xfs: add the zoned space allocator

For zoned RT devices space is always allocated at the write pointer, that
is right after the last written block and only recorded on I/O completion.

Because the actual allocation algorithm is very simple and just involves
picking a good zone - preferably the one used for the last write to the
inode.  As the number of zones that can written at the same time is
usually limited by the hardware, selecting a zone is done as late as
possible from the iomap dio and buffered writeback bio submissions
helpers just before submitting the bio.

Given that the writers already took a reservation before acquiring the
iolock, space will always be readily available if an open zone slot is
available.  A new structure is used to track these open zones, and
pointed to by the xfs_rtgroup.  Because zoned file systems don't have
a rsum cache the space for that pointer can be reused.

Allocations are only recorded at I/O completion time.  The scheme used
for that is very similar to the reflink COW end I/O path.

Co-developed-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
This commit is contained in:
Christoph Hellwig 2025-02-13 05:49:17 +01:00
parent 720c2d5834
commit 4e4d520755
12 changed files with 1224 additions and 7 deletions

View file

@ -137,7 +137,8 @@ xfs-$(CONFIG_XFS_QUOTA) += xfs_dquot.o \
xfs_quotaops.o
# xfs_rtbitmap is shared with libxfs
xfs-$(CONFIG_XFS_RT) += xfs_rtalloc.o
xfs-$(CONFIG_XFS_RT) += xfs_rtalloc.o \
xfs_zone_alloc.o
xfs-$(CONFIG_XFS_POSIX_ACL) += xfs_acl.o
xfs-$(CONFIG_SYSCTL) += xfs_sysctl.o

View file

@ -37,15 +37,27 @@ struct xfs_rtgroup {
xfs_rtxnum_t rtg_extents;
/*
* Cache of rt summary level per bitmap block with the invariant that
* rtg_rsum_cache[bbno] > the maximum i for which rsum[i][bbno] != 0,
* or 0 if rsum[i][bbno] == 0 for all i.
*
* For bitmap based RT devices this points to a cache of rt summary
* level per bitmap block with the invariant that rtg_rsum_cache[bbno]
* > the maximum i for which rsum[i][bbno] != 0, or 0 if
* rsum[i][bbno] == 0 for all i.
* Reads and writes are serialized by the rsumip inode lock.
*
* For zoned RT devices this points to the open zone structure for
* a group that is open for writers, or is NULL.
*/
uint8_t *rtg_rsum_cache;
union {
uint8_t *rtg_rsum_cache;
struct xfs_open_zone *rtg_open_zone;
};
};
/*
* For zoned RT devices this is set on groups that have no written blocks
* and can be picked by the allocator for opening.
*/
#define XFS_RTG_FREE XA_MARK_0
static inline struct xfs_rtgroup *to_rtg(struct xfs_group *xg)
{
return container_of(xg, struct xfs_rtgroup, rtg_group);

View file

@ -243,6 +243,7 @@ enum xfs_free_counter {
* Number of free RT extents on the RT device.
*/
XC_FREE_RTEXTENTS,
XC_FREE_NR,
};

View file

@ -20,6 +20,7 @@
#include "xfs_sysfs.h"
#include "xfs_sb.h"
#include "xfs_health.h"
#include "xfs_zone_alloc.h"
struct kmem_cache *xfs_log_ticket_cache;
@ -3540,6 +3541,9 @@ xlog_force_shutdown(
spin_unlock(&log->l_icloglock);
wake_up_var(&log->l_opstate);
if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(log->l_mp))
xfs_zoned_wake_all(log->l_mp);
return log_error;
}

View file

@ -40,6 +40,7 @@
#include "xfs_rtrmap_btree.h"
#include "xfs_rtrefcount_btree.h"
#include "scrub/stats.h"
#include "xfs_zone_alloc.h"
static DEFINE_MUTEX(xfs_uuid_table_mutex);
static int xfs_uuid_table_size;
@ -1042,6 +1043,12 @@ xfs_mountfs(
if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
xfs_log_clean(mp);
if (xfs_has_zoned(mp)) {
error = xfs_mount_zones(mp);
if (error)
goto out_rtunmount;
}
/*
* Complete the quota initialisation, post-log-replay component.
*/
@ -1084,6 +1091,8 @@ xfs_mountfs(
out_agresv:
xfs_fs_unreserve_ag_blocks(mp);
xfs_qm_unmount_quotas(mp);
if (xfs_has_zoned(mp))
xfs_unmount_zones(mp);
out_rtunmount:
xfs_rtunmount_inodes(mp);
out_rele_rip:
@ -1165,6 +1174,8 @@ xfs