to send an empty Confirm (depends on @needs_confirm)
|
||||
* @is_local: feature location (1) or feature-remote (0)
|
||||
* @node: list pointers, entries arranged in FIFO order
|
||||
*/
|
||||
struct dccp_feat_entry {
|
||||
dccp_feat_val val;
|
||||
enum dccp_feat_state state:8;
|
||||
u8 feat_num;
|
||||
|
||||
bool needs_mandatory,
|
||||
needs_confirm,
|
||||
empty_confirm,
|
||||
is_local;
|
||||
|
||||
struct list_head node;
|
||||
};
|
||||
|
||||
static inline u8 dccp_feat_genopt(struct dccp_feat_entry *entry)
|
||||
{
|
||||
if (entry->needs_confirm)
|
||||
return entry->is_local ? DCCPO_CONFIRM_L : DCCPO_CONFIRM_R;
|
||||
return entry->is_local ? DCCPO_CHANGE_L : DCCPO_CHANGE_R;
|
||||
}
|
||||
|
||||
/**
|
||||
* struct ccid_dependency - Track changes resulting from choosing a CCID
|
||||
* @dependent_feat: one of %dccp_feature_numbers
|
||||
* @is_local: local (1) or remote (0) @dependent_feat
|
||||
* @is_mandatory: whether presence of @dependent_feat is mission-critical or not
|
||||
* @val: corresponding default value for @dependent_feat (u8 is sufficient here)
|
||||
*/
|
||||
struct ccid_dependency {
|
||||
u8 dependent_feat;
|
||||
bool is_local:1,
|
||||
is_mandatory:1;
|
||||
u8 val;
|
||||
};
|
||||
|
||||
/*
|
||||
* Sysctls to seed defaults for feature negotiation
|
||||
*/
|
||||
extern unsigned long sysctl_dccp_sequence_window;
|
||||
extern int sysctl_dccp_rx_ccid;
|
||||
extern int sysctl_dccp_tx_ccid;
|
||||
|
||||
int dccp_feat_init(struct sock *sk);
|
||||
int dccp_feat_register_sp(struct sock *sk, u8 feat, u8 is_local,
|
||||
u8 const *list, u8 len);
|
||||
int dccp_feat_parse_options(struct sock *, struct dccp_request_sock *,
|
||||
u8 mand, u8 opt, u8 feat, u8 *val, u8 len);
|
||||
int dccp_feat_clone_list(struct list_head const *, struct list_head *);
|
||||
|
||||
/*
|
||||
* Encoding variable-length options and their maximum length.
|
||||
*
|
||||
* This affects NN options (SP options are all u8) and other variable-length
|
||||
* options (see table 3 in RFC 4340). The limit is currently given the Sequence
|
||||
* Window NN value (sec. 7.5.2) and the NDP count (sec. 7.7) option, all other
|
||||
* options consume less than 6 bytes (timestamps are 4 bytes).
|
||||
* When updating this constant (e.g. due to new internet drafts / RFCs), make
|
||||
* sure that you also update all code which refers to it.
|
||||
*/
|
||||
#define DCCP_OPTVAL_MAXLEN 6
|
||||
|
||||
void dccp_encode_value_var(const u64 value, u8 *to, const u8 len);
|
||||
u64 dccp_decode_value_var(const u8 *bf, const u8 len);
|
||||
u64 dccp_feat_nn_get(struct sock *sk, u8 feat);
|
||||
|
||||
int dccp_insert_option_mandatory(struct sk_buff *skb);
|
||||
int dccp_insert_fn_opt(struct sk_buff *skb, u8 type, u8 feat, u8 *val, u8 len,
|
||||
bool repeat_first);
|
||||
#endif /* _DCCP_FEAT_H */
|
739
net/dccp/input.c
739
net/dccp/input.c
|
@ -1,739 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* net/dccp/input.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <net/sock.h>
|
||||
|
||||
#include "ackvec.h"
|
||||
#include "ccid.h"
|
||||
#include "dccp.h"
|
||||
|
||||
/* rate-limit for syncs in reply to sequence-invalid packets; RFC 4340, 7.5.4 */
|
||||
int sysctl_dccp_sync_ratelimit __read_mostly = HZ / 8;
|
||||
|
||||
static void dccp_enqueue_skb(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
__skb_pull(skb, dccp_hdr(skb)->dccph_doff * 4);
|
||||
__skb_queue_tail(&sk->sk_receive_queue, skb);
|
||||
skb_set_owner_r(skb, sk);
|
||||
sk->sk_data_ready(sk);
|
||||
}
|
||||
|
||||
static void dccp_fin(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
/*
|
||||
* On receiving Close/CloseReq, both RD/WR shutdown are performed.
|
||||
* RFC 4340, 8.3 says that we MAY send further Data/DataAcks after
|
||||
* receiving the closing segment, but there is no guarantee that such
|
||||
* data will be processed at all.
|
||||
*/
|
||||
sk->sk_shutdown = SHUTDOWN_MASK;
|
||||
sock_set_flag(sk, SOCK_DONE);
|
||||
dccp_enqueue_skb(sk, skb);
|
||||
}
|
||||
|
||||
static int dccp_rcv_close(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
int queued = 0;
|
||||
|
||||
switch (sk->sk_state) {
|
||||
/*
|
||||
* We ignore Close when received in one of the following states:
|
||||
* - CLOSED (may be a late or duplicate packet)
|
||||
* - PASSIVE_CLOSEREQ (the peer has sent a CloseReq earlier)
|
||||
* - RESPOND (already handled by dccp_check_req)
|
||||
*/
|
||||
case DCCP_CLOSING:
|
||||
/*
|
||||
* Simultaneous-close: receiving a Close after sending one. This
|
||||
* can happen if both client and server perform active-close and
|
||||
* will result in an endless ping-pong of crossing and retrans-
|
||||
* mitted Close packets, which only terminates when one of the
|
||||
* nodes times out (min. 64 seconds). Quicker convergence can be
|
||||
* achieved when one of the nodes acts as tie-breaker.
|
||||
* This is ok as both ends are done with data transfer and each
|
||||
* end is just waiting for the other to acknowledge termination.
|
||||
*/
|
||||
if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT)
|
||||
break;
|
||||
fallthrough;
|
||||
case DCCP_REQUESTING:
|
||||
case DCCP_ACTIVE_CLOSEREQ:
|
||||
dccp_send_reset(sk, DCCP_RESET_CODE_CLOSED);
|
||||
dccp_done(sk);
|
||||
break;
|
||||
case DCCP_OPEN:
|
||||
case DCCP_PARTOPEN:
|
||||
/* Give waiting application a chance to read pending data */
|
||||
queued = 1;
|
||||
dccp_fin(sk, skb);
|
||||
dccp_set_state(sk, DCCP_PASSIVE_CLOSE);
|
||||
fallthrough;
|
||||
case DCCP_PASSIVE_CLOSE:
|
||||
/*
|
||||
* Retransmitted Close: we have already enqueued the first one.
|
||||
*/
|
||||
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
|
||||
}
|
||||
return queued;
|
||||
}
|
||||
|
||||
static int dccp_rcv_closereq(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
int queued = 0;
|
||||
|
||||
/*
|
||||
* Step 7: Check for unexpected packet types
|
||||
* If (S.is_server and P.type == CloseReq)
|
||||
* Send Sync packet acknowledging P.seqno
|
||||
* Drop packet and return
|
||||
*/
|
||||
if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT) {
|
||||
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq, DCCP_PKT_SYNC);
|
||||
return queued;
|
||||
}
|
||||
|
||||
/* Step 13: process relevant Client states < CLOSEREQ */
|
||||
switch (sk->sk_state) {
|
||||
case DCCP_REQUESTING:
|
||||
dccp_send_close(sk, 0);
|
||||
dccp_set_state(sk, DCCP_CLOSING);
|
||||
break;
|
||||
case DCCP_OPEN:
|
||||
case DCCP_PARTOPEN:
|
||||
/* Give waiting application a chance to read pending data */
|
||||
queued = 1;
|
||||
dccp_fin(sk, skb);
|
||||
dccp_set_state(sk, DCCP_PASSIVE_CLOSEREQ);
|
||||
fallthrough;
|
||||
case DCCP_PASSIVE_CLOSEREQ:
|
||||
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
|
||||
}
|
||||
return queued;
|
||||
}
|
||||
|
||||
static u16 dccp_reset_code_convert(const u8 code)
|
||||
{
|
||||
static const u16 error_code[] = {
|
||||
[DCCP_RESET_CODE_CLOSED] = 0, /* normal termination */
|
||||
[DCCP_RESET_CODE_UNSPECIFIED] = 0, /* nothing known */
|
||||
[DCCP_RESET_CODE_ABORTED] = ECONNRESET,
|
||||
|
||||
[DCCP_RESET_CODE_NO_CONNECTION] = ECONNREFUSED,
|
||||
[DCCP_RESET_CODE_CONNECTION_REFUSED] = ECONNREFUSED,
|
||||
[DCCP_RESET_CODE_TOO_BUSY] = EUSERS,
|
||||
[DCCP_RESET_CODE_AGGRESSION_PENALTY] = EDQUOT,
|
||||
|
||||
[DCCP_RESET_CODE_PACKET_ERROR] = ENOMSG,
|
||||
[DCCP_RESET_CODE_BAD_INIT_COOKIE] = EBADR,
|
||||
[DCCP_RESET_CODE_BAD_SERVICE_CODE] = EBADRQC,
|
||||
[DCCP_RESET_CODE_OPTION_ERROR] = EILSEQ,
|
||||
[DCCP_RESET_CODE_MANDATORY_ERROR] = EOPNOTSUPP,
|
||||
};
|
||||
|
||||
return code >= DCCP_MAX_RESET_CODES ? 0 : error_code[code];
|
||||
}
|
||||
|
||||
static void dccp_rcv_reset(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
u16 err = dccp_reset_code_convert(dccp_hdr_reset(skb)->dccph_reset_code);
|
||||
|
||||
sk->sk_err = err;
|
||||
|
||||
/* Queue the equivalent of TCP fin so that dccp_recvmsg exits the loop */
|
||||
dccp_fin(sk, skb);
|
||||
|
||||
if (err && !sock_flag(sk, SOCK_DEAD))
|
||||
sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
|
||||
dccp_time_wait(sk, DCCP_TIME_WAIT, 0);
|
||||
}
|
||||
|
||||
static void dccp_handle_ackvec_processing(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_ackvec *av = dccp_sk(sk)->dccps_hc_rx_ackvec;
|
||||
|
||||
if (av == NULL)
|
||||
return;
|
||||
if (DCCP_SKB_CB(skb)->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ)
|
||||
dccp_ackvec_clear_state(av, DCCP_SKB_CB(skb)->dccpd_ack_seq);
|
||||
dccp_ackvec_input(av, skb);
|
||||
}
|
||||
|
||||
static void dccp_deliver_input_to_ccids(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
const struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
/* Don't deliver to RX CCID when node has shut down read end. */
|
||||
if (!(sk->sk_shutdown & RCV_SHUTDOWN))
|
||||
ccid_hc_rx_packet_recv(dp->dccps_hc_rx_ccid, sk, skb);
|
||||
/*
|
||||
* Until the TX queue has been drained, we can not honour SHUT_WR, since
|
||||
* we need received feedback as input to adjust congestion control.
|
||||
*/
|
||||
if (sk->sk_write_queue.qlen > 0 || !(sk->sk_shutdown & SEND_SHUTDOWN))
|
||||
ccid_hc_tx_packet_recv(dp->dccps_hc_tx_ccid, sk, skb);
|
||||
}
|
||||
|
||||
static int dccp_check_seqno(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
const struct dccp_hdr *dh = dccp_hdr(skb);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
u64 lswl, lawl, seqno = DCCP_SKB_CB(skb)->dccpd_seq,
|
||||
ackno = DCCP_SKB_CB(skb)->dccpd_ack_seq;
|
||||
|
||||
/*
|
||||
* Step 5: Prepare sequence numbers for Sync
|
||||
* If P.type == Sync or P.type == SyncAck,
|
||||
* If S.AWL <= P.ackno <= S.AWH and P.seqno >= S.SWL,
|
||||
* / * P is valid, so update sequence number variables
|
||||
* accordingly. After this update, P will pass the tests
|
||||
* in Step 6. A SyncAck is generated if necessary in
|
||||
* Step 15 * /
|
||||
* Update S.GSR, S.SWL, S.SWH
|
||||
* Otherwise,
|
||||
* Drop packet and return
|
||||
*/
|
||||
if (dh->dccph_type == DCCP_PKT_SYNC ||
|
||||
dh->dccph_type == DCCP_PKT_SYNCACK) {
|
||||
if (between48(ackno, dp->dccps_awl, dp->dccps_awh) &&
|
||||
dccp_delta_seqno(dp->dccps_swl, seqno) >= 0)
|
||||
dccp_update_gsr(sk, seqno);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Step 6: Check sequence numbers
|
||||
* Let LSWL = S.SWL and LAWL = S.AWL
|
||||
* If P.type == CloseReq or P.type == Close or P.type == Reset,
|
||||
* LSWL := S.GSR + 1, LAWL := S.GAR
|
||||
* If LSWL <= P.seqno <= S.SWH
|
||||
* and (P.ackno does not exist or LAWL <= P.ackno <= S.AWH),
|
||||
* Update S.GSR, S.SWL, S.SWH
|
||||
* If P.type != Sync,
|
||||
* Update S.GAR
|
||||
*/
|
||||
lswl = dp->dccps_swl;
|
||||
lawl = dp->dccps_awl;
|
||||
|
||||
if (dh->dccph_type == DCCP_PKT_CLOSEREQ ||
|
||||
dh->dccph_type == DCCP_PKT_CLOSE ||
|
||||
dh->dccph_type == DCCP_PKT_RESET) {
|
||||
lswl = ADD48(dp->dccps_gsr, 1);
|
||||
lawl = dp->dccps_gar;
|
||||
}
|
||||
|
||||
if (between48(seqno, lswl, dp->dccps_swh) &&
|
||||
(ackno == DCCP_PKT_WITHOUT_ACK_SEQ ||
|
||||
between48(ackno, lawl, dp->dccps_awh))) {
|
||||
dccp_update_gsr(sk, seqno);
|
||||
|
||||
if (dh->dccph_type != DCCP_PKT_SYNC &&
|
||||
ackno != DCCP_PKT_WITHOUT_ACK_SEQ &&
|
||||
after48(ackno, dp->dccps_gar))
|
||||
dp->dccps_gar = ackno;
|
||||
} else {
|
||||
unsigned long now = jiffies;
|
||||
/*
|
||||
* Step 6: Check sequence numbers
|
||||
* Otherwise,
|
||||
* If P.type == Reset,
|
||||
* Send Sync packet acknowledging S.GSR
|
||||
* Otherwise,
|
||||
* Send Sync packet acknowledging P.seqno
|
||||
* Drop packet and return
|
||||
*
|
||||
* These Syncs are rate-limited as per RFC 4340, 7.5.4:
|
||||
* at most 1 / (dccp_sync_rate_limit * HZ) Syncs per second.
|
||||
*/
|
||||
if (time_before(now, (dp->dccps_rate_last +
|
||||
sysctl_dccp_sync_ratelimit)))
|
||||
return -1;
|
||||
|
||||
DCCP_WARN("Step 6 failed for %s packet, "
|
||||
"(LSWL(%llu) <= P.seqno(%llu) <= S.SWH(%llu)) and "
|
||||
"(P.ackno %s or LAWL(%llu) <= P.ackno(%llu) <= S.AWH(%llu), "
|
||||
"sending SYNC...\n", dccp_packet_name(dh->dccph_type),
|
||||
(unsigned long long) lswl, (unsigned long long) seqno,
|
||||
(unsigned long long) dp->dccps_swh,
|
||||
(ackno == DCCP_PKT_WITHOUT_ACK_SEQ) ? "doesn't exist"
|
||||
: "exists",
|
||||
(unsigned long long) lawl, (unsigned long long) ackno,
|
||||
(unsigned long long) dp->dccps_awh);
|
||||
|
||||
dp->dccps_rate_last = now;
|
||||
|
||||
if (dh->dccph_type == DCCP_PKT_RESET)
|
||||
seqno = dp->dccps_gsr;
|
||||
dccp_send_sync(sk, seqno, DCCP_PKT_SYNC);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
|
||||
const struct dccp_hdr *dh, const unsigned int len)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
switch (dccp_hdr(skb)->dccph_type) {
|
||||
case DCCP_PKT_DATAACK:
|
||||
case DCCP_PKT_DATA:
|
||||
/*
|
||||
* FIXME: schedule DATA_DROPPED (RFC 4340, 11.7.2) if and when
|
||||
* - sk_shutdown == RCV_SHUTDOWN, use Code 1, "Not Listening"
|
||||
* - sk_receive_queue is full, use Code 2, "Receive Buffer"
|
||||
*/
|
||||
dccp_enqueue_skb(sk, skb);
|
||||
return 0;
|
||||
case DCCP_PKT_ACK:
|
||||
goto discard;
|
||||
case DCCP_PKT_RESET:
|
||||
/*
|
||||
* Step 9: Process Reset
|
||||
* If P.type == Reset,
|
||||
* Tear down connection
|
||||
* S.state := TIMEWAIT
|
||||
* Set TIMEWAIT timer
|
||||
* Drop packet and return
|
||||
*/
|
||||
dccp_rcv_reset(sk, skb);
|
||||
return 0;
|
||||
case DCCP_PKT_CLOSEREQ:
|
||||
if (dccp_rcv_closereq(sk, skb))
|
||||
return 0;
|
||||
goto discard;
|
||||
case DCCP_PKT_CLOSE:
|
||||
if (dccp_rcv_close(sk, skb))
|
||||
return 0;
|
||||
goto discard;
|
||||
case DCCP_PKT_REQUEST:
|
||||
/* Step 7
|
||||
* or (S.is_server and P.type == Response)
|
||||
* or (S.is_client and P.type == Request)
|
||||
* or (S.state >= OPEN and P.type == Request
|
||||
* and P.seqno >= S.OSR)
|
||||
* or (S.state >= OPEN and P.type == Response
|
||||
* and P.seqno >= S.OSR)
|
||||
* or (S.state == RESPOND and P.type == Data),
|
||||
* Send Sync packet acknowledging P.seqno
|
||||
* Drop packet and return
|
||||
*/
|
||||
if (dp->dccps_role != DCCP_ROLE_LISTEN)
|
||||
goto send_sync;
|
||||
goto check_seq;
|
||||
case DCCP_PKT_RESPONSE:
|
||||
if (dp->dccps_role != DCCP_ROLE_CLIENT)
|
||||
goto send_sync;
|
||||
check_seq:
|
||||
if (dccp_delta_seqno(dp->dccps_osr,
|
||||
DCCP_SKB_CB(skb)->dccpd_seq) >= 0) {
|
||||
send_sync:
|
||||
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq,
|
||||
DCCP_PKT_SYNC);
|
||||
}
|
||||
break;
|
||||
case DCCP_PKT_SYNC:
|
||||
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq,
|
||||
DCCP_PKT_SYNCACK);
|
||||
/*
|
||||
* From RFC 4340, sec. 5.7
|
||||
*
|
||||
* As with DCCP-Ack packets, DCCP-Sync and DCCP-SyncAck packets
|
||||
* MAY have non-zero-length application data areas, whose
|
||||
* contents receivers MUST ignore.
|
||||
*/
|
||||
goto discard;
|
||||
}
|
||||
|
||||
DCCP_INC_STATS(DCCP_MIB_INERRS);
|
||||
discard:
|
||||
__kfree_skb(skb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
|
||||
const struct dccp_hdr *dh, const unsigned int len)
|
||||
{
|
||||
if (dccp_check_seqno(sk, skb))
|
||||
goto discard;
|
||||
|
||||
if (dccp_parse_options(sk, NULL, skb))
|
||||
return 1;
|
||||
|
||||
dccp_handle_ackvec_processing(sk, skb);
|
||||
dccp_deliver_input_to_ccids(sk, skb);
|
||||
|
||||
return __dccp_rcv_established(sk, skb, dh, len);
|
||||
discard:
|
||||
__kfree_skb(skb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_rcv_established);
|
||||
|
||||
static int dccp_rcv_request_sent_state_process(struct sock *sk,
|
||||
struct sk_buff *skb,
|
||||
const struct dccp_hdr *dh,
|
||||
const unsigned int len)
|
||||
{
|
||||
/*
|
||||
* Step 4: Prepare sequence numbers in REQUEST
|
||||
* If S.state == REQUEST,
|
||||
* If (P.type == Response or P.type == Reset)
|
||||
* and S.AWL <= P.ackno <= S.AWH,
|
||||
* / * Set sequence number variables corresponding to the
|
||||
* other endpoint, so P will pass the tests in Step 6 * /
|
||||
* Set S.GSR, S.ISR, S.SWL, S.SWH
|
||||
* / * Response processing continues in Step 10; Reset
|
||||
* processing continues in Step 9 * /
|
||||
*/
|
||||
if (dh->dccph_type == DCCP_PKT_RESPONSE) {
|
||||
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
long tstamp = dccp_timestamp();
|
||||
|
||||
if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq,
|
||||
dp->dccps_awl, dp->dccps_awh)) {
|
||||
dccp_pr_debug("invalid ackno: S.AWL=%llu, "
|
||||
"P.ackno=%llu, S.AWH=%llu\n",
|
||||
(unsigned long long)dp->dccps_awl,
|
||||
(unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq,
|
||||
(unsigned long long)dp->dccps_awh);
|
||||
goto out_invalid_packet;
|
||||
}
|
||||
|
||||
/*
|
||||
* If option processing (Step 8) failed, return 1 here so that
|
||||
* dccp_v4_do_rcv() sends a Reset. The Reset code depends on
|
||||
* the option type and is set in dccp_parse_options().
|
||||
*/
|
||||
if (dccp_parse_options(sk, NULL, skb))
|
||||
return 1;
|
||||
|
||||
/* Obtain usec RTT sample from SYN exchange (used by TFRC). */
|
||||
if (likely(dp->dccps_options_received.dccpor_timestamp_echo))
|
||||
dp->dccps_syn_rtt = dccp_sample_rtt(sk, 10 * (tstamp -
|
||||
dp->dccps_options_received.dccpor_timestamp_echo));
|
||||
|
||||
/* Stop the REQUEST timer */
|
||||
inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
|
||||
WARN_ON(sk->sk_send_head == NULL);
|
||||
kfree_skb(sk->sk_send_head);
|
||||
sk->sk_send_head = NULL;
|
||||
|
||||
/*
|
||||
* Set ISR, GSR from packet. ISS was set in dccp_v{4,6}_connect
|
||||
* and GSS in dccp_transmit_skb(). Setting AWL/AWH and SWL/SWH
|
||||
* is done as part of activating the feature values below, since
|
||||
* these settings depend on the local/remote Sequence Window
|
||||
* features, which were undefined or not confirmed until now.
|
||||
*/
|
||||
dp->dccps_gsr = dp->dccps_isr = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
|
||||
dccp_sync_mss(sk, icsk->icsk_pmtu_cookie);
|
||||
|
||||
/*
|
||||
* Step 10: Process REQUEST state (second part)
|
||||
* If S.state == REQUEST,
|
||||
* / * If we get here, P is a valid Response from the
|
||||
* server (see Step 4), and we should move to
|
||||
* PARTOPEN state. PARTOPEN means send an Ack,
|
||||
* don't send Data packets, retransmit Acks
|
||||
* periodically, and always include any Init Cookie
|
||||
* from the Response * /
|
||||
* S.state := PARTOPEN
|
||||
* Set PARTOPEN timer
|
||||
* Continue with S.state == PARTOPEN
|
||||
* / * Step 12 will send the Ack completing the
|
||||
* three-way handshake * /
|
||||
*/
|
||||
dccp_set_state(sk, DCCP_PARTOPEN);
|
||||
|
||||
/*
|
||||
* If feature negotiation was successful, activate features now;
|
||||
* an activation failure means that this host could not activate
|
||||
* one ore more features (e.g. insufficient memory), which would
|
||||
* leave at least one feature in an undefined state.
|
||||
*/
|
||||
if (dccp_feat_activate_values(sk, &dp->dccps_featneg))
|
||||
goto unable_to_proceed;
|
||||
|
||||
/* Make sure socket is routed, for correct metrics. */
|
||||
icsk->icsk_af_ops->rebuild_header(sk);
|
||||
|
||||
if (!sock_flag(sk, SOCK_DEAD)) {
|
||||
sk->sk_state_change(sk);
|
||||
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
|
||||
}
|
||||
|
||||
if (sk->sk_write_pending || inet_csk_in_pingpong_mode(sk) ||
|
||||
icsk->icsk_accept_queue.rskq_defer_accept) {
|
||||
/* Save one ACK. Data will be ready after
|
||||
* several ticks, if write_pending is set.
|
||||
*
|
||||
* It may be deleted, but with this feature tcpdumps
|
||||
* look so _wonderfully_ clever, that I was not able
|
||||
* to stand against the temptation 8) --ANK
|
||||
*/
|
||||
/*
|
||||
* OK, in DCCP we can as well do a similar trick, its
|
||||
* even in the draft, but there is no need for us to
|
||||
* schedule an ack here, as dccp_sendmsg does this for
|
||||
* us, also stated in the draft. -acme
|
||||
*/
|
||||
__kfree_skb(skb);
|
||||
return 0;
|
||||
}
|
||||
dccp_send_ack(sk);
|
||||
return -1;
|
||||
}
|
||||
|
||||
out_invalid_packet:
|
||||
/* dccp_v4_do_rcv will send a reset */
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR;
|
||||
return 1;
|
||||
|
||||
unable_to_proceed:
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_ABORTED;
|
||||
/*
|
||||
* We mark this socket as no longer usable, so that the loop in
|
||||
* dccp_sendmsg() terminates and the application gets notified.
|
||||
*/
|
||||
dccp_set_state(sk, DCCP_CLOSED);
|
||||
sk->sk_err = ECOMM;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int dccp_rcv_respond_partopen_state_process(struct sock *sk,
|
||||
struct sk_buff *skb,
|
||||
const struct dccp_hdr *dh,
|
||||
const unsigned int len)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
u32 sample = dp->dccps_options_received.dccpor_timestamp_echo;
|
||||
int queued = 0;
|
||||
|
||||
switch (dh->dccph_type) {
|
||||
case DCCP_PKT_RESET:
|
||||
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
|
||||
break;
|
||||
case DCCP_PKT_DATA:
|
||||
if (sk->sk_state == DCCP_RESPOND)
|
||||
break;
|
||||
fallthrough;
|
||||
case DCCP_PKT_DATAACK:
|
||||
case DCCP_PKT_ACK:
|
||||
/*
|
||||
* FIXME: we should be resetting the PARTOPEN (DELACK) timer
|
||||
* here but only if we haven't used the DELACK timer for
|
||||
* something else, like sending a delayed ack for a TIMESTAMP
|
||||
* echo, etc, for now were not clearing it, sending an extra
|
||||
* ACK when there is nothing else to do in DELACK is not a big
|
||||
* deal after all.
|
||||
*/
|
||||
|
||||
/* Stop the PARTOPEN timer */
|
||||
if (sk->sk_state == DCCP_PARTOPEN)
|
||||
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
|
||||
|
||||
/* Obtain usec RTT sample from SYN exchange (used by TFRC). */
|
||||
if (likely(sample)) {
|
||||
long delta = dccp_timestamp() - sample;
|
||||
|
||||
dp->dccps_syn_rtt = dccp_sample_rtt(sk, 10 * delta);
|
||||
}
|
||||
|
||||
dp->dccps_osr = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
dccp_set_state(sk, DCCP_OPEN);
|
||||
|
||||
if (dh->dccph_type == DCCP_PKT_DATAACK ||
|
||||
dh->dccph_type == DCCP_PKT_DATA) {
|
||||
__dccp_rcv_established(sk, skb, dh, len);
|
||||
queued = 1; /* packet was queued
|
||||
(by __dccp_rcv_established) */
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
return queued;
|
||||
}
|
||||
|
||||
int dccp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
|
||||
struct dccp_hdr *dh, unsigned int len)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
|
||||
const int old_state = sk->sk_state;
|
||||
bool acceptable;
|
||||
int queued = 0;
|
||||
|
||||
/*
|
||||
* Step 3: Process LISTEN state
|
||||
*
|
||||
* If S.state == LISTEN,
|
||||
* If P.type == Request or P contains a valid Init Cookie option,
|
||||
* (* Must scan the packet's options to check for Init
|
||||
* Cookies. Only Init Cookies are processed here,
|
||||
* however; other options are processed in Step 8. This
|
||||
* scan need only be performed if the endpoint uses Init
|
||||
* Cookies *)
|
||||
* (* Generate a new socket and switch to that socket *)
|
||||
* Set S := new socket for this port pair
|
||||
* S.state = RESPOND
|
||||
* Choose S.ISS (initial seqno) or set from Init Cookies
|
||||
* Initialize S.GAR := S.ISS
|
||||
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init
|
||||
* Cookies Continue with S.state == RESPOND
|
||||
* (* A Response packet will be generated in Step 11 *)
|
||||
* Otherwise,
|
||||
* Generate Reset(No Connection) unless P.type == Reset
|
||||
* Drop packet and return
|
||||
*/
|
||||
if (sk->sk_state == DCCP_LISTEN) {
|
||||
if (dh->dccph_type == DCCP_PKT_REQUEST) {
|
||||
/* It is possible that we process SYN packets from backlog,
|
||||
* so we need to make sure to disable BH and RCU right there.
|
||||
*/
|
||||
rcu_read_lock();
|
||||
local_bh_disable();
|
||||
acceptable = inet_csk(sk)->icsk_af_ops->conn_request(sk, skb) >= 0;
|
||||
local_bh_enable();
|
||||
rcu_read_unlock();
|
||||
if (!acceptable)
|
||||
return 1;
|
||||
consume_skb(skb);
|
||||
return 0;
|
||||
}
|
||||
if (dh->dccph_type == DCCP_PKT_RESET)
|
||||
goto discard;
|
||||
|
||||
/* Caller (dccp_v4_do_rcv) will send Reset */
|
||||
dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
|
||||
return 1;
|
||||
} else if (sk->sk_state == DCCP_CLOSED) {
|
||||
dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Step 6: Check sequence numbers (omitted in LISTEN/REQUEST state) */
|
||||
if (sk->sk_state != DCCP_REQUESTING && dccp_check_seqno(sk, skb))
|
||||
goto discard;
|
||||
|
||||
/*
|
||||
* Step 7: Check for unexpected packet types
|
||||
* If (S.is_server and P.type == Response)
|
||||
* or (S.is_client and P.type == Request)
|
||||
* or (S.state == RESPOND and P.type == Data),
|
||||
* Send Sync packet acknowledging P.seqno
|
||||
* Drop packet and return
|
||||
*/
|
||||
if ((dp->dccps_role != DCCP_ROLE_CLIENT &&
|
||||
dh->dccph_type == DCCP_PKT_RESPONSE) ||
|
||||
(dp->dccps_role == DCCP_ROLE_CLIENT &&
|
||||
dh->dccph_type == DCCP_PKT_REQUEST) ||
|
||||
(sk->sk_state == DCCP_RESPOND && dh->dccph_type == DCCP_PKT_DATA)) {
|
||||
dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNC);
|
||||
goto discard;
|
||||
}
|
||||
|
||||
/* Step 8: Process options */
|
||||
if (dccp_parse_options(sk, NULL, skb))
|
||||
return 1;
|
||||
|
||||
/*
|
||||
* Step 9: Process Reset
|
||||
* If P.type == Reset,
|
||||
* Tear down connection
|
||||
* S.state := TIMEWAIT
|
||||
* Set TIMEWAIT timer
|
||||
* Drop packet and return
|
||||
*/
|
||||
if (dh->dccph_type == DCCP_PKT_RESET) {
|
||||
dccp_rcv_reset(sk, skb);
|
||||
return 0;
|
||||
} else if (dh->dccph_type == DCCP_PKT_CLOSEREQ) { /* Step 13 */
|
||||
if (dccp_rcv_closereq(sk, skb))
|
||||
return 0;
|
||||
goto discard;
|
||||
} else if (dh->dccph_type == DCCP_PKT_CLOSE) { /* Step 14 */
|
||||
if (dccp_rcv_close(sk, skb))
|
||||
return 0;
|
||||
goto discard;
|
||||
}
|
||||
|
||||
switch (sk->sk_state) {
|
||||
case DCCP_REQUESTING:
|
||||
queued = dccp_rcv_request_sent_state_process(sk, skb, dh, len);
|
||||
if (queued >= 0)
|
||||
return queued;
|
||||
|
||||
__kfree_skb(skb);
|
||||
return 0;
|
||||
|
||||
case DCCP_PARTOPEN:
|
||||
/* Step 8: if using Ack Vectors, mark packet acknowledgeable */
|
||||
dccp_handle_ackvec_processing(sk, skb);
|
||||
dccp_deliver_input_to_ccids(sk, skb);
|
||||
fallthrough;
|
||||
case DCCP_RESPOND:
|
||||
queued = dccp_rcv_respond_partopen_state_process(sk, skb,
|
||||
dh, len);
|
||||
break;
|
||||
}
|
||||
|
||||
if (dh->dccph_type == DCCP_PKT_ACK ||
|
||||
dh->dccph_type == DCCP_PKT_DATAACK) {
|
||||
switch (old_state) {
|
||||
case DCCP_PARTOPEN:
|
||||
sk->sk_state_change(sk);
|
||||
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
|
||||
break;
|
||||
}
|
||||
} else if (unlikely(dh->dccph_type == DCCP_PKT_SYNC)) {
|
||||
dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNCACK);
|
||||
goto discard;
|
||||
}
|
||||
|
||||
if (!queued) {
|
||||
discard:
|
||||
__kfree_skb(skb);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_rcv_state_process);
|
||||
|
||||
/**
|
||||
* dccp_sample_rtt - Validate and finalise computation of RTT sample
|
||||
* @sk: socket structure
|
||||
* @delta: number of microseconds between packet and acknowledgment
|
||||
*
|
||||
* The routine is kept generic to work in different contexts. It should be
|
||||
* called immediately when the ACK used for the RTT sample arrives.
|
||||
*/
|
||||
u32 dccp_sample_rtt(struct sock *sk, long delta)
|
||||
{
|
||||
/* dccpor_elapsed_time is either zeroed out or set and > 0 */
|
||||
delta -= dccp_sk(sk)->dccps_options_received.dccpor_elapsed_time * 10;
|
||||
|
||||
if (unlikely(delta <= 0)) {
|
||||
DCCP_WARN("unusable RTT sample %ld, using min\n", delta);
|
||||
return DCCP_SANE_RTT_MIN;
|
||||
}
|
||||
if (unlikely(delta > DCCP_SANE_RTT_MAX)) {
|
||||
DCCP_WARN("RTT sample %ld too large, using max\n", delta);
|
||||
return DCCP_SANE_RTT_MAX;
|
||||
}
|
||||
|
||||
return delta;
|
||||
}
|
1101
net/dccp/ipv4.c
1101
net/dccp/ipv4.c
File diff suppressed because it is too large
Load diff
1174
net/dccp/ipv6.c
1174
net/dccp/ipv6.c
File diff suppressed because it is too large
Load diff
|
@ -1,27 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
#ifndef _DCCP_IPV6_H
|
||||
#define _DCCP_IPV6_H
|
||||
/*
|
||||
* net/dccp/ipv6.h
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/ipv6.h>
|
||||
|
||||
struct dccp6_sock {
|
||||
struct dccp_sock dccp;
|
||||
struct ipv6_pinfo inet6;
|
||||
};
|
||||
|
||||
struct dccp6_request_sock {
|
||||
struct dccp_request_sock dccp;
|
||||
};
|
||||
|
||||
struct dccp6_timewait_sock {
|
||||
struct inet_timewait_sock inet;
|
||||
};
|
||||
|
||||
#endif /* _DCCP_IPV6_H */
|
|
@ -1,266 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* net/dccp/minisocks.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/timer.h>
|
||||
|
||||
#include <net/sock.h>
|
||||
#include <net/xfrm.h>
|
||||
#include <net/inet_timewait_sock.h>
|
||||
#include <net/rstreason.h>
|
||||
|
||||
#include "ackvec.h"
|
||||
#include "ccid.h"
|
||||
#include "dccp.h"
|
||||
#include "feat.h"
|
||||
|
||||
struct inet_timewait_death_row dccp_death_row = {
|
||||
.tw_refcount = REFCOUNT_INIT(1),
|
||||
.sysctl_max_tw_buckets = NR_FILE * 2,
|
||||
.hashinfo = &dccp_hashinfo,
|
||||
};
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_death_row);
|
||||
|
||||
void dccp_time_wait(struct sock *sk, int state, int timeo)
|
||||
{
|
||||
struct inet_timewait_sock *tw;
|
||||
|
||||
tw = inet_twsk_alloc(sk, &dccp_death_row, state);
|
||||
|
||||
if (tw != NULL) {
|
||||
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
|
||||
#if IS_ENABLED(CONFIG_IPV6)
|
||||
if (tw->tw_family == PF_INET6) {
|
||||
tw->tw_v6_daddr = sk->sk_v6_daddr;
|
||||
tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
|
||||
tw->tw_ipv6only = sk->sk_ipv6only;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Get the TIME_WAIT timeout firing. */
|
||||
if (timeo < rto)
|
||||
timeo = rto;
|
||||
|
||||
if (state == DCCP_TIME_WAIT)
|
||||
timeo = DCCP_TIMEWAIT_LEN;
|
||||
|
||||
/* Linkage updates.
|
||||
* Note that access to tw after this point is illegal.
|
||||
*/
|
||||
inet_twsk_hashdance_schedule(tw, sk, &dccp_hashinfo, timeo);
|
||||
} else {
|
||||
/* Sorry, if we're out of memory, just CLOSE this
|
||||
* socket up. We've got bigger problems than
|
||||
* non-graceful socket closings.
|
||||
*/
|
||||
DCCP_WARN("time wait bucket table overflow\n");
|
||||
}
|
||||
|
||||
dccp_done(sk);
|
||||
}
|
||||
|
||||
struct sock *dccp_create_openreq_child(const struct sock *sk,
|
||||
const struct request_sock *req,
|
||||
const struct sk_buff *skb)
|
||||
{
|
||||
/*
|
||||
* Step 3: Process LISTEN state
|
||||
*
|
||||
* (* Generate a new socket and switch to that socket *)
|
||||
* Set S := new socket for this port pair
|
||||
*/
|
||||
struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
|
||||
|
||||
if (newsk != NULL) {
|
||||
struct dccp_request_sock *dreq = dccp_rsk(req);
|
||||
struct inet_connection_sock *newicsk = inet_csk(newsk);
|
||||
struct dccp_sock *newdp = dccp_sk(newsk);
|
||||
|
||||
newdp->dccps_role = DCCP_ROLE_SERVER;
|
||||
newdp->dccps_hc_rx_ackvec = NULL;
|
||||
newdp->dccps_service_list = NULL;
|
||||
newdp->dccps_hc_rx_ccid = NULL;
|
||||
newdp->dccps_hc_tx_ccid = NULL;
|
||||
newdp->dccps_service = dreq->dreq_service;
|
||||
newdp->dccps_timestamp_echo = dreq->dreq_timestamp_echo;
|
||||
newdp->dccps_timestamp_time = dreq->dreq_timestamp_time;
|
||||
newicsk->icsk_rto = DCCP_TIMEOUT_INIT;
|
||||
|
||||
INIT_LIST_HEAD(&newdp->dccps_featneg);
|
||||
/*
|
||||
* Step 3: Process LISTEN state
|
||||
*
|
||||
* Choose S.ISS (initial seqno) or set from Init Cookies
|
||||
* Initialize S.GAR := S.ISS
|
||||
* Set S.ISR, S.GSR from packet (or Init Cookies)
|
||||
*
|
||||
* Setting AWL/AWH and SWL/SWH happens as part of the feature
|
||||
* activation below, as these windows all depend on the local
|
||||
* and remote Sequence Window feature values (7.5.2).
|
||||
*/
|
||||
newdp->dccps_iss = dreq->dreq_iss;
|
||||
newdp->dccps_gss = dreq->dreq_gss;
|
||||
newdp->dccps_gar = newdp->dccps_iss;
|
||||
newdp->dccps_isr = dreq->dreq_isr;
|
||||
newdp->dccps_gsr = dreq->dreq_gsr;
|
||||
|
||||
/*
|
||||
* Activate features: initialise CCIDs, sequence windows etc.
|
||||
*/
|
||||
if (dccp_feat_activate_values(newsk, &dreq->dreq_featneg)) {
|
||||
sk_free_unlock_clone(newsk);
|
||||
return NULL;
|
||||
}
|
||||
dccp_init_xmit_timers(newsk);
|
||||
|
||||
__DCCP_INC_STATS(DCCP_MIB_PASSIVEOPENS);
|
||||
}
|
||||
return newsk;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_create_openreq_child);
|
||||
|
||||
/*
|
||||
* Process an incoming packet for RESPOND sockets represented
|
||||
* as an request_sock.
|
||||
*/
|
||||
struct sock *dccp_check_req(struct sock *sk, struct sk_buff *skb,
|
||||
struct request_sock *req)
|
||||
{
|
||||
struct sock *child = NULL;
|
||||
struct dccp_request_sock *dreq = dccp_rsk(req);
|
||||
bool own_req;
|
||||
|
||||
/* TCP/DCCP listeners became lockless.
|
||||
* DCCP stores complex state in its request_sock, so we need
|
||||
* a protection for them, now this code runs without being protected
|
||||
* by the parent (listener) lock.
|
||||
*/
|
||||
spin_lock_bh(&dreq->dreq_lock);
|
||||
|
||||
/* Check for retransmitted REQUEST */
|
||||
if (dccp_hdr(skb)->dccph_type == DCCP_PKT_REQUEST) {
|
||||
|
||||
if (after48(DCCP_SKB_CB(skb)->dccpd_seq, dreq->dreq_gsr)) {
|
||||
dccp_pr_debug("Retransmitted REQUEST\n");
|
||||
dreq->dreq_gsr = DCCP_SKB_CB(skb)->dccpd_seq;
|
||||
/*
|
||||
* Send another RESPONSE packet
|
||||
* To protect against Request floods, increment retrans
|
||||
* counter (backoff, monitored by dccp_response_timer).
|
||||
*/
|
||||
inet_rtx_syn_ack(sk, req);
|
||||
}
|
||||
/* Network Duplicate, discard packet */
|
||||
goto out;
|
||||
}
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR;
|
||||
|
||||
if (dccp_hdr(skb)->dccph_type != DCCP_PKT_ACK &&
|
||||
dccp_hdr(skb)->dccph_type != DCCP_PKT_DATAACK)
|
||||
goto drop;
|
||||
|
||||
/* Invalid ACK */
|
||||
if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq,
|
||||
dreq->dreq_iss, dreq->dreq_gss)) {
|
||||
dccp_pr_debug("Invalid ACK number: ack_seq=%llu, "
|
||||
"dreq_iss=%llu, dreq_gss=%llu\n",
|
||||
(unsigned long long)
|
||||
DCCP_SKB_CB(skb)->dccpd_ack_seq,
|
||||
(unsigned long long) dreq->dreq_iss,
|
||||
(unsigned long long) dreq->dreq_gss);
|
||||
goto drop;
|
||||
}
|
||||
|
||||
if (dccp_parse_options(sk, dreq, skb))
|
||||
goto drop;
|
||||
|
||||
child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
|
||||
req, &own_req);
|
||||
if (child) {
|
||||
child = inet_csk_complete_hashdance(sk, child, req, own_req);
|
||||
goto out;
|
||||
}
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_TOO_BUSY;
|
||||
drop:
|
||||
if (dccp_hdr(skb)->dccph_type != DCCP_PKT_RESET)
|
||||
req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_NOT_SPECIFIED);
|
||||
|
||||
inet_csk_reqsk_queue_drop(sk, req);
|
||||
out:
|
||||
spin_unlock_bh(&dreq->dreq_lock);
|
||||
return child;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_check_req);
|
||||
|
||||
/*
|
||||
* Queue segment on the new socket if the new socket is active,
|
||||
* otherwise we just shortcircuit this and continue with
|
||||
* the new socket.
|
||||
*/
|
||||
int dccp_child_process(struct sock *parent, struct sock *child,
|
||||
struct sk_buff *skb)
|
||||
__releases(child)
|
||||
{
|
||||
int ret = 0;
|
||||
const int state = child->sk_state;
|
||||
|
||||
if (!sock_owned_by_user(child)) {
|
||||
ret = dccp_rcv_state_process(child, skb, dccp_hdr(skb),
|
||||
skb->len);
|
||||
|
||||
/* Wakeup parent, send SIGIO */
|
||||
if (state == DCCP_RESPOND && child->sk_state != state)
|
||||
parent->sk_data_ready(parent);
|
||||
} else {
|
||||
/* Alas, it is possible again, because we do lookup
|
||||
* in main socket hash table and lock on listening
|
||||
* socket does not protect us more.
|
||||
*/
|
||||
__sk_add_backlog(child, skb);
|
||||
}
|
||||
|
||||
bh_unlock_sock(child);
|
||||
sock_put(child);
|
||||
return ret;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_child_process);
|
||||
|
||||
void dccp_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
|
||||
struct request_sock *rsk)
|
||||
{
|
||||
DCCP_BUG("DCCP-ACK packets are never sent in LISTEN/RESPOND state");
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_reqsk_send_ack);
|
||||
|
||||
int dccp_reqsk_init(struct request_sock *req,
|
||||
struct dccp_sock const *dp, struct sk_buff const *skb)
|
||||
{
|
||||
struct dccp_request_sock *dreq = dccp_rsk(req);
|
||||
|
||||
spin_lock_init(&dreq->dreq_lock);
|
||||
inet_rsk(req)->ir_rmt_port = dccp_hdr(skb)->dccph_sport;
|
||||
inet_rsk(req)->ir_num = ntohs(dccp_hdr(skb)->dccph_dport);
|
||||
inet_rsk(req)->acked = 0;
|
||||
dreq->dreq_timestamp_echo = 0;
|
||||
|
||||
/* inherit feature negotiation options from listening socket */
|
||||
return dccp_feat_clone_list(&dp->dccps_featneg, &dreq->dreq_featneg);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_reqsk_init);
|
|
@ -1,609 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* net/dccp/options.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Copyright (c) 2005 Aristeu Sergio Rozanski Filho <aris@cathedrallabs.org>
|
||||
* Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
|
||||
* Copyright (c) 2005 Ian McDonald <ian.mcdonald@jandi.co.nz>
|
||||
*/
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/unaligned.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/skbuff.h>
|
||||
|
||||
#include "ackvec.h"
|
||||
#include "ccid.h"
|
||||
#include "dccp.h"
|
||||
#include "feat.h"
|
||||
|
||||
u64 dccp_decode_value_var(const u8 *bf, const u8 len)
|
||||
{
|
||||
u64 value = 0;
|
||||
|
||||
if (len >= DCCP_OPTVAL_MAXLEN)
|
||||
value += ((u64)*bf++) << 40;
|
||||
if (len > 4)
|
||||
value += ((u64)*bf++) << 32;
|
||||
if (len > 3)
|
||||
value += ((u64)*bf++) << 24;
|
||||
if (len > 2)
|
||||
value += ((u64)*bf++) << 16;
|
||||
if (len > 1)
|
||||
value += ((u64)*bf++) << 8;
|
||||
if (len > 0)
|
||||
value += *bf;
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_parse_options - Parse DCCP options present in @skb
|
||||
* @sk: client|server|listening dccp socket (when @dreq != NULL)
|
||||
* @dreq: request socket to use during connection setup, or NULL
|
||||
* @skb: frame to parse
|
||||
*/
|
||||
int dccp_parse_options(struct sock *sk, struct dccp_request_sock *dreq,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
const struct dccp_hdr *dh = dccp_hdr(skb);
|
||||
const u8 pkt_type = DCCP_SKB_CB(skb)->dccpd_type;
|
||||
unsigned char *options = (unsigned char *)dh + dccp_hdr_len(skb);
|
||||
unsigned char *opt_ptr = options;
|
||||
const unsigned char *opt_end = (unsigned char *)dh +
|
||||
(dh->dccph_doff * 4);
|
||||
struct dccp_options_received *opt_recv = &dp->dccps_options_received;
|
||||
unsigned char opt, len;
|
||||
unsigned char *value;
|
||||
u32 elapsed_time;
|
||||
__be32 opt_val;
|
||||
int rc;
|
||||
int mandatory = 0;
|
||||
|
||||
memset(opt_recv, 0, sizeof(*opt_recv));
|
||||
|
||||
opt = len = 0;
|
||||
while (opt_ptr != opt_end) {
|
||||
opt = *opt_ptr++;
|
||||
len = 0;
|
||||
value = NULL;
|
||||
|
||||
/* Check if this isn't a single byte option */
|
||||
if (opt > DCCPO_MAX_RESERVED) {
|
||||
if (opt_ptr == opt_end)
|
||||
goto out_nonsensical_length;
|
||||
|
||||
len = *opt_ptr++;
|
||||
if (len < 2)
|
||||
goto out_nonsensical_length;
|
||||
/*
|
||||
* Remove the type and len fields, leaving
|
||||
* just the value size
|
||||
*/
|
||||
len -= 2;
|
||||
value = opt_ptr;
|
||||
opt_ptr += len;
|
||||
|
||||
if (opt_ptr > opt_end)
|
||||
goto out_nonsensical_length;
|
||||
}
|
||||
|
||||
/*
|
||||
* CCID-specific options are ignored during connection setup, as
|
||||
* negotiation may still be in progress (see RFC 4340, 10.3).
|
||||
* The same applies to Ack Vectors, as these depend on the CCID.
|
||||
*/
|
||||
if (dreq != NULL && (opt >= DCCPO_MIN_RX_CCID_SPECIFIC ||
|
||||
opt == DCCPO_ACK_VECTOR_0 || opt == DCCPO_ACK_VECTOR_1))
|
||||
goto ignore_option;
|
||||
|
||||
switch (opt) {
|
||||
case DCCPO_PADDING:
|
||||
break;
|
||||
case DCCPO_MANDATORY:
|
||||
if (mandatory)
|
||||
goto out_invalid_option;
|
||||
if (pkt_type != DCCP_PKT_DATA)
|
||||
mandatory = 1;
|
||||
break;
|
||||
case DCCPO_NDP_COUNT:
|
||||
if (len > 6)
|
||||
goto out_invalid_option;
|
||||
|
||||
opt_recv->dccpor_ndp = dccp_decode_value_var(value, len);
|
||||
dccp_pr_debug("%s opt: NDP count=%llu\n", dccp_role(sk),
|
||||
(unsigned long long)opt_recv->dccpor_ndp);
|
||||
break;
|
||||
case DCCPO_CHANGE_L ... DCCPO_CONFIRM_R:
|
||||
if (pkt_type == DCCP_PKT_DATA) /* RFC 4340, 6 */
|
||||
break;
|
||||
if (len == 0)
|
||||
goto out_invalid_option;
|
||||
rc = dccp_feat_parse_options(sk, dreq, mandatory, opt,
|
||||
*value, value + 1, len - 1);
|
||||
if (rc)
|
||||
goto out_featneg_failed;
|
||||
break;
|
||||
case DCCPO_TIMESTAMP:
|
||||
if (len != 4)
|
||||
goto out_invalid_option;
|
||||
/*
|
||||
* RFC 4340 13.1: "The precise time corresponding to
|
||||
* Timestamp Value zero is not specified". We use
|
||||
* zero to indicate absence of a meaningful timestamp.
|
||||
*/
|
||||
opt_val = get_unaligned((__be32 *)value);
|
||||
if (unlikely(opt_val == 0)) {
|
||||
DCCP_WARN("Timestamp with zero value\n");
|
||||
break;
|
||||
}
|
||||
|
||||
if (dreq != NULL) {
|
||||
dreq->dreq_timestamp_echo = ntohl(opt_val);
|
||||
dreq->dreq_timestamp_time = dccp_timestamp();
|
||||
} else {
|
||||
opt_recv->dccpor_timestamp =
|
||||
dp->dccps_timestamp_echo = ntohl(opt_val);
|
||||
dp->dccps_timestamp_time = dccp_timestamp();
|
||||
}
|
||||
dccp_pr_debug("%s rx opt: TIMESTAMP=%u, ackno=%llu\n",
|
||||
dccp_role(sk), ntohl(opt_val),
|
||||
(unsigned long long)
|
||||
DCCP_SKB_CB(skb)->dccpd_ack_seq);
|
||||
/* schedule an Ack in case this sender is quiescent */
|
||||
inet_csk_schedule_ack(sk);
|
||||
break;
|
||||
case DCCPO_TIMESTAMP_ECHO:
|
||||
if (len != 4 && len != 6 && len != 8)
|
||||
goto out_invalid_option;
|
||||
|
||||
opt_val = get_unaligned((__be32 *)value);
|
||||
opt_recv->dccpor_timestamp_echo = ntohl(opt_val);
|
||||
|
||||
dccp_pr_debug("%s rx opt: TIMESTAMP_ECHO=%u, len=%d, "
|
||||
"ackno=%llu", dccp_role(sk),
|
||||
opt_recv->dccpor_timestamp_echo,
|
||||
len + 2,
|
||||
(unsigned long long)
|
||||
DCCP_SKB_CB(skb)->dccpd_ack_seq);
|
||||
|
||||
value += 4;
|
||||
|
||||
if (len == 4) { /* no elapsed time included */
|
||||
dccp_pr_debug_cat("\n");
|
||||
break;
|
||||
}
|
||||
|
||||
if (len == 6) { /* 2-byte elapsed time */
|
||||
__be16 opt_val2 = get_unaligned((__be16 *)value);
|
||||
elapsed_time = ntohs(opt_val2);
|
||||
} else { /* 4-byte elapsed time */
|
||||
opt_val = get_unaligned((__be32 *)value);
|
||||
elapsed_time = ntohl(opt_val);
|
||||
}
|
||||
|
||||
dccp_pr_debug_cat(", ELAPSED_TIME=%u\n", elapsed_time);
|
||||
|
||||
/* Give precedence to the biggest ELAPSED_TIME */
|
||||
if (elapsed_time > opt_recv->dccpor_elapsed_time)
|
||||
opt_recv->dccpor_elapsed_time = elapsed_time;
|
||||
break;
|
||||
case DCCPO_ELAPSED_TIME:
|
||||
if (dccp_packet_without_ack(skb)) /* RFC 4340, 13.2 */
|
||||
break;
|
||||
|
||||
if (len == 2) {
|
||||
__be16 opt_val2 = get_unaligned((__be16 *)value);
|
||||
elapsed_time = ntohs(opt_val2);
|
||||
} else if (len == 4) {
|
||||
opt_val = get_unaligned((__be32 *)value);
|
||||
elapsed_time = ntohl(opt_val);
|
||||
} else {
|
||||
goto out_invalid_option;
|
||||
}
|
||||
|
||||
if (elapsed_time > opt_recv->dccpor_elapsed_time)
|
||||
opt_recv->dccpor_elapsed_time = elapsed_time;
|
||||
|
||||
dccp_pr_debug("%s rx opt: ELAPSED_TIME=%d\n",
|
||||
dccp_role(sk), elapsed_time);
|
||||
break;
|
||||
case DCCPO_MIN_RX_CCID_SPECIFIC ... DCCPO_MAX_RX_CCID_SPECIFIC:
|
||||
if (ccid_hc_rx_parse_options(dp->dccps_hc_rx_ccid, sk,
|
||||
pkt_type, opt, value, len))
|
||||
goto out_invalid_option;
|
||||
break;
|
||||
case DCCPO_ACK_VECTOR_0:
|
||||
case DCCPO_ACK_VECTOR_1:
|
||||
if (dccp_packet_without_ack(skb)) /* RFC 4340, 11.4 */
|
||||
break;
|
||||
/*
|
||||
* Ack vectors are processed by the TX CCID if it is
|
||||
* interested. The RX CCID need not parse Ack Vectors,
|
||||
* since it is only interested in clearing old state.
|
||||
*/
|
||||
fallthrough;
|
||||
case DCCPO_MIN_TX_CCID_SPECIFIC ... DCCPO_MAX_TX_CCID_SPECIFIC:
|
||||
if (ccid_hc_tx_parse_options(dp->dccps_hc_tx_ccid, sk,
|
||||
pkt_type, opt, value, len))
|
||||
goto out_invalid_option;
|
||||
break;
|
||||
default:
|
||||
DCCP_CRIT("DCCP(%p): option %d(len=%d) not "
|
||||
"implemented, ignoring", sk, opt, len);
|
||||
break;
|
||||
}
|
||||
ignore_option:
|
||||
if (opt != DCCPO_MANDATORY)
|
||||
mandatory = 0;
|
||||
}
|
||||
|
||||
/* mandatory was the last byte in option list -> reset connection */
|
||||
if (mandatory)
|
||||
goto out_invalid_option;
|
||||
|
||||
out_nonsensical_length:
|
||||
/* RFC 4340, 5.8: ignore option and all remaining option space */
|
||||
return 0;
|
||||
|
||||
out_invalid_option:
|
||||
DCCP_INC_STATS(DCCP_MIB_INVALIDOPT);
|
||||
rc = DCCP_RESET_CODE_OPTION_ERROR;
|
||||
out_featneg_failed:
|
||||
DCCP_WARN("DCCP(%p): Option %d (len=%d) error=%u\n", sk, opt, len, rc);
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_code = rc;
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_data[0] = opt;
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_data[1] = len > 0 ? value[0] : 0;
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_data[2] = len > 1 ? value[1] : 0;
|
||||
return -1;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_parse_options);
|
||||
|
||||
void dccp_encode_value_var(const u64 value, u8 *to, const u8 len)
|
||||
{
|
||||
if (len >= DCCP_OPTVAL_MAXLEN)
|
||||
*to++ = (value & 0xFF0000000000ull) >> 40;
|
||||
if (len > 4)
|
||||
*to++ = (value & 0xFF00000000ull) >> 32;
|
||||
if (len > 3)
|
||||
*to++ = (value & 0xFF000000) >> 24;
|
||||
if (len > 2)
|
||||
*to++ = (value & 0xFF0000) >> 16;
|
||||
if (len > 1)
|
||||
*to++ = (value & 0xFF00) >> 8;
|
||||
if (len > 0)
|
||||
*to++ = (value & 0xFF);
|
||||
}
|
||||
|
||||
static inline u8 dccp_ndp_len(const u64 ndp)
|
||||
{
|
||||
if (likely(ndp <= 0xFF))
|
||||
return 1;
|
||||
return likely(ndp <= USHRT_MAX) ? 2 : (ndp <= UINT_MAX ? 4 : 6);
|
||||
}
|
||||
|
||||
int dccp_insert_option(struct sk_buff *skb, const unsigned char option,
|
||||
const void *value, const unsigned char len)
|
||||
{
|
||||
unsigned char *to;
|
||||
|
||||
if (DCCP_SKB_CB(skb)->dccpd_opt_len + len + 2 > DCCP_MAX_OPT_LEN)
|
||||
return -1;
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len += len + 2;
|
||||
|
||||
to = skb_push(skb, len + 2);
|
||||
*to++ = option;
|
||||
*to++ = len + 2;
|
||||
|
||||
memcpy(to, value, len);
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_insert_option);
|
||||
|
||||
static int dccp_insert_option_ndp(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
u64 ndp = dp->dccps_ndp_count;
|
||||
|
||||
if (dccp_non_data_packet(skb))
|
||||
++dp->dccps_ndp_count;
|
||||
else
|
||||
dp->dccps_ndp_count = 0;
|
||||
|
||||
if (ndp > 0) {
|
||||
unsigned char *ptr;
|
||||
const int ndp_len = dccp_ndp_len(ndp);
|
||||
const int len = ndp_len + 2;
|
||||
|
||||
if (DCCP_SKB_CB(skb)->dccpd_opt_len + len > DCCP_MAX_OPT_LEN)
|
||||
return -1;
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len += len;
|
||||
|
||||
ptr = skb_push(skb, len);
|
||||
*ptr++ = DCCPO_NDP_COUNT;
|
||||
*ptr++ = len;
|
||||
dccp_encode_value_var(ndp, ptr, ndp_len);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int dccp_elapsed_time_len(const u32 elapsed_time)
|
||||
{
|
||||
return elapsed_time == 0 ? 0 : elapsed_time <= 0xFFFF ? 2 : 4;
|
||||
}
|
||||
|
||||
static int dccp_insert_option_timestamp(struct sk_buff *skb)
|
||||
{
|
||||
__be32 now = htonl(dccp_timestamp());
|
||||
/* yes this will overflow but that is the point as we want a
|
||||
* 10 usec 32 bit timer which mean it wraps every 11.9 hours */
|
||||
|
||||
return dccp_insert_option(skb, DCCPO_TIMESTAMP, &now, sizeof(now));
|
||||
}
|
||||
|
||||
static int dccp_insert_option_timestamp_echo(struct dccp_sock *dp,
|
||||
struct dccp_request_sock *dreq,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
__be32 tstamp_echo;
|
||||
unsigned char *to;
|
||||
u32 elapsed_time, elapsed_time_len, len;
|
||||
|
||||
if (dreq != NULL) {
|
||||
elapsed_time = dccp_timestamp() - dreq->dreq_timestamp_time;
|
||||
tstamp_echo = htonl(dreq->dreq_timestamp_echo);
|
||||
dreq->dreq_timestamp_echo = 0;
|
||||
} else {
|
||||
elapsed_time = dccp_timestamp() - dp->dccps_timestamp_time;
|
||||
tstamp_echo = htonl(dp->dccps_timestamp_echo);
|
||||
dp->dccps_timestamp_echo = 0;
|
||||
}
|
||||
|
||||
elapsed_time_len = dccp_elapsed_time_len(elapsed_time);
|
||||
len = 6 + elapsed_time_len;
|
||||
|
||||
if (DCCP_SKB_CB(skb)->dccpd_opt_len + len > DCCP_MAX_OPT_LEN)
|
||||
return -1;
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len += len;
|
||||
|
||||
to = skb_push(skb, len);
|
||||
*to++ = DCCPO_TIMESTAMP_ECHO;
|
||||
*to++ = len;
|
||||
|
||||
memcpy(to, &tstamp_echo, 4);
|
||||
to += 4;
|
||||
|
||||
if (elapsed_time_len == 2) {
|
||||
const __be16 var16 = htons((u16)elapsed_time);
|
||||
memcpy(to, &var16, 2);
|
||||
} else if (elapsed_time_len == 4) {
|
||||
const __be32 var32 = htonl(elapsed_time);
|
||||
memcpy(to, &var32, 4);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dccp_insert_option_ackvec(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct dccp_ackvec *av = dp->dccps_hc_rx_ackvec;
|
||||
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
|
||||
const u16 buflen = dccp_ackvec_buflen(av);
|
||||
/* Figure out how many options do we need to represent the ackvec */
|
||||
const u8 nr_opts = DIV_ROUND_UP(buflen, DCCP_SINGLE_OPT_MAXLEN);
|
||||
u16 len = buflen + 2 * nr_opts;
|
||||
u8 i, nonce = 0;
|
||||
const unsigned char *tail, *from;
|
||||
unsigned char *to;
|
||||
|
||||
if (dcb->dccpd_opt_len + len > DCCP_MAX_OPT_LEN) {
|
||||
DCCP_WARN("Lacking space for %u bytes on %s packet\n", len,
|
||||
dccp_packet_name(dcb->dccpd_type));
|
||||
return -1;
|
||||
}
|
||||
/*
|
||||
* Since Ack Vectors are variable-length, we can not always predict
|
||||
* their size. To catch exception cases where the space is running out
|
||||
* on the skb, a separate Sync is scheduled to carry the Ack Vector.
|
||||
*/
|
||||
if (len > DCCPAV_MIN_OPTLEN &&
|
||||
len + dcb->dccpd_opt_len + skb->len > dp->dccps_mss_cache) {
|
||||
DCCP_WARN("No space left for Ack Vector (%u) on skb (%u+%u), "
|
||||
"MPS=%u ==> reduce payload size?\n", len, skb->len,
|
||||
dcb->dccpd_opt_len, dp->dccps_mss_cache);
|
||||
dp->dccps_sync_scheduled = 1;
|
||||
return 0;
|
||||
}
|
||||
dcb->dccpd_opt_len += len;
|
||||
|
||||
to = skb_push(skb, len);
|
||||
len = buflen;
|
||||
from = av->av_buf + av->av_buf_head;
|
||||
tail = av->av_buf + DCCPAV_MAX_ACKVEC_LEN;
|
||||
|
||||
for (i = 0; i < nr_opts; ++i) {
|
||||
int copylen = len;
|
||||
|
||||
if (len > DCCP_SINGLE_OPT_MAXLEN)
|
||||
copylen = DCCP_SINGLE_OPT_MAXLEN;
|
||||
|
||||
/*
|
||||
* RFC 4340, 12.2: Encode the Nonce Echo for this Ack Vector via
|
||||
* its type; ack_nonce is the sum of all individual buf_nonce's.
|
||||
*/
|
||||
nonce ^= av->av_buf_nonce[i];
|
||||
|
||||
*to++ = DCCPO_ACK_VECTOR_0 + av->av_buf_nonce[i];
|
||||
*to++ = copylen + 2;
|
||||
|
||||
/* Check if buf_head wraps */
|
||||
if (from + copylen > tail) {
|
||||
const u16 tailsize = tail - from;
|
||||
|
||||
memcpy(to, from, tailsize);
|
||||
to += tailsize;
|
||||
len -= tailsize;
|
||||
copylen -= tailsize;
|
||||
from = av->av_buf;
|
||||
}
|
||||
|
||||
memcpy(to, from, copylen);
|
||||
from += copylen;
|
||||
to += copylen;
|
||||
len -= copylen;
|
||||
}
|
||||
/*
|
||||
* Each sent Ack Vector is recorded in the list, as per A.2 of RFC 4340.
|
||||
*/
|
||||
if (dccp_ackvec_update_records(av, dcb->dccpd_seq, nonce))
|
||||
return -ENOBUFS;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_insert_option_mandatory - Mandatory option (5.8.2)
|
||||
* @skb: frame into which to insert option
|
||||
*
|
||||
* Note that since we are using skb_push, this function needs to be called
|
||||
* _after_ inserting the option it is supposed to influence (stack order).
|
||||
*/
|
||||
int dccp_insert_option_mandatory(struct sk_buff *skb)
|
||||
{
|
||||
if (DCCP_SKB_CB(skb)->dccpd_opt_len >= DCCP_MAX_OPT_LEN)
|
||||
return -1;
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len++;
|
||||
*(u8 *)skb_push(skb, 1) = DCCPO_MANDATORY;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_insert_fn_opt - Insert single Feature-Negotiation option into @skb
|
||||
* @skb: frame to insert feature negotiation option into
|
||||
* @type: %DCCPO_CHANGE_L, %DCCPO_CHANGE_R, %DCCPO_CONFIRM_L, %DCCPO_CONFIRM_R
|
||||
* @feat: one out of %dccp_feature_numbers
|
||||
* @val: NN value or SP array (preferred element first) to copy
|
||||
* @len: true length of @val in bytes (excluding first element repetition)
|
||||
* @repeat_first: whether to copy the first element of @val twice
|
||||
*
|
||||
* The last argument is used to construct Confirm options, where the preferred
|
||||
* value and the preference list appear separately (RFC 4340, 6.3.1). Preference
|
||||
* lists are kept such that the preferred entry is always first, so we only need
|
||||
* to copy twice, and avoid the overhead of cloning into a bigger array.
|
||||
*/
|
||||
int dccp_insert_fn_opt(struct sk_buff *skb, u8 type, u8 feat,
|
||||
u8 *val, u8 len, bool repeat_first)
|
||||
{
|
||||
u8 tot_len, *to;
|
||||
|
||||
/* take the `Feature' field and possible repetition into account */
|
||||
if (len > (DCCP_SINGLE_OPT_MAXLEN - 2)) {
|
||||
DCCP_WARN("length %u for feature %u too large\n", len, feat);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (unlikely(val == NULL || len == 0))
|
||||
len = repeat_first = false;
|
||||
tot_len = 3 + repeat_first + len;
|
||||
|
||||
if (DCCP_SKB_CB(skb)->dccpd_opt_len + tot_len > DCCP_MAX_OPT_LEN) {
|
||||
DCCP_WARN("packet too small for feature %d option!\n", feat);
|
||||
return -1;
|
||||
}
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len += tot_len;
|
||||
|
||||
to = skb_push(skb, tot_len);
|
||||
*to++ = type;
|
||||
*to++ = tot_len;
|
||||
*to++ = feat;
|
||||
|
||||
if (repeat_first)
|
||||
*to++ = *val;
|
||||
if (len)
|
||||
memcpy(to, val, len);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* The length of all options needs to be a multiple of 4 (5.8) */
|
||||
static void dccp_insert_option_padding(struct sk_buff *skb)
|
||||
{
|
||||
int padding = DCCP_SKB_CB(skb)->dccpd_opt_len % 4;
|
||||
|
||||
if (padding != 0) {
|
||||
padding = 4 - padding;
|
||||
memset(skb_push(skb, padding), 0, padding);
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len += padding;
|
||||
}
|
||||
}
|
||||
|
||||
int dccp_insert_options(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len = 0;
|
||||
|
||||
if (dp->dccps_send_ndp_count && dccp_insert_option_ndp(sk, skb))
|
||||
return -1;
|
||||
|
||||
if (DCCP_SKB_CB(skb)->dccpd_type != DCCP_PKT_DATA) {
|
||||
|
||||
/* Feature Negotiation */
|
||||
if (dccp_feat_insert_opts(dp, NULL, skb))
|
||||
return -1;
|
||||
|
||||
if (DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_REQUEST) {
|
||||
/*
|
||||
* Obtain RTT sample from Request/Response exchange.
|
||||
* This is currently used for TFRC initialisation.
|
||||
*/
|
||||
if (dccp_insert_option_timestamp(skb))
|
||||
return -1;
|
||||
|
||||
} else if (dccp_ackvec_pending(sk) &&
|
||||
dccp_insert_option_ackvec(sk, skb)) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (dp->dccps_hc_rx_insert_options) {
|
||||
if (ccid_hc_rx_insert_options(dp->dccps_hc_rx_ccid, sk, skb))
|
||||
return -1;
|
||||
dp->dccps_hc_rx_insert_options = 0;
|
||||
}
|
||||
|
||||
if (dp->dccps_timestamp_echo != 0 &&
|
||||
dccp_insert_option_timestamp_echo(dp, NULL, skb))
|
||||
return -1;
|
||||
|
||||
dccp_insert_option_padding(skb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int dccp_insert_options_rsk(struct dccp_request_sock *dreq, struct sk_buff *skb)
|
||||
{
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len = 0;
|
||||
|
||||
if (dccp_feat_insert_opts(NULL, dreq, skb))
|
||||
return -1;
|
||||
|
||||
/* Obtain RTT sample from Response/Ack exchange (used by TFRC). */
|
||||
if (dccp_insert_option_timestamp(skb))
|
||||
return -1;
|
||||
|
||||
if (dreq->dreq_timestamp_echo != 0 &&
|
||||
dccp_insert_option_timestamp_echo(NULL, dreq, skb))
|
||||
return -1;
|
||||
|
||||
dccp_insert_option_padding(skb);
|
||||
return 0;
|
||||
}
|
|
@ -1,708 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* net/dccp/output.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/sched/signal.h>
|
||||
|
||||
#include <net/inet_sock.h>
|
||||
#include <net/sock.h>
|
||||
|
||||
#include "ackvec.h"
|
||||
#include "ccid.h"
|
||||
#include "dccp.h"
|
||||
|
||||
static inline void dccp_event_ack_sent(struct sock *sk)
|
||||
{
|
||||
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
|
||||
}
|
||||
|
||||
/* enqueue @skb on sk_send_head for retransmission, return clone to send now */
|
||||
static struct sk_buff *dccp_skb_entail(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
skb_set_owner_w(skb, sk);
|
||||
WARN_ON(sk->sk_send_head);
|
||||
sk->sk_send_head = skb;
|
||||
return skb_clone(sk->sk_send_head, gfp_any());
|
||||
}
|
||||
|
||||
/*
|
||||
* All SKB's seen here are completely headerless. It is our
|
||||
* job to build the DCCP header, and pass the packet down to
|
||||
* IP so it can do the same plus pass the packet off to the
|
||||
* device.
|
||||
*/
|
||||
static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
if (likely(skb != NULL)) {
|
||||
struct inet_sock *inet = inet_sk(sk);
|
||||
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
|
||||
struct dccp_hdr *dh;
|
||||
/* XXX For now we're using only 48 bits sequence numbers */
|
||||
const u32 dccp_header_size = sizeof(*dh) +
|
||||
sizeof(struct dccp_hdr_ext) +
|
||||
dccp_packet_hdr_len(dcb->dccpd_type);
|
||||
int err, set_ack = 1;
|
||||
u64 ackno = dp->dccps_gsr;
|
||||
/*
|
||||
* Increment GSS here already in case the option code needs it.
|
||||
* Update GSS for real only if option processing below succeeds.
|
||||
*/
|
||||
dcb->dccpd_seq = ADD48(dp->dccps_gss, 1);
|
||||
|
||||
switch (dcb->dccpd_type) {
|
||||
case DCCP_PKT_DATA:
|
||||
set_ack = 0;
|
||||
fallthrough;
|
||||
case DCCP_PKT_DATAACK:
|
||||
case DCCP_PKT_RESET:
|
||||
break;
|
||||
|
||||
case DCCP_PKT_REQUEST:
|
||||
set_ack = 0;
|
||||
/* Use ISS on the first (non-retransmitted) Request. */
|
||||
if (icsk->icsk_retransmits == 0)
|
||||
dcb->dccpd_seq = dp->dccps_iss;
|
||||
fallthrough;
|
||||
|
||||
case DCCP_PKT_SYNC:
|
||||
case DCCP_PKT_SYNCACK:
|
||||
ackno = dcb->dccpd_ack_seq;
|
||||
fallthrough;
|
||||
default:
|
||||
/*
|
||||
* Set owner/destructor: some skbs are allocated via
|
||||
* alloc_skb (e.g. when retransmission may happen).
|
||||
* Only Data, DataAck, and Reset packets should come
|
||||
* through here with skb->sk set.
|
||||
*/
|
||||
WARN_ON(skb->sk);
|
||||
skb_set_owner_w(skb, sk);
|
||||
break;
|
||||
}
|
||||
|
||||
if (dccp_insert_options(sk, skb)) {
|
||||
kfree_skb(skb);
|
||||
return -EPROTO;
|
||||
}
|
||||
|
||||
|
||||
/* Build DCCP header and checksum it. */
|
||||
dh = dccp_zeroed_hdr(skb, dccp_header_size);
|
||||
dh->dccph_type = dcb->dccpd_type;
|
||||
dh->dccph_sport = inet->inet_sport;
|
||||
dh->dccph_dport = inet->inet_dport;
|
||||
dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4;
|
||||
dh->dccph_ccval = dcb->dccpd_ccval;
|
||||
dh->dccph_cscov = dp->dccps_pcslen;
|
||||
/* XXX For now we're using only 48 bits sequence numbers */
|
||||
dh->dccph_x = 1;
|
||||
|
||||
dccp_update_gss(sk, dcb->dccpd_seq);
|
||||
dccp_hdr_set_seq(dh, dp->dccps_gss);
|
||||
if (set_ack)
|
||||
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno);
|
||||
|
||||
switch (dcb->dccpd_type) {
|
||||
case DCCP_PKT_REQUEST:
|
||||
dccp_hdr_request(skb)->dccph_req_service =
|
||||
dp->dccps_service;
|
||||
/*
|
||||
* Limit Ack window to ISS <= P.ackno <= GSS, so that
|
||||
* only Responses to Requests we sent are considered.
|
||||
*/
|
||||
dp->dccps_awl = dp->dccps_iss;
|
||||
break;
|
||||
case DCCP_PKT_RESET:
|
||||
dccp_hdr_reset(skb)->dccph_reset_code =
|
||||
dcb->dccpd_reset_code;
|
||||
break;
|
||||
}
|
||||
|
||||
icsk->icsk_af_ops->send_check(sk, skb);
|
||||
|
||||
if (set_ack)
|
||||
dccp_event_ack_sent(sk);
|
||||
|
||||
DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
|
||||
|
||||
err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
|
||||
return net_xmit_eval(err);
|
||||
}
|
||||
return -ENOBUFS;
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_determine_ccmps - Find out about CCID-specific packet-size limits
|
||||
* @dp: socket to find packet size limits of
|
||||
*
|
||||
* We only consider the HC-sender CCID for setting the CCMPS (RFC 4340, 14.),
|
||||
* since the RX CCID is restricted to feedback packets (Acks), which are small
|
||||
* in comparison with the data traffic. A value of 0 means "no current CCMPS".
|
||||
*/
|
||||
static u32 dccp_determine_ccmps(const struct dccp_sock *dp)
|
||||
{
|
||||
const struct ccid *tx_ccid = dp->dccps_hc_tx_ccid;
|
||||
|
||||
if (tx_ccid == NULL || tx_ccid->ccid_ops == NULL)
|
||||
return 0;
|
||||
return tx_ccid->ccid_ops->ccid_ccmps;
|
||||
}
|
||||
|
||||
unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu)
|
||||
{
|
||||
struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
u32 ccmps = dccp_determine_ccmps(dp);
|
||||
u32 cur_mps = ccmps ? min(pmtu, ccmps) : pmtu;
|
||||
|
||||
/* Account for header lengths and IPv4/v6 option overhead */
|
||||
cur_mps -= (icsk->icsk_af_ops->net_header_len + icsk->icsk_ext_hdr_len +
|
||||
sizeof(struct dccp_hdr) + sizeof(struct dccp_hdr_ext));
|
||||
|
||||
/*
|
||||
* Leave enough headroom for common DCCP header options.
|
||||
* This only considers options which may appear on DCCP-Data packets, as
|
||||
* per table 3 in RFC 4340, 5.8. When running out of space for other
|
||||
* options (eg. Ack Vector which can take up to 255 bytes), it is better
|
||||
* to schedule a separate Ack. Thus we leave headroom for the following:
|
||||
* - 1 byte for Slow Receiver (11.6)
|
||||
* - 6 bytes for Timestamp (13.1)
|
||||
* - 10 bytes for Timestamp Echo (13.3)
|
||||
* - 8 bytes for NDP count (7.7, when activated)
|
||||
* - 6 bytes for Data Checksum (9.3)
|
||||
* - %DCCPAV_MIN_OPTLEN bytes for Ack Vector size (11.4, when enabled)
|
||||
*/
|
||||
cur_mps -= roundup(1 + 6 + 10 + dp->dccps_send_ndp_count * 8 + 6 +
|
||||
(dp->dccps_hc_rx_ackvec ? DCCPAV_MIN_OPTLEN : 0), 4);
|
||||
|
||||
/* And store cached results */
|
||||
icsk->icsk_pmtu_cookie = pmtu;
|
||||
WRITE_ONCE(dp->dccps_mss_cache, cur_mps);
|
||||
|
||||
return cur_mps;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_sync_mss);
|
||||
|
||||
void dccp_write_space(struct sock *sk)
|
||||
{
|
||||
struct socket_wq *wq;
|
||||
|
||||
rcu_read_lock();
|
||||
wq = rcu_dereference(sk->sk_wq);
|
||||
if (skwq_has_sleeper(wq))
|
||||
wake_up_interruptible(&wq->wait);
|
||||
/* Should agree with poll, otherwise some programs break */
|
||||
if (sock_writeable(sk))
|
||||
sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
|
||||
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_wait_for_ccid - Await CCID send permission
|
||||
* @sk: socket to wait for
|
||||
* @delay: timeout in jiffies
|
||||
*
|
||||
* This is used by CCIDs which need to delay the send time in process context.
|
||||
*/
|
||||
static int dccp_wait_for_ccid(struct sock *sk, unsigned long delay)
|
||||
{
|
||||
DEFINE_WAIT(wait);
|
||||
long remaining;
|
||||
|
||||
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
|
||||
sk->sk_write_pending++;
|
||||
release_sock(sk);
|
||||
|
||||
remaining = schedule_timeout(delay);
|
||||
|
||||
lock_sock(sk);
|
||||
sk->sk_write_pending--;
|
||||
finish_wait(sk_sleep(sk), &wait);
|
||||
|
||||
if (signal_pending(current) || sk->sk_err)
|
||||
return -1;
|
||||
return remaining;
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_xmit_packet - Send data packet under control of CCID
|
||||
* @sk: socket to send data packet on
|
||||
*
|
||||
* Transmits next-queued payload and informs CCID to account for the packet.
|
||||
*/
|
||||
static void dccp_xmit_packet(struct sock *sk)
|
||||
{
|
||||
int err, len;
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct sk_buff *skb = dccp_qpolicy_pop(sk);
|
||||
|
||||
if (unlikely(skb == NULL))
|
||||
return;
|
||||
len = skb->len;
|
||||
|
||||
if (sk->sk_state == DCCP_PARTOPEN) {
|
||||
const u32 cur_mps = dp->dccps_mss_cache - DCCP_FEATNEG_OVERHEAD;
|
||||
/*
|
||||
* See 8.1.5 - Handshake Completion.
|
||||
*
|
||||
* For robustness we resend Confirm options until the client has
|
||||
* entered OPEN. During the initial feature negotiation, the MPS
|
||||
* is smaller than usual, reduced by the Change/Confirm options.
|
||||
*/
|
||||
if (!list_empty(&dp->dccps_featneg) && len > cur_mps) {
|
||||
DCCP_WARN("Payload too large (%d) for featneg.\n", len);
|
||||
dccp_send_ack(sk);
|
||||
dccp_feat_list_purge(&dp->dccps_featneg);
|
||||
}
|
||||
|
||||
inet_csk_schedule_ack(sk);
|
||||
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
|
||||
inet_csk(sk)->icsk_rto,
|
||||
DCCP_RTO_MAX);
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_DATAACK;
|
||||
} else if (dccp_ack_pending(sk)) {
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_DATAACK;
|
||||
} else {
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_DATA;
|
||||
}
|
||||
|
||||
err = dccp_transmit_skb(sk, skb);
|
||||
if (err)
|
||||
dccp_pr_debug("transmit_skb() returned err=%d\n", err);
|
||||
/*
|
||||
* Register this one as sent even if an error occurred. To the remote
|
||||
* end a local packet drop is indistinguishable from network loss, i.e.
|
||||
* any local drop will eventually be reported via receiver feedback.
|
||||
*/
|
||||
ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, len);
|
||||
|
||||
/*
|
||||
* If the CCID needs to transfer additional header options out-of-band
|
||||
* (e.g. Ack Vectors or feature-negotiation options), it activates this
|
||||
* flag to schedule a Sync. The Sync will automatically incorporate all
|
||||
* currently pending header options, thus clearing the backlog.
|
||||
*/
|
||||
if (dp->dccps_sync_scheduled)
|
||||
dccp_send_sync(sk, dp->dccps_gsr, DCCP_PKT_SYNC);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_flush_write_queue - Drain queue at end of connection
|
||||
* @sk: socket to be drained
|
||||
* @time_budget: time allowed to drain the queue
|
||||
*
|
||||
* Since dccp_sendmsg queues packets without waiting for them to be sent, it may
|
||||
* happen that the TX queue is not empty at the end of a connection. We give the
|
||||
* HC-sender CCID a grace period of up to @time_budget jiffies. If this function
|
||||
* returns with a non-empty write queue, it will be purged later.
|
||||
*/
|
||||
void dccp_flush_write_queue(struct sock *sk, long *time_budget)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct sk_buff *skb;
|
||||
long delay, rc;
|
||||
|
||||
while (*time_budget > 0 && (skb = skb_peek(&sk->sk_write_queue))) {
|
||||
rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb);
|
||||
|
||||
switch (ccid_packet_dequeue_eval(rc)) {
|
||||
case CCID_PACKET_WILL_DEQUEUE_LATER:
|
||||
/*
|
||||
* If the CCID determines when to send, the next sending
|
||||
* time is unknown or the CCID may not even send again
|
||||
* (e.g. remote host crashes or lost Ack packets).
|
||||
*/
|
||||
DCCP_WARN("CCID did not manage to send all packets\n");
|
||||
return;
|
||||
case CCID_PACKET_DELAY:
|
||||
delay = msecs_to_jiffies(rc);
|
||||
if (delay > *time_budget)
|
||||
return;
|
||||
rc = dccp_wait_for_ccid(sk, delay);
|
||||
if (rc < 0)
|
||||
return;
|
||||
*time_budget -= (delay - rc);
|
||||
/* check again if we can send now */
|
||||
break;
|
||||
case CCID_PACKET_SEND_AT_ONCE:
|
||||
dccp_xmit_packet(sk);
|
||||
break;
|
||||
case CCID_PACKET_ERR:
|
||||
skb_dequeue(&sk->sk_write_queue);
|
||||
kfree_skb(skb);
|
||||
dccp_pr_debug("packet discarded due to err=%ld\n", rc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void dccp_write_xmit(struct sock *sk)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct sk_buff *skb;
|
||||
|
||||
while ((skb = dccp_qpolicy_top(sk))) {
|
||||
int rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb);
|
||||
|
||||
switch (ccid_packet_dequeue_eval(rc)) {
|
||||
case CCID_PACKET_WILL_DEQUEUE_LATER:
|
||||
return;
|
||||
case CCID_PACKET_DELAY:
|
||||
sk_reset_timer(sk, &dp->dccps_xmit_timer,
|
||||
jiffies + msecs_to_jiffies(rc));
|
||||
return;
|
||||
case CCID_PACKET_SEND_AT_ONCE:
|
||||
dccp_xmit_packet(sk);
|
||||
break;
|
||||
case CCID_PACKET_ERR:
|
||||
dccp_qpolicy_drop(sk, skb);
|
||||
dccp_pr_debug("packet discarded due to err=%d\n", rc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_retransmit_skb - Retransmit Request, Close, or CloseReq packets
|
||||
* @sk: socket to perform retransmit on
|
||||
*
|
||||
* There are only four retransmittable packet types in DCCP:
|
||||
* - Request in client-REQUEST state (sec. 8.1.1),
|
||||
* - CloseReq in server-CLOSEREQ state (sec. 8.3),
|
||||
* - Close in node-CLOSING state (sec. 8.3),
|
||||
* - Acks in client-PARTOPEN state (sec. 8.1.5, handled by dccp_delack_timer()).
|
||||
* This function expects sk->sk_send_head to contain the original skb.
|
||||
*/
|
||||
int dccp_retransmit_skb(struct sock *sk)
|
||||
{
|
||||
WARN_ON(sk->sk_send_head == NULL);
|
||||
|
||||
if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk) != 0)
|
||||
return -EHOSTUNREACH; /* Routing failure or similar. */
|
||||
|
||||
/* this count is used to distinguish original and retransmitted skb */
|
||||
inet_csk(sk)->icsk_retransmits++;
|
||||
|
||||
return dccp_transmit_skb(sk, skb_clone(sk->sk_send_head, GFP_ATOMIC));
|
||||
}
|
||||
|
||||
struct sk_buff *dccp_make_response(const struct sock *sk, struct dst_entry *dst,
|
||||
struct request_sock *req)
|
||||
{
|
||||
struct dccp_hdr *dh;
|
||||
struct dccp_request_sock *dreq;
|
||||
const u32 dccp_header_size = sizeof(struct dccp_hdr) +
|
||||
sizeof(struct dccp_hdr_ext) +
|
||||
sizeof(struct dccp_hdr_response);
|
||||
struct sk_buff *skb;
|
||||
|
||||
/* sk is marked const to clearly express we dont hold socket lock.
|
||||
* sock_wmalloc() will atomically change sk->sk_wmem_alloc,
|
||||
* it is safe to promote sk to non const.
|
||||
*/
|
||||
skb = sock_wmalloc((struct sock *)sk, MAX_DCCP_HEADER, 1,
|
||||
GFP_ATOMIC);
|
||||
if (!skb)
|
||||
return NULL;
|
||||
|
||||
skb_reserve(skb, MAX_DCCP_HEADER);
|
||||
|
||||
skb_dst_set(skb, dst_clone(dst));
|
||||
|
||||
dreq = dccp_rsk(req);
|
||||
if (inet_rsk(req)->acked) /* increase GSS upon retransmission */
|
||||
dccp_inc_seqno(&dreq->dreq_gss);
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE;
|
||||
DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_gss;
|
||||
|
||||
/* Resolve feature dependencies resulting from choice of CCID */
|
||||
if (dccp_feat_server_ccid_dependencies(dreq))
|
||||
goto response_failed;
|
||||
|
||||
if (dccp_insert_options_rsk(dreq, skb))
|
||||
goto response_failed;
|
||||
|
||||
/* Build and checksum header */
|
||||
dh = dccp_zeroed_hdr(skb, dccp_header_size);
|
||||
|
||||
dh->dccph_sport = htons(inet_rsk(req)->ir_num);
|
||||
dh->dccph_dport = inet_rsk(req)->ir_rmt_port;
|
||||
dh->dccph_doff = (dccp_header_size +
|
||||
DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
|
||||
dh->dccph_type = DCCP_PKT_RESPONSE;
|
||||
dh->dccph_x = 1;
|
||||
dccp_hdr_set_seq(dh, dreq->dreq_gss);
|
||||
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_gsr);
|
||||
dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service;
|
||||
|
||||
dccp_csum_outgoing(skb);
|
||||
|
||||
/* We use `acked' to remember that a Response was already sent. */
|
||||
inet_rsk(req)->acked = 1;
|
||||
DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
|
||||
return skb;
|
||||
response_failed:
|
||||
kfree_skb(skb);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_make_response);
|
||||
|
||||
/* answer offending packet in @rcv_skb with Reset from control socket @ctl */
|
||||
struct sk_buff *dccp_ctl_make_reset(struct sock *sk, struct sk_buff *rcv_skb)
|
||||
{
|
||||
struct dccp_hdr *rxdh = dccp_hdr(rcv_skb), *dh;
|
||||
struct dccp_skb_cb *dcb = DCCP_SKB_CB(rcv_skb);
|
||||
const u32 dccp_hdr_reset_len = sizeof(struct dccp_hdr) +
|
||||
sizeof(struct dccp_hdr_ext) +
|
||||
sizeof(struct dccp_hdr_reset);
|
||||
struct dccp_hdr_reset *dhr;
|
||||
struct sk_buff *skb;
|
||||
|
||||
skb = alloc_skb(sk->sk_prot->max_header, GFP_ATOMIC);
|
||||
if (skb == NULL)
|
||||
return NULL;
|
||||
|
||||
skb_reserve(skb, sk->sk_prot->max_header);
|
||||
|
||||
/* Swap the send and the receive. */
|
||||
dh = dccp_zeroed_hdr(skb, dccp_hdr_reset_len);
|
||||
dh->dccph_type = DCCP_PKT_RESET;
|
||||
dh->dccph_sport = rxdh->dccph_dport;
|
||||
dh->dccph_dport = rxdh->dccph_sport;
|
||||
dh->dccph_doff = dccp_hdr_reset_len / 4;
|
||||
dh->dccph_x = 1;
|
||||
|
||||
dhr = dccp_hdr_reset(skb);
|
||||
dhr->dccph_reset_code = dcb->dccpd_reset_code;
|
||||
|
||||
switch (dcb->dccpd_reset_code) {
|
||||
case DCCP_RESET_CODE_PACKET_ERROR:
|
||||
dhr->dccph_reset_data[0] = rxdh->dccph_type;
|
||||
break;
|
||||
case DCCP_RESET_CODE_OPTION_ERROR:
|
||||
case DCCP_RESET_CODE_MANDATORY_ERROR:
|
||||
memcpy(dhr->dccph_reset_data, dcb->dccpd_reset_data, 3);
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* From RFC 4340, 8.3.1:
|
||||
* If P.ackno exists, set R.seqno := P.ackno + 1.
|
||||
* Else set R.seqno := 0.
|
||||
*/
|
||||
if (dcb->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ)
|
||||
dccp_hdr_set_seq(dh, ADD48(dcb->dccpd_ack_seq, 1));
|
||||
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dcb->dccpd_seq);
|
||||
|
||||
dccp_csum_outgoing(skb);
|
||||
return skb;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_ctl_make_reset);
|
||||
|
||||
/* send Reset on established socket, to close or abort the connection */
|
||||
int dccp_send_reset(struct sock *sk, enum dccp_reset_codes code)
|
||||
{
|
||||
struct sk_buff *skb;
|
||||
/*
|
||||
* FIXME: what if rebuild_header fails?
|
||||
* Should we be doing a rebuild_header here?
|
||||
*/
|
||||
int err = inet_csk(sk)->icsk_af_ops->rebuild_header(sk);
|
||||
|
||||
if (err != 0)
|
||||
return err;
|
||||
|
||||
skb = sock_wmalloc(sk, sk->sk_prot->max_header, 1, GFP_ATOMIC);
|
||||
if (skb == NULL)
|
||||
return -ENOBUFS;
|
||||
|
||||
/* Reserve space for headers and prepare control bits. */
|
||||
skb_reserve(skb, sk->sk_prot->max_header);
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET;
|
||||
DCCP_SKB_CB(skb)->dccpd_reset_code = code;
|
||||
|
||||
return dccp_transmit_skb(sk, skb);
|
||||
}
|
||||
|
||||
/*
|
||||
* Do all connect socket setups that can be done AF independent.
|
||||
*/
|
||||
int dccp_connect(struct sock *sk)
|
||||
{
|
||||
struct sk_buff *skb;
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct dst_entry *dst = __sk_dst_get(sk);
|
||||
struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
|
||||
sk->sk_err = 0;
|
||||
sock_reset_flag(sk, SOCK_DONE);
|
||||
|
||||
dccp_sync_mss(sk, dst_mtu(dst));
|
||||
|
||||
/* do not connect if feature negotiation setup fails */
|
||||
if (dccp_feat_finalise_settings(dccp_sk(sk)))
|
||||
return -EPROTO;
|
||||
|
||||
/* Initialise GAR as per 8.5; AWL/AWH are set in dccp_transmit_skb() */
|
||||
dp->dccps_gar = dp->dccps_iss;
|
||||
|
||||
skb = alloc_skb(sk->sk_prot->max_header, sk->sk_allocation);
|
||||
if (unlikely(skb == NULL))
|
||||
return -ENOBUFS;
|
||||
|
||||
/* Reserve space for headers. */
|
||||
skb_reserve(skb, sk->sk_prot->max_header);
|
||||
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST;
|
||||
|
||||
dccp_transmit_skb(sk, dccp_skb_entail(sk, skb));
|
||||
DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS);
|
||||
|
||||
/* Timer for repeating the REQUEST until an answer. */
|
||||
icsk->icsk_retransmits = 0;
|
||||
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
||||
icsk->icsk_rto, DCCP_RTO_MAX);
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_connect);
|
||||
|
||||
void dccp_send_ack(struct sock *sk)
|
||||
{
|
||||
/* If we have been reset, we may not send again. */
|
||||
if (sk->sk_state != DCCP_CLOSED) {
|
||||
struct sk_buff *skb = alloc_skb(sk->sk_prot->max_header,
|
||||
GFP_ATOMIC);
|
||||
|
||||
if (skb == NULL) {
|
||||
inet_csk_schedule_ack(sk);
|
||||
inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
|
||||
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
|
||||
TCP_DELACK_MAX,
|
||||
DCCP_RTO_MAX);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Reserve space for headers */
|
||||
skb_reserve(skb, sk->sk_prot->max_header);
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK;
|
||||
dccp_transmit_skb(sk, skb);
|
||||
}
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_send_ack);
|
||||
|
||||
#if 0
|
||||
/* FIXME: Is this still necessary (11.3) - currently nowhere used by DCCP. */
|
||||
void dccp_send_delayed_ack(struct sock *sk)
|
||||
{
|
||||
struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
/*
|
||||
* FIXME: tune this timer. elapsed time fixes the skew, so no problem
|
||||
* with using 2s, and active senders also piggyback the ACK into a
|
||||
* DATAACK packet, so this is really for quiescent senders.
|
||||
*/
|
||||
unsigned long timeout = jiffies + 2 * HZ;
|
||||
|
||||
/* Use new timeout only if there wasn't a older one earlier. */
|
||||
if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
|
||||
/* If delack timer was blocked or is about to expire,
|
||||
* send ACK now.
|
||||
*
|
||||
* FIXME: check the "about to expire" part
|
||||
*/
|
||||
if (icsk->icsk_ack.blocked) {
|
||||
dccp_send_ack(sk);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!time_before(timeout, icsk_delack_timeout(icsk)))
|
||||
timeout = icsk_delack_timeout(icsk);
|
||||
}
|
||||
icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
|
||||
sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
|
||||
}
|
||||
#endif
|
||||
|
||||
void dccp_send_sync(struct sock *sk, const u64 ackno,
|
||||
const enum dccp_pkt_type pkt_type)
|
||||
{
|
||||
/*
|
||||
* We are not putting this on the write queue, so
|
||||
* dccp_transmit_skb() will set the ownership to this
|
||||
* sock.
|
||||
*/
|
||||
struct sk_buff *skb = alloc_skb(sk->sk_prot->max_header, GFP_ATOMIC);
|
||||
|
||||
if (skb == NULL) {
|
||||
/* FIXME: how to make sure the sync is sent? */
|
||||
DCCP_CRIT("could not send %s", dccp_packet_name(pkt_type));
|
||||
return;
|
||||
}
|
||||
|
||||
/* Reserve space for headers and prepare control bits. */
|
||||
skb_reserve(skb, sk->sk_prot->max_header);
|
||||
DCCP_SKB_CB(skb)->dccpd_type = pkt_type;
|
||||
DCCP_SKB_CB(skb)->dccpd_ack_seq = ackno;
|
||||
|
||||
/*
|
||||
* Clear the flag in case the Sync was scheduled for out-of-band data,
|
||||
* such as carrying a long Ack Vector.
|
||||
*/
|
||||
dccp_sk(sk)->dccps_sync_scheduled = 0;
|
||||
|
||||
dccp_transmit_skb(sk, skb);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL_GPL(dccp_send_sync);
|
||||
|
||||
/*
|
||||
* Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This
|
||||
* cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under
|
||||
* any circumstances.
|
||||
*/
|
||||
void dccp_send_close(struct sock *sk, const int active)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
struct sk_buff *skb;
|
||||
const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC;
|
||||
|
||||
skb = alloc_skb(sk->sk_prot->max_header, prio);
|
||||
if (skb == NULL)
|
||||
return;
|
||||
|
||||
/* Reserve space for headers and prepare control bits. */
|
||||
skb_reserve(skb, sk->sk_prot->max_header);
|
||||
if (dp->dccps_role == DCCP_ROLE_SERVER && !dp->dccps_server_timewait)
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_CLOSEREQ;
|
||||
else
|
||||
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_CLOSE;
|
||||
|
||||
if (active) {
|
||||
skb = dccp_skb_entail(sk, skb);
|
||||
/*
|
||||
* Retransmission timer for active-close: RFC 4340, 8.3 requires
|
||||
* to retransmit the Close/CloseReq until the CLOSING/CLOSEREQ
|
||||
* state can be left. The initial timeout is 2 RTTs.
|
||||
* Since RTT measurement is done by the CCIDs, there is no easy
|
||||
* way to get an RTT sample. The fallback RTT from RFC 4340, 3.4
|
||||
* is too low (200ms); we use a high value to avoid unnecessary
|
||||
* retransmissions when the link RTT is > 0.2 seconds.
|
||||
* FIXME: Let main module sample RTTs and use that instead.
|
||||
*/
|
||||
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
||||
DCCP_TIMEOUT_INIT, DCCP_RTO_MAX);
|
||||
}
|
||||
dccp_transmit_skb(sk, skb);
|
||||
}
|
1293
net/dccp/proto.c
1293
net/dccp/proto.c
File diff suppressed because it is too large
Load diff
|
@ -1,136 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* net/dccp/qpolicy.c
|
||||
*
|
||||
* Policy-based packet dequeueing interface for DCCP.
|
||||
*
|
||||
* Copyright (c) 2008 Tomasz Grobelny <tomasz@grobelny.oswiecenia.net>
|
||||
*/
|
||||
#include "dccp.h"
|
||||
|
||||
/*
|
||||
* Simple Dequeueing Policy:
|
||||
* If tx_qlen is different from 0, enqueue up to tx_qlen elements.
|
||||
*/
|
||||
static void qpolicy_simple_push(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
skb_queue_tail(&sk->sk_write_queue, skb);
|
||||
}
|
||||
|
||||
static bool qpolicy_simple_full(struct sock *sk)
|
||||
{
|
||||
return dccp_sk(sk)->dccps_tx_qlen &&
|
||||
sk->sk_write_queue.qlen >= dccp_sk(sk)->dccps_tx_qlen;
|
||||
}
|
||||
|
||||
static struct sk_buff *qpolicy_simple_top(struct sock *sk)
|
||||
{
|
||||
return skb_peek(&sk->sk_write_queue);
|
||||
}
|
||||
|
||||
/*
|
||||
* Priority-based Dequeueing Policy:
|
||||
* If tx_qlen is different from 0 and the queue has reached its upper bound
|
||||
* of tx_qlen elements, replace older packets lowest-priority-first.
|
||||
*/
|
||||
static struct sk_buff *qpolicy_prio_best_skb(struct sock *sk)
|
||||
{
|
||||
struct sk_buff *skb, *best = NULL;
|
||||
|
||||
skb_queue_walk(&sk->sk_write_queue, skb)
|
||||
if (best == NULL || skb->priority > best->priority)
|
||||
best = skb;
|
||||
return best;
|
||||
}
|
||||
|
||||
static struct sk_buff *qpolicy_prio_worst_skb(struct sock *sk)
|
||||
{
|
||||
struct sk_buff *skb, *worst = NULL;
|
||||
|
||||
skb_queue_walk(&sk->sk_write_queue, skb)
|
||||
if (worst == NULL || skb->priority < worst->priority)
|
||||
worst = skb;
|
||||
return worst;
|
||||
}
|
||||
|
||||
static bool qpolicy_prio_full(struct sock *sk)
|
||||
{
|
||||
if (qpolicy_simple_full(sk))
|
||||
dccp_qpolicy_drop(sk, qpolicy_prio_worst_skb(sk));
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* struct dccp_qpolicy_operations - TX Packet Dequeueing Interface
|
||||
* @push: add a new @skb to the write queue
|
||||
* @full: indicates that no more packets will be admitted
|
||||
* @top: peeks at whatever the queueing policy defines as its `top'
|
||||
* @params: parameter passed to policy operation
|
||||
*/
|
||||
struct dccp_qpolicy_operations {
|
||||
void (*push) (struct sock *sk, struct sk_buff *skb);
|
||||
bool (*full) (struct sock *sk);
|
||||
struct sk_buff* (*top) (struct sock *sk);
|
||||
__be32 params;
|
||||
};
|
||||
|
||||
static struct dccp_qpolicy_operations qpol_table[DCCPQ_POLICY_MAX] = {
|
||||
[DCCPQ_POLICY_SIMPLE] = {
|
||||
.push = qpolicy_simple_push,
|
||||
.full = qpolicy_simple_full,
|
||||
.top = qpolicy_simple_top,
|
||||
.params = 0,
|
||||
},
|
||||
[DCCPQ_POLICY_PRIO] = {
|
||||
.push = qpolicy_simple_push,
|
||||
.full = qpolicy_prio_full,
|
||||
.top = qpolicy_prio_best_skb,
|
||||
.params = DCCP_SCM_PRIORITY,
|
||||
},
|
||||
};
|
||||
|
||||
/*
|
||||
* Externally visible interface
|
||||
*/
|
||||
void dccp_qpolicy_push(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
qpol_table[dccp_sk(sk)->dccps_qpolicy].push(sk, skb);
|
||||
}
|
||||
|
||||
bool dccp_qpolicy_full(struct sock *sk)
|
||||
{
|
||||
return qpol_table[dccp_sk(sk)->dccps_qpolicy].full(sk);
|
||||
}
|
||||
|
||||
void dccp_qpolicy_drop(struct sock *sk, struct sk_buff *skb)
|
||||
{
|
||||
if (skb != NULL) {
|
||||
skb_unlink(skb, &sk->sk_write_queue);
|
||||
kfree_skb(skb);
|
||||
}
|
||||
}
|
||||
|
||||
struct sk_buff *dccp_qpolicy_top(struct sock *sk)
|
||||
{
|
||||
return qpol_table[dccp_sk(sk)->dccps_qpolicy].top(sk);
|
||||
}
|
||||
|
||||
struct sk_buff *dccp_qpolicy_pop(struct sock *sk)
|
||||
{
|
||||
struct sk_buff *skb = dccp_qpolicy_top(sk);
|
||||
|
||||
if (skb != NULL) {
|
||||
/* Clear any skb fields that we used internally */
|
||||
skb->priority = 0;
|
||||
skb_unlink(skb, &sk->sk_write_queue);
|
||||
}
|
||||
return skb;
|
||||
}
|
||||
|
||||
bool dccp_qpolicy_param_ok(struct sock *sk, __be32 param)
|
||||
{
|
||||
/* check if exactly one bit is set */
|
||||
if (!param || (param & (param - 1)))
|
||||
return false;
|
||||
return (qpol_table[dccp_sk(sk)->dccps_qpolicy].params & param) == param;
|
||||
}
|
|
@ -1,107 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* net/dccp/sysctl.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@mandriva.com>
|
||||
*/
|
||||
|
||||
#include <linux/mm.h>
|
||||
#include <linux/sysctl.h>
|
||||
#include "dccp.h"
|
||||
#include "feat.h"
|
||||
|
||||
/* Boundary values */
|
||||
static int u8_max = 0xFF;
|
||||
static unsigned long seqw_min = DCCPF_SEQ_WMIN,
|
||||
seqw_max = 0xFFFFFFFF; /* maximum on 32 bit */
|
||||
|
||||
static struct ctl_table dccp_default_table[] = {
|
||||
{
|
||||
.procname = "seq_window",
|
||||
.data = &sysctl_dccp_sequence_window,
|
||||
.maxlen = sizeof(sysctl_dccp_sequence_window),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_doulongvec_minmax,
|
||||
.extra1 = &seqw_min, /* RFC 4340, 7.5.2 */
|
||||
.extra2 = &seqw_max,
|
||||
},
|
||||
{
|
||||
.procname = "rx_ccid",
|
||||
.data = &sysctl_dccp_rx_ccid,
|
||||
.maxlen = sizeof(sysctl_dccp_rx_ccid),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_minmax,
|
||||
.extra1 = SYSCTL_ZERO,
|
||||
.extra2 = &u8_max, /* RFC 4340, 10. */
|
||||
},
|
||||
{
|
||||
.procname = "tx_ccid",
|
||||
.data = &sysctl_dccp_tx_ccid,
|
||||
.maxlen = sizeof(sysctl_dccp_tx_ccid),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_minmax,
|
||||
.extra1 = SYSCTL_ZERO,
|
||||
.extra2 = &u8_max, /* RFC 4340, 10. */
|
||||
},
|
||||
{
|
||||
.procname = "request_retries",
|
||||
.data = &sysctl_dccp_request_retries,
|
||||
.maxlen = sizeof(sysctl_dccp_request_retries),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_minmax,
|
||||
.extra1 = SYSCTL_ONE,
|
||||
.extra2 = &u8_max,
|
||||
},
|
||||
{
|
||||
.procname = "retries1",
|
||||
.data = &sysctl_dccp_retries1,
|
||||
.maxlen = sizeof(sysctl_dccp_retries1),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_minmax,
|
||||
.extra1 = SYSCTL_ZERO,
|
||||
.extra2 = &u8_max,
|
||||
},
|
||||
{
|
||||
.procname = "retries2",
|
||||
.data = &sysctl_dccp_retries2,
|
||||
.maxlen = sizeof(sysctl_dccp_retries2),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_minmax,
|
||||
.extra1 = SYSCTL_ZERO,
|
||||
.extra2 = &u8_max,
|
||||
},
|
||||
{
|
||||
.procname = "tx_qlen",
|
||||
.data = &sysctl_dccp_tx_qlen,
|
||||
.maxlen = sizeof(sysctl_dccp_tx_qlen),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_minmax,
|
||||
.extra1 = SYSCTL_ZERO,
|
||||
},
|
||||
{
|
||||
.procname = "sync_ratelimit",
|
||||
.data = &sysctl_dccp_sync_ratelimit,
|
||||
.maxlen = sizeof(sysctl_dccp_sync_ratelimit),
|
||||
.mode = 0644,
|
||||
.proc_handler = proc_dointvec_ms_jiffies,
|
||||
},
|
||||
};
|
||||
|
||||
static struct ctl_table_header *dccp_table_header;
|
||||
|
||||
int __init dccp_sysctl_init(void)
|
||||
{
|
||||
dccp_table_header = register_net_sysctl(&init_net, "net/dccp/default",
|
||||
dccp_default_table);
|
||||
|
||||
return dccp_table_header != NULL ? 0 : -ENOMEM;
|
||||
}
|
||||
|
||||
void dccp_sysctl_exit(void)
|
||||
{
|
||||
if (dccp_table_header != NULL) {
|
||||
unregister_net_sysctl_table(dccp_table_header);
|
||||
dccp_table_header = NULL;
|
||||
}
|
||||
}
|
272
net/dccp/timer.c
272
net/dccp/timer.c
|
@ -1,272 +0,0 @@
|
|||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/*
|
||||
* net/dccp/timer.c
|
||||
*
|
||||
* An implementation of the DCCP protocol
|
||||
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
||||
*/
|
||||
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/export.h>
|
||||
|
||||
#include "dccp.h"
|
||||
|
||||
/* sysctl variables governing numbers of retransmission attempts */
|
||||
int sysctl_dccp_request_retries __read_mostly = TCP_SYN_RETRIES;
|
||||
int sysctl_dccp_retries1 __read_mostly = TCP_RETR1;
|
||||
int sysctl_dccp_retries2 __read_mostly = TCP_RETR2;
|
||||
|
||||
static void dccp_write_err(struct sock *sk)
|
||||
{
|
||||
sk->sk_err = READ_ONCE(sk->sk_err_soft) ? : ETIMEDOUT;
|
||||
sk_error_report(sk);
|
||||
|
||||
dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED);
|
||||
dccp_done(sk);
|
||||
__DCCP_INC_STATS(DCCP_MIB_ABORTONTIMEOUT);
|
||||
}
|
||||
|
||||
/* A write timeout has occurred. Process the after effects. */
|
||||
static int dccp_write_timeout(struct sock *sk)
|
||||
{
|
||||
const struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
int retry_until;
|
||||
|
||||
if (sk->sk_state == DCCP_REQUESTING || sk->sk_state == DCCP_PARTOPEN) {
|
||||
if (icsk->icsk_retransmits != 0)
|
||||
dst_negative_advice(sk);
|
||||
retry_until = icsk->icsk_syn_retries ?
|
||||
: sysctl_dccp_request_retries;
|
||||
} else {
|
||||
if (icsk->icsk_retransmits >= sysctl_dccp_retries1) {
|
||||
/* NOTE. draft-ietf-tcpimpl-pmtud-01.txt requires pmtu
|
||||
black hole detection. :-(
|
||||
|
||||
It is place to make it. It is not made. I do not want
|
||||
to make it. It is disguisting. It does not work in any
|
||||
case. Let me to cite the same draft, which requires for
|
||||
us to implement this:
|
||||
|
||||
"The one security concern raised by this memo is that ICMP black holes
|
||||
are often caused by over-zealous security administrators who block
|
||||
all ICMP messages. It is vitally important that those who design and
|
||||
deploy security systems understand the impact of strict filtering on
|
||||
upper-layer protocols. The safest web site in the world is worthless
|
||||
if most TCP implementations cannot transfer data from it. It would
|
||||
be far nicer to have all of the black holes fixed rather than fixing
|
||||
all of the TCP implementations."
|
||||
|
||||
Golden words :-).
|
||||
*/
|
||||
|
||||
dst_negative_advice(sk);
|
||||
}
|
||||
|
||||
retry_until = sysctl_dccp_retries2;
|
||||
/*
|
||||
* FIXME: see tcp_write_timout and tcp_out_of_resources
|
||||
*/
|
||||
}
|
||||
|
||||
if (icsk->icsk_retransmits >= retry_until) {
|
||||
/* Has it gone just too far? */
|
||||
dccp_write_err(sk);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The DCCP retransmit timer.
|
||||
*/
|
||||
static void dccp_retransmit_timer(struct sock *sk)
|
||||
{
|
||||
struct inet_connection_sock *icsk = inet_csk(sk);
|
||||
|
||||
/*
|
||||
* More than 4MSL (8 minutes) has passed, a RESET(aborted) was
|
||||
* sent, no need to retransmit, this sock is dead.
|
||||
*/
|
||||
if (dccp_write_timeout(sk))
|
||||
return;
|
||||
|
||||
/*
|
||||
* We want to know the number of packets retransmitted, not the
|
||||
* total number of retransmissions of clones of original packets.
|
||||
*/
|
||||
if (icsk->icsk_retransmits == 0)
|
||||
__DCCP_INC_STATS(DCCP_MIB_TIMEOUTS);
|
||||
|
||||
if (dccp_retransmit_skb(sk) != 0) {
|
||||
/*
|
||||
* Retransmission failed because of local congestion,
|
||||
* do not backoff.
|
||||
*/
|
||||
if (--icsk->icsk_retransmits == 0)
|
||||
icsk->icsk_retransmits = 1;
|
||||
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
||||
min(icsk->icsk_rto,
|
||||
TCP_RESOURCE_PROBE_INTERVAL),
|
||||
DCCP_RTO_MAX);
|
||||
return;
|
||||
}
|
||||
|
||||
icsk->icsk_backoff++;
|
||||
|
||||
icsk->icsk_rto = min(icsk->icsk_rto << 1, DCCP_RTO_MAX);
|
||||
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto,
|
||||
DCCP_RTO_MAX);
|
||||
if (icsk->icsk_retransmits > sysctl_dccp_retries1)
|
||||
__sk_dst_reset(sk);
|
||||
}
|
||||
|
||||
static void dccp_write_timer(struct timer_list *t)
|
||||
{
|
||||
struct inet_connection_sock *icsk =
|
||||
from_timer(icsk, t, icsk_retransmit_timer);
|
||||
struct sock *sk = &icsk->icsk_inet.sk;
|
||||
int event = 0;
|
||||
|
||||
bh_lock_sock(sk);
|
||||
if (sock_owned_by_user(sk)) {
|
||||
/* Try again later */
|
||||
sk_reset_timer(sk, &icsk->icsk_retransmit_timer,
|
||||
jiffies + (HZ / 20));
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (sk->sk_state == DCCP_CLOSED || !icsk->icsk_pending)
|
||||
goto out;
|
||||
|
||||
if (time_after(icsk_timeout(icsk), jiffies)) {
|
||||
sk_reset_timer(sk, &icsk->icsk_retransmit_timer,
|
||||
icsk_timeout(icsk));
|
||||
goto out;
|
||||
}
|
||||
|
||||
event = icsk->icsk_pending;
|
||||
icsk->icsk_pending = 0;
|
||||
|
||||
switch (event) {
|
||||
case ICSK_TIME_RETRANS:
|
||||
dccp_retransmit_timer(sk);
|
||||
break;
|
||||
}
|
||||
out:
|
||||
bh_unlock_sock(sk);
|
||||
sock_put(sk);
|
||||
}
|
||||
|
||||
static void dccp_keepalive_timer(struct timer_list *t)
|
||||
{
|
||||
struct sock *sk = from_timer(sk, t, sk_timer);
|
||||
|
||||
pr_err("dccp should not use a keepalive timer !\n");
|
||||
sock_put(sk);
|
||||
}
|
||||
|
||||
/* This is the same as tcp_delack_timer, sans prequeue & mem_reclaim stuff */
|
||||
static void dccp_delack_timer(struct timer_list *t)
|
||||
{
|
||||
struct inet_connection_sock *icsk =
|
||||
from_timer(icsk, t, icsk_delack_timer);
|
||||
struct sock *sk = &icsk->icsk_inet.sk;
|
||||
|
||||
bh_lock_sock(sk);
|
||||
if (sock_owned_by_user(sk)) {
|
||||
/* Try again later. */
|
||||
__NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOCKED);
|
||||
sk_reset_timer(sk, &icsk->icsk_delack_timer,
|
||||
jiffies + TCP_DELACK_MIN);
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (sk->sk_state == DCCP_CLOSED ||
|
||||
!(icsk->icsk_ack.pending & ICSK_ACK_TIMER))
|
||||
goto out;
|
||||
if (time_after(icsk_delack_timeout(icsk), jiffies)) {
|
||||
sk_reset_timer(sk, &icsk->icsk_delack_timer,
|
||||
icsk_delack_timeout(icsk));
|
||||
goto out;
|
||||
}
|
||||
|
||||
icsk->icsk_ack.pending &= ~ICSK_ACK_TIMER;
|
||||
|
||||
if (inet_csk_ack_scheduled(sk)) {
|
||||
if (!inet_csk_in_pingpong_mode(sk)) {
|
||||
/* Delayed ACK missed: inflate ATO. */
|
||||
icsk->icsk_ack.ato = min_t(u32, icsk->icsk_ack.ato << 1,
|
||||
icsk->icsk_rto);
|
||||
} else {
|
||||
/* Delayed ACK missed: leave pingpong mode and
|
||||
* deflate ATO.
|
||||
*/
|
||||
inet_csk_exit_pingpong_mode(sk);
|
||||
icsk->icsk_ack.ato = TCP_ATO_MIN;
|
||||
}
|
||||
dccp_send_ack(sk);
|
||||
__NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKS);
|
||||
}
|
||||
out:
|
||||
bh_unlock_sock(sk);
|
||||
sock_put(sk);
|
||||
}
|
||||
|
||||
/**
|
||||
* dccp_write_xmitlet - Workhorse for CCID packet dequeueing interface
|
||||
* @t: pointer to the tasklet associated with this handler
|
||||
*
|
||||
* See the comments above %ccid_dequeueing_decision for supported modes.
|
||||
*/
|
||||
static void dccp_write_xmitlet(struct tasklet_struct *t)
|
||||
{
|
||||
struct dccp_sock *dp = from_tasklet(dp, t, dccps_xmitlet);
|
||||
struct sock *sk = &dp->dccps_inet_connection.icsk_inet.sk;
|
||||
|
||||
bh_lock_sock(sk);
|
||||
if (sock_owned_by_user(sk))
|
||||
sk_reset_timer(sk, &dccp_sk(sk)->dccps_xmit_timer, jiffies + 1);
|
||||
else
|
||||
dccp_write_xmit(sk);
|
||||
bh_unlock_sock(sk);
|
||||
sock_put(sk);
|
||||
}
|
||||
|
||||
static void dccp_write_xmit_timer(struct timer_list *t)
|
||||
{
|
||||
struct dccp_sock *dp = from_timer(dp, t, dccps_xmit_timer);
|
||||
|
||||
dccp_write_xmitlet(&dp->dccps_xmitlet);
|
||||
}
|
||||
|
||||
void dccp_init_xmit_timers(struct sock *sk)
|
||||
{
|
||||
struct dccp_sock *dp = dccp_sk(sk);
|
||||
|
||||
tasklet_setup(&dp->dccps_xmitlet, dccp_write_xmitlet);
|
||||
timer_setup(&dp->dccps_xmit_timer, dccp_write_xmit_timer, 0);
|
||||
inet_csk_init_xmit_timers(sk, &dccp_write_timer, &dccp_delack_timer,
|
||||
&dccp_keepalive_timer);
|
||||
}
|
||||
|
||||
static ktime_t dccp_timestamp_seed;
|
||||
/**
|
||||
* dccp_timestamp - 10s of microseconds time source
|
||||
* Returns the number of 10s of microseconds since loading DCCP. This is native
|
||||
* DCCP time difference format (RFC 4340, sec. 13).
|
||||
* Please note: This will wrap around about circa every 11.9 hours.
|
||||
*/
|
||||
u32 dccp_timestamp(void)
|
||||
{
|
||||
u64 delta = (u64)ktime_us_delta(ktime_get_real(), dccp_timestamp_seed);
|
||||
|
||||
do_div(delta, 10);
|
||||
return delta;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(dccp_timestamp);
|
||||
|
||||
void __init dccp_timestamping_init(void)
|
||||
{
|
||||
dccp_timestamp_seed = ktime_get_real();
|
||||
}
|
|
@ -1,82 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
#undef TRACE_SYSTEM
|
||||
#define TRACE_SYSTEM dccp
|
||||
|
||||
#if !defined(_TRACE_DCCP_H) || defined(TRACE_HEADER_MULTI_READ)
|
||||
#define _TRACE_DCCP_H
|
||||
|
||||
#include <net/sock.h>
|
||||
#include "dccp.h"
|
||||
#include "ccids/ccid3.h"
|
||||
#include <linux/tracepoint.h>
|
||||
#include <trace/events/net_probe_common.h>
|
||||
|
||||
TRACE_EVENT(dccp_probe,
|
||||
|
||||
TP_PROTO(struct sock *sk, size_t size),
|
||||
|
||||
TP_ARGS(sk, size),
|
||||
|
||||
TP_STRUCT__entry(
|
||||
/* sockaddr_in6 is always bigger than sockaddr_in */
|
||||
__array(__u8, saddr, sizeof(struct sockaddr_in6))
|
||||
__array(__u8, daddr, sizeof(struct sockaddr_in6))
|
||||
__field(__u16, sport)
|
||||
__field(__u16, dport)
|
||||
__field(__u16, size)
|
||||
__field(__u16, tx_s)
|
||||
__field(__u32, tx_rtt)
|
||||
__field(__u32, tx_p)
|
||||
__field(__u32, tx_x_calc)
|
||||
__field(__u64, tx_x_recv)
|
||||
__field(__u64, tx_x)
|
||||
__field(__u32, tx_t_ipi)
|
||||
),
|
||||
|
||||
TP_fast_assign(
|
||||
const struct inet_sock *inet = inet_sk(sk);
|
||||
struct ccid3_hc_tx_sock *hc = NULL;
|
||||
|
||||
if (ccid_get_current_tx_ccid(dccp_sk(sk)) == DCCPC_CCID3)
|
||||
hc = ccid3_hc_tx_sk(sk);
|
||||
|
||||
memset(__entry->saddr, 0, sizeof(struct sockaddr_in6));
|
||||
memset(__entry->daddr, 0, sizeof(struct sockaddr_in6));
|
||||
|
||||
TP_STORE_ADDR_PORTS(__entry, inet, sk);
|
||||
|
||||
/* For filtering use */
|
||||
__entry->sport = ntohs(inet->inet_sport);
|
||||
__entry->dport = ntohs(inet->inet_dport);
|
||||
|
||||
__entry->size = size;
|
||||
if (hc) {
|
||||
__entry->tx_s = hc->tx_s;
|
||||
__entry->tx_rtt = hc->tx_rtt;
|
||||
__entry->tx_p = hc->tx_p;
|
||||
__entry->tx_x_calc = hc->tx_x_calc;
|
||||
__entry->tx_x_recv = hc->tx_x_recv >> 6;
|
||||
__entry->tx_x = hc->tx_x >> 6;
|
||||
__entry->tx_t_ipi = hc->tx_t_ipi;
|
||||
} else {
|
||||
__entry->tx_s = 0;
|
||||
memset_startat(__entry, 0, tx_rtt);
|
||||
}
|
||||
),
|
||||
|
||||
TP_printk("src=%pISpc dest=%pISpc size=%d tx_s=%d tx_rtt=%d "
|
||||
"tx_p=%d tx_x_calc=%u tx_x_recv=%llu tx_x=%llu tx_t_ipi=%d",
|
||||
__entry->saddr, __entry->daddr, __entry->size,
|
||||
__entry->tx_s, __entry->tx_rtt, __entry->tx_p,
|
||||
__entry->tx_x_calc, __entry->tx_x_recv, __entry->tx_x,
|
||||
__entry->tx_t_ipi)
|
||||
);
|
||||
|
||||
#endif /* _TRACE_TCP_H */
|
||||
|
||||
/* This part must be outside protection */
|
||||
#undef TRACE_INCLUDE_PATH
|
||||
#define TRACE_INCLUDE_PATH .
|
||||
#undef TRACE_INCLUDE_FILE
|
||||
#define TRACE_INCLUDE_FILE trace
|
||||
#include <trace/define_trace.h>
|
|
@ -425,7 +425,7 @@ config INET_DIAG
|
|||
tristate "INET: socket monitoring interface"
|
||||
default y
|
||||
help
|
||||
Support for INET (TCP, DCCP, etc) socket monitoring interface used by
|
||||
Support for INET (TCP, UDP, etc) socket monitoring interface used by
|
||||
native Linux tools such as ss. ss is included in iproute2, currently
|
||||
downloadable at:
|
||||
|
||||
|
|
|
@ -1328,10 +1328,7 @@ int inet_sk_rebuild_header(struct sock *sk)
|
|||
|
||||
/* Routing failed... */
|
||||
sk->sk_route_caps = 0;
|
||||
/*
|
||||
* Other protocols have to map its equivalent state to TCP_SYN_SENT.
|
||||
* DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme
|
||||
*/
|
||||
|
||||
if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) ||
|
||||
sk->sk_state != TCP_SYN_SENT ||
|
||||
(sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
|
||||
|
|
|
@ -330,7 +330,7 @@ inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
|
|||
struct inet_bind2_bucket **tb2_ret,
|
||||
struct inet_bind_hashbucket **head2_ret, int *port_ret)
|
||||
{
|
||||
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
|
||||
int i, low, high, attempt_half, port, l3mdev;
|
||||
struct inet_bind_hashbucket *head, *head2;
|
||||
struct net *net = sock_net(sk);
|
||||
|
@ -512,10 +512,10 @@ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
|
|||
*/
|
||||
int inet_csk_get_port(struct sock *sk, unsigned short snum)
|
||||
{
|
||||
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
|
||||
bool found_port = false, check_bind_conflict = true;
|
||||
bool bhash_created = false, bhash2_created = false;
|
||||
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
|
||||
int ret = -EADDRINUSE, port = snum, l3mdev;
|
||||
struct inet_bind_hashbucket *head, *head2;
|
||||
struct inet_bind2_bucket *tb2 = NULL;
|
||||
|
@ -767,7 +767,6 @@ void inet_csk_init_xmit_timers(struct sock *sk,
|
|||
timer_setup(&sk->sk_timer, keepalive_handler, 0);
|
||||
icsk->icsk_pending = icsk->icsk_ack.pending = 0;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_csk_init_xmit_timers);
|
||||
|
||||
void inet_csk_clear_xmit_timers(struct sock *sk)
|
||||
{
|
||||
|
@ -780,7 +779,6 @@ void inet_csk_clear_xmit_timers(struct sock *sk)
|
|||
sk_stop_timer(sk, &icsk->icsk_delack_timer);
|
||||
sk_stop_timer(sk, &sk->sk_timer);
|
||||
}
|
||||
EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
|
||||
|
||||
void inet_csk_clear_xmit_timers_sync(struct sock *sk)
|
||||
{
|
||||
|
@ -831,7 +829,6 @@ no_route:
|
|||
__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
|
||||
return NULL;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_csk_route_req);
|
||||
|
||||
struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
|
||||
struct sock *newsk,
|
||||
|
@ -898,7 +895,6 @@ int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
|
|||
req->num_retrans++;
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_rtx_syn_ack);
|
||||
|
||||
static struct request_sock *
|
||||
reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
|
||||
|
@ -1026,9 +1022,10 @@ static bool reqsk_queue_unlink(struct request_sock *req)
|
|||
bool found = false;
|
||||
|
||||
if (sk_hashed(sk)) {
|
||||
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
|
||||
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
|
||||
spinlock_t *lock;
|
||||
|
||||
lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
|
||||
spin_lock(lock);
|
||||
found = __sk_nulls_del_node_init_rcu(sk);
|
||||
spin_unlock(lock);
|
||||
|
@ -1058,14 +1055,13 @@ bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
|
|||
{
|
||||
return __inet_csk_reqsk_queue_drop(sk, req, false);
|
||||
}
|
||||
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
|
||||
|
||||
void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
|
||||
{
|
||||
inet_csk_reqsk_queue_drop(sk, req);
|
||||
reqsk_put(req);
|
||||
}
|
||||
EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
|
||||
EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
|
||||
|
||||
static void reqsk_timer_handler(struct timer_list *t)
|
||||
{
|
||||
|
@ -1209,7 +1205,6 @@ bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
|
|||
inet_csk_reqsk_queue_added(sk);
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
|
||||
|
||||
static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
|
||||
const gfp_t priority)
|
||||
|
@ -1290,7 +1285,6 @@ struct sock *inet_csk_clone_lock(const struct sock *sk,
|
|||
|
||||
return newsk;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
|
||||
|
||||
/*
|
||||
* At this point, there should be no process reference to this
|
||||
|
@ -1322,7 +1316,7 @@ void inet_csk_destroy_sock(struct sock *sk)
|
|||
EXPORT_SYMBOL(inet_csk_destroy_sock);
|
||||
|
||||
/* This function allows to force a closure of a socket after the call to
|
||||
* tcp/dccp_create_openreq_child().
|
||||
* tcp_create_openreq_child().
|
||||
*/
|
||||
void inet_csk_prepare_forced_close(struct sock *sk)
|
||||
__releases(&sk->sk_lock.slock)
|
||||
|
@ -1380,7 +1374,6 @@ int inet_csk_listen_start(struct sock *sk)
|
|||
inet_sk_set_state(sk, TCP_CLOSE);
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_csk_listen_start);
|
||||
|
||||
static void inet_child_forget(struct sock *sk, struct request_sock *req,
|
||||
struct sock *child)
|
||||
|
@ -1475,7 +1468,6 @@ child_put:
|
|||
sock_put(child);
|
||||
return NULL;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_csk_complete_hashdance);
|
||||
|
||||
/*
|
||||
* This routine closes sockets which have been at least partially
|
||||
|
@ -1590,4 +1582,3 @@ struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
|
|||
out:
|
||||
return dst;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
|
||||
|
|
|
@ -1369,8 +1369,6 @@ static int inet_diag_type2proto(int type)
|
|||
switch (type) {
|
||||
case TCPDIAG_GETSOCK:
|
||||
return IPPROTO_TCP;
|
||||
case DCCPDIAG_GETSOCK:
|
||||
return IPPROTO_DCCP;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -176,7 +176,7 @@ void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb,
|
|||
*/
|
||||
static void __inet_put_port(struct sock *sk)
|
||||
{
|
||||
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
|
||||
struct inet_bind_hashbucket *head, *head2;
|
||||
struct net *net = sock_net(sk);
|
||||
struct inet_bind_bucket *tb;
|
||||
|
@ -215,7 +215,7 @@ EXPORT_SYMBOL(inet_put_port);
|
|||
|
||||
int __inet_inherit_port(const struct sock *sk, struct sock *child)
|
||||
{
|
||||
struct inet_hashinfo *table = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *table = tcp_get_hashinfo(sk);
|
||||
unsigned short port = inet_sk(child)->inet_num;
|
||||
struct inet_bind_hashbucket *head, *head2;
|
||||
bool created_inet_bind_bucket = false;
|
||||
|
@ -668,7 +668,7 @@ static bool inet_ehash_lookup_by_sk(struct sock *sk,
|
|||
*/
|
||||
bool inet_ehash_insert(struct sock *sk, struct sock *osk, bool *found_dup_sk)
|
||||
{
|
||||
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
|
||||
struct inet_ehash_bucket *head;
|
||||
struct hlist_nulls_head *list;
|
||||
spinlock_t *lock;
|
||||
|
@ -713,7 +713,7 @@ bool inet_ehash_nolisten(struct sock *sk, struct sock *osk, bool *found_dup_sk)
|
|||
}
|
||||
return ok;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_ehash_nolisten);
|
||||
EXPORT_IPV6_MOD(inet_ehash_nolisten);
|
||||
|
||||
static int inet_reuseport_add_sock(struct sock *sk,
|
||||
struct inet_listen_hashbucket *ilb)
|
||||
|
@ -740,7 +740,7 @@ static int inet_reuseport_add_sock(struct sock *sk,
|
|||
|
||||
int __inet_hash(struct sock *sk, struct sock *osk)
|
||||
{
|
||||
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
|
||||
struct inet_listen_hashbucket *ilb2;
|
||||
int err = 0;
|
||||
|
||||
|
@ -771,7 +771,7 @@ unlock:
|
|||
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL(__inet_hash);
|
||||
EXPORT_IPV6_MOD(__inet_hash);
|
||||
|
||||
int inet_hash(struct sock *sk)
|
||||
{
|
||||
|
@ -782,11 +782,10 @@ int inet_hash(struct sock *sk)
|
|||
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_hash);
|
||||
|
||||
void inet_unhash(struct sock *sk)
|
||||
{
|
||||
struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
|
||||
|
||||
if (sk_unhashed(sk))
|
||||
return;
|
||||
|
@ -823,7 +822,7 @@ void inet_unhash(struct sock *sk)
|
|||
spin_unlock_bh(lock);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_unhash);
|
||||
EXPORT_IPV6_MOD(inet_unhash);
|
||||
|
||||
static bool inet_bind2_bucket_match(const struct inet_bind2_bucket *tb,
|
||||
const struct net *net, unsigned short port,
|
||||
|
@ -874,7 +873,7 @@ inet_bind2_bucket_find(const struct inet_bind_hashbucket *head, const struct net
|
|||
struct inet_bind_hashbucket *
|
||||
inet_bhash2_addr_any_hashbucket(const struct sock *sk, const struct net *net, int port)
|
||||
{
|
||||
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
|
||||
u32 hash;
|
||||
|
||||
#if IS_ENABLED(CONFIG_IPV6)
|
||||
|
@ -902,7 +901,7 @@ static void inet_update_saddr(struct sock *sk, void *saddr, int family)
|
|||
|
||||
static int __inet_bhash2_update_saddr(struct sock *sk, void *saddr, int family, bool reset)
|
||||
{
|
||||
struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
|
||||
struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
|
||||
struct inet_bind_hashbucket *head, *head2;
|
||||
struct inet_bind2_bucket *tb2, *new_tb2;
|
||||
int l3mdev = inet_sk_bound_l3mdev(sk);
|
||||
|
@ -982,14 +981,14 @@ int inet_bhash2_update_saddr(struct sock *sk, void *saddr, int family)
|
|||
{
|
||||
return __inet_bhash2_update_saddr(sk, saddr, family, false);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_bhash2_update_saddr);
|
||||
EXPORT_IPV6_MOD(inet_bhash2_update_saddr);
|
||||
|
||||
void inet_bhash2_reset_saddr(struct sock *sk)
|
||||
{
|
||||
if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
|
||||
__inet_bhash2_update_saddr(sk, NULL, 0, true);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_bhash2_reset_saddr);
|
||||
EXPORT_IPV6_MOD(inet_bhash2_reset_saddr);
|
||||
|
||||
/* RFC 6056 3.3.4. Algorithm 4: Double-Hash Port Selection Algorithm
|
||||
* Note that we use 32bit integers (vs RFC 'short integers')
|
||||
|
@ -1214,7 +1213,6 @@ int inet_hash_connect(struct inet_timewait_death_row *death_row,
|
|||
return __inet_hash_connect(death_row, sk, port_offset, hash_port0,
|
||||
__inet_check_established);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_hash_connect);
|
||||
|
||||
static void init_hashinfo_lhash2(struct inet_hashinfo *h)
|
||||
{
|
||||
|
@ -1265,7 +1263,6 @@ int inet_hashinfo2_init_mod(struct inet_hashinfo *h)
|
|||
init_hashinfo_lhash2(h);
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_hashinfo2_init_mod);
|
||||
|
||||
int inet_ehash_locks_alloc(struct inet_hashinfo *hashinfo)
|
||||
{
|
||||
|
@ -1305,7 +1302,6 @@ set_mask:
|
|||
hashinfo->ehash_locks_mask = nblocks - 1;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_ehash_locks_alloc);
|
||||
|
||||
struct inet_hashinfo *inet_pernet_hashinfo_alloc(struct inet_hashinfo *hashinfo,
|
||||
unsigned int ehash_entries)
|
||||
|
@ -1341,7 +1337,6 @@ free_hashinfo:
|
|||
err:
|
||||
return NULL;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_pernet_hashinfo_alloc);
|
||||
|
||||
void inet_pernet_hashinfo_free(struct inet_hashinfo *hashinfo)
|
||||
{
|
||||
|
@ -1352,4 +1347,3 @@ void inet_pernet_hashinfo_free(struct inet_hashinfo *hashinfo)
|
|||
vfree(hashinfo->ehash);
|
||||
kfree(hashinfo);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_pernet_hashinfo_free);
|
||||
|
|
|
@ -166,7 +166,6 @@ void inet_twsk_hashdance_schedule(struct inet_timewait_sock *tw,
|
|||
spin_unlock(lock);
|
||||
local_bh_enable();
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_twsk_hashdance_schedule);
|
||||
|
||||
static void tw_timer_handler(struct timer_list *t)
|
||||
{
|
||||
|
@ -223,7 +222,6 @@ struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk,
|
|||
|
||||
return tw;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_twsk_alloc);
|
||||
|
||||
/* These are always called from BH context. See callers in
|
||||
* tcp_input.c to verify this.
|
||||
|
@ -306,7 +304,6 @@ void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm)
|
|||
mod_timer_pending(&tw->tw_timer, jiffies + timeo);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__inet_twsk_schedule);
|
||||
|
||||
/* Remove all non full sockets (TIME_WAIT and NEW_SYN_RECV) for dead netns */
|
||||
void inet_twsk_purge(struct inet_hashinfo *hashinfo)
|
||||
|
@ -365,4 +362,3 @@ restart:
|
|||
rcu_read_unlock();
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet_twsk_purge);
|
||||
|
|
|
@ -881,7 +881,6 @@ bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
|
|||
}
|
||||
return false;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ipv6_opt_accepted);
|
||||
|
||||
static struct packet_type ipv6_packet_type __read_mostly = {
|
||||
.type = cpu_to_be16(ETH_P_IPV6),
|
||||
|
|
|
@ -54,7 +54,6 @@ struct dst_entry *inet6_csk_route_req(const struct sock *sk,
|
|||
|
||||
return dst;
|
||||
}
|
||||
EXPORT_SYMBOL(inet6_csk_route_req);
|
||||
|
||||
static inline
|
||||
struct dst_entry *__inet6_csk_dst_check(struct sock *sk, u32 cookie)
|
||||
|
@ -137,4 +136,3 @@ struct dst_entry *inet6_csk_update_pmtu(struct sock *sk, u32 mtu)
|
|||
dst = inet6_csk_route_socket(sk, &fl6);
|
||||
return IS_ERR(dst) ? NULL : dst;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(inet6_csk_update_pmtu);
|
||||
|
|
|
@ -259,7 +259,7 @@ bool ip6_autoflowlabel(struct net *net, const struct sock *sk)
|
|||
}
|
||||
|
||||
/*
|
||||
* xmit an sk_buff (used by TCP, SCTP and DCCP)
|
||||
* xmit an sk_buff (used by TCP and SCTP)
|
||||
* Note : socket lock is not held for SYNACK packets, but might be modified
|
||||
* by calls to skb_set_owner_w() and ipv6_local_error(),
|
||||
* which are using proper atomic operations or spinlocks.
|
||||
|
|
|
@ -31,7 +31,6 @@ static inline int proto_ports_offset(__u64 proto)
|
|||
switch (proto) {
|
||||
case IPPROTO_TCP:
|
||||
case IPPROTO_UDP:
|
||||
case IPPROTO_DCCP:
|
||||
case IPPROTO_ESP:
|
||||
case IPPROTO_SCTP:
|
||||
case IPPROTO_UDPLITE:
|
||||
|
|
|
@ -4804,7 +4804,7 @@ sub process {
|
|||
}
|
||||
|
||||
# do not use BUG() or variants
|
||||
if ($line =~ /\b(?!AA_|BUILD_|DCCP_|IDA_|KVM_|RWLOCK_|snd_|SPIN_)(?:[a-zA-Z_]*_)?BUG(?:_ON)?(?:_[A-Z_]+)?\s*\(/) {
|
||||
if ($line =~ /\b(?!AA_|BUILD_|IDA_|KVM_|RWLOCK_|snd_|SPIN_)(?:[a-zA-Z_]*_)?BUG(?:_ON)?(?:_[A-Z_]+)?\s*\(/) {
|
||||
my $msg_level = \&WARN;
|
||||
$msg_level = \&CHK if ($file);
|
||||
&{$msg_level}("AVOID_BUG",
|
||||
|
|
|
@ -24,7 +24,6 @@
|
|||
#include <net/ipv6.h>
|
||||
#include <linux/tcp.h>
|
||||
#include <linux/udp.h>
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/sctp.h>
|
||||
#include <linux/lsm_audit.h>
|
||||
#include <linux/security.h>
|
||||
|
@ -68,13 +67,6 @@ int ipv4_skb_to_auditdata(struct sk_buff *skb,
|
|||
ad->u.net->dport = uh->dest;
|
||||
break;
|
||||
}
|
||||
case IPPROTO_DCCP: {
|
||||
struct dccp_hdr *dh = dccp_hdr(skb);
|
||||
|
||||
ad->u.net->sport = dh->dccph_sport;
|
||||
ad->u.net->dport = dh->dccph_dport;
|
||||
break;
|
||||
}
|
||||
case IPPROTO_SCTP: {
|
||||
struct sctphdr *sh = sctp_hdr(skb);
|
||||
|
||||
|
@ -140,17 +132,6 @@ int ipv6_skb_to_auditdata(struct sk_buff *skb,
|
|||
ad->u.net->dport = uh->dest;
|
||||
break;
|
||||
}
|
||||
case IPPROTO_DCCP: {
|
||||
struct dccp_hdr _dccph, *dh;
|
||||
|
||||
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
|
||||
if (dh == NULL)
|
||||
break;
|
||||
|
||||
ad->u.net->sport = dh->dccph_sport;
|
||||
ad->u.net->dport = dh->dccph_dport;
|
||||
break;
|
||||
}
|
||||
case IPPROTO_SCTP: {
|
||||
struct sctphdr _sctph, *sh;
|
||||
|
||||
|
|
|
@ -65,7 +65,6 @@
|
|||
#include <net/netlink.h>
|
||||
#include <linux/tcp.h>
|
||||
#include <linux/udp.h>
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/sctp.h>
|
||||
#include <net/sctp/structs.h>
|
||||
#include <linux/quota.h>
|
||||
|
@ -1191,8 +1190,6 @@ static inline u16 socket_type_to_security_class(int family, int type, int protoc
|
|||
return SECCLASS_ICMP_SOCKET;
|
||||
else
|
||||
return SECCLASS_RAWIP_SOCKET;
|
||||
case SOCK_DCCP:
|
||||
return SECCLASS_DCCP_SOCKET;
|
||||
default:
|
||||
return SECCLASS_RAWIP_SOCKET;
|
||||
}
|
||||
|
@ -4392,22 +4389,6 @@ static int selinux_parse_skb_ipv4(struct sk_buff *skb,
|
|||
break;
|
||||
}
|
||||
|
||||
case IPPROTO_DCCP: {
|
||||
struct dccp_hdr _dccph, *dh;
|
||||
|
||||
if (ntohs(ih->frag_off) & IP_OFFSET)
|
||||
break;
|
||||
|
||||
offset += ihlen;
|
||||
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
|
||||
if (dh == NULL)
|
||||
break;
|
||||
|
||||
ad->u.net->sport = dh->dccph_sport;
|
||||
ad->u.net->dport = dh->dccph_dport;
|
||||
break;
|
||||
}
|
||||
|
||||
#if IS_ENABLED(CONFIG_IP_SCTP)
|
||||
case IPPROTO_SCTP: {
|
||||
struct sctphdr _sctph, *sh;
|
||||
|
@ -4486,18 +4467,6 @@ static int selinux_parse_skb_ipv6(struct sk_buff *skb,
|
|||
break;
|
||||
}
|
||||
|
||||
case IPPROTO_DCCP: {
|
||||
struct dccp_hdr _dccph, *dh;
|
||||
|
||||
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
|
||||
if (dh == NULL)
|
||||
break;
|
||||
|
||||
ad->u.net->sport = dh->dccph_sport;
|
||||
ad->u.net->dport = dh->dccph_dport;
|
||||
break;
|
||||
}
|
||||
|
||||
#if IS_ENABLED(CONFIG_IP_SCTP)
|
||||
case IPPROTO_SCTP: {
|
||||
struct sctphdr _sctph, *sh;
|
||||
|
@ -4849,10 +4818,6 @@ static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, in
|
|||
node_perm = UDP_SOCKET__NODE_BIND;
|
||||
break;
|
||||
|
||||
case SECCLASS_DCCP_SOCKET:
|
||||
node_perm = DCCP_SOCKET__NODE_BIND;
|
||||
break;
|
||||
|
||||
case SECCLASS_SCTP_SOCKET:
|
||||
node_perm = SCTP_SOCKET__NODE_BIND;
|
||||
break;
|
||||
|
@ -4908,11 +4873,10 @@ static int selinux_socket_connect_helper(struct socket *sock,
|
|||
return 0;
|
||||
|
||||
/*
|
||||
* If a TCP, DCCP or SCTP socket, check name_connect permission
|
||||
* If a TCP or SCTP socket, check name_connect permission
|
||||
* for the port.
|
||||
*/
|
||||
if (sksec->sclass == SECCLASS_TCP_SOCKET ||
|
||||
sksec->sclass == SECCLASS_DCCP_SOCKET ||
|
||||
sksec->sclass == SECCLASS_SCTP_SOCKET) {
|
||||
struct common_audit_data ad;
|
||||
struct lsm_network_audit net = {0,};
|
||||
|
@ -4957,9 +4921,6 @@ static int selinux_socket_connect_helper(struct socket *sock,
|
|||
case SECCLASS_TCP_SOCKET:
|
||||
perm = TCP_SOCKET__NAME_CONNECT;
|
||||
break;
|
||||
case SECCLASS_DCCP_SOCKET:
|
||||
perm = DCCP_SOCKET__NAME_CONNECT;
|
||||
break;
|
||||
case SECCLASS_SCTP_SOCKET:
|
||||
perm = SCTP_SOCKET__NAME_CONNECT;
|
||||
break;
|
||||
|
|
|
@ -127,8 +127,6 @@ const struct security_class_mapping secclass_map[] = {
|
|||
{ "key",
|
||||
{ "view", "read", "write", "search", "link", "setattr", "create",
|
||||
NULL } },
|
||||
{ "dccp_socket",
|
||||
{ COMMON_SOCK_PERMS, "node_bind", "name_connect", NULL } },
|
||||
{ "memprotect", { "mmap_zero", NULL } },
|
||||
{ "peer", { "recv", NULL } },
|
||||
{ "capability2", { COMMON_CAP2_PERMS, NULL } },
|
||||
|
|
|
@ -98,7 +98,6 @@ static const struct nlmsg_perm nlmsg_route_perms[] = {
|
|||
|
||||
static const struct nlmsg_perm nlmsg_tcpdiag_perms[] = {
|
||||
{ TCPDIAG_GETSOCK, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
|
||||
{ DCCPDIAG_GETSOCK, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
|
||||
{ SOCK_DIAG_BY_FAMILY, NETLINK_TCPDIAG_SOCKET__NLMSG_READ },
|
||||
{ SOCK_DESTROY, NETLINK_TCPDIAG_SOCKET__NLMSG_WRITE },
|
||||
};
|
||||
|
|
|
@ -24,7 +24,6 @@
|
|||
#include <linux/ip.h>
|
||||
#include <linux/tcp.h>
|
||||
#include <linux/udp.h>
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/icmpv6.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mutex.h>
|
||||
|
@ -4061,7 +4060,6 @@ static int smk_skb_to_addr_ipv6(struct sk_buff *skb, struct sockaddr_in6 *sip)
|
|||
__be16 frag_off;
|
||||
struct tcphdr _tcph, *th;
|
||||
struct udphdr _udph, *uh;
|
||||
struct dccp_hdr _dccph, *dh;
|
||||
|
||||
sip->sin6_port = 0;
|
||||
|
||||
|
@ -4090,11 +4088,6 @@ static int smk_skb_to_addr_ipv6(struct sk_buff *skb, struct sockaddr_in6 *sip)
|
|||
if (uh != NULL)
|
||||
sip->sin6_port = uh->source;
|
||||
break;
|
||||
case IPPROTO_DCCP:
|
||||
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
|
||||
if (dh != NULL)
|
||||
sip->sin6_port = dh->dccph_sport;
|
||||
break;
|
||||
}
|
||||
return proto;
|
||||
}
|
||||
|
@ -4216,7 +4209,7 @@ static int smack_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
|
|||
case PF_INET6:
|
||||
proto = smk_skb_to_addr_ipv6(skb, &sadd);
|
||||
if (proto != IPPROTO_UDP && proto != IPPROTO_UDPLITE &&
|
||||
proto != IPPROTO_TCP && proto != IPPROTO_DCCP)
|
||||
proto != IPPROTO_TCP)
|
||||
break;
|
||||
#ifdef SMACK_IPV6_SECMARK_LABELING
|
||||
skp = smack_from_skb(skb);
|
||||
|
|
|
@ -33,7 +33,6 @@ CONFIG_NETFILTER_ADVANCED=y
|
|||
CONFIG_NF_CONNTRACK=m
|
||||
CONFIG_IPV6_MROUTE=y
|
||||
CONFIG_IPV6_SIT=y
|
||||
CONFIG_IP_DCCP=m
|
||||
CONFIG_NF_NAT=m
|
||||
CONFIG_IP6_NF_IPTABLES=m
|
||||
CONFIG_IP_NF_IPTABLES=m
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
#include <arpa/inet.h>
|
||||
#include <errno.h>
|
||||
#include <error.h>
|
||||
#include <linux/dccp.h>
|
||||
#include <linux/in.h>
|
||||
#include <linux/unistd.h>
|
||||
#include <stdbool.h>
|
||||
|
@ -21,10 +20,6 @@
|
|||
#include <sys/socket.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#ifndef SOL_DCCP
|
||||
#define SOL_DCCP 269
|
||||
#endif
|
||||
|
||||
static const char *IP4_ADDR = "127.0.0.1";
|
||||
static const char *IP6_ADDR = "::1";
|
||||
static const char *IP4_MAPPED6 = "::ffff:127.0.0.1";
|
||||
|
@ -86,15 +81,6 @@ static void build_rcv_fd(int family, int proto, int *rcv_fds, int count,
|
|||
|
||||
if (proto == SOCK_STREAM && listen(rcv_fds[i], 10))
|
||||
error(1, errno, "tcp: failed to listen on receive port");
|
||||
else if (proto == SOCK_DCCP) {
|
||||
if (setsockopt(rcv_fds[i], SOL_DCCP,
|
||||
DCCP_SOCKOPT_SERVICE,
|
||||
&(int) {htonl(42)}, sizeof(int)))
|
||||
error(1, errno, "failed to setsockopt");
|
||||
|
||||
if (listen(rcv_fds[i], 10))
|
||||
error(1, errno, "dccp: failed to listen on receive port");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -148,11 +134,6 @@ static int connect_and_send(int family, int proto)
|
|||
if (fd < 0)
|
||||
error(1, errno, "failed to create send socket");
|
||||
|
||||
if (proto == SOCK_DCCP &&
|
||||
setsockopt(fd, SOL_DCCP, DCCP_SOCKOPT_SERVICE,
|
||||
&(int){htonl(42)}, sizeof(int)))
|
||||
error(1, errno, "failed to setsockopt");
|
||||
|
||||
if (bind(fd, saddr, sz))
|
||||
error(1, errno, "failed to bind send socket");
|
||||
|
||||
|
@ -175,7 +156,7 @@ static int receive_once(int epfd, int proto)
|
|||
if (i < 0)
|
||||
error(1, errno, "epoll_wait failed");
|
||||
|
||||
if (proto == SOCK_STREAM || proto == SOCK_DCCP) {
|
||||
if (proto == SOCK_STREAM) {
|
||||
fd = accept(ev.data.fd, NULL, NULL);
|
||||
if (fd < 0)
|
||||
error(1, errno, "failed to accept");
|
||||
|
@ -243,20 +224,6 @@ static void run_one_test(int fam_send, int fam_rcv, int proto,
|
|||
|
||||
static void test_proto(int proto, const char *proto_str)
|
||||
{
|
||||
if (proto == SOCK_DCCP) {
|
||||
int test_fd;
|
||||
|
||||
test_fd = socket(AF_INET, proto, 0);
|
||||
if (test_fd < 0) {
|
||||
if (errno == ESOCKTNOSUPPORT) {
|
||||
fprintf(stderr, "DCCP not supported: skipping DCCP tests\n");
|
||||
return;
|
||||
} else
|
||||
error(1, errno, "failed to create a DCCP socket");
|
||||
}
|
||||
close(test_fd);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s IPv4 ... ", proto_str);
|
||||
run_one_test(AF_INET, AF_INET, proto, IP4_ADDR);
|
||||
|
||||
|
@ -271,7 +238,6 @@ int main(void)
|
|||
{
|
||||
test_proto(SOCK_DGRAM, "UDP");
|
||||
test_proto(SOCK_STREAM, "TCP");
|
||||
test_proto(SOCK_DCCP, "DCCP");
|
||||
|
||||
fprintf(stderr, "SUCCESS\n");
|
||||
return 0;
|
||||
|
|
Loading…
Add table
Reference in a new issue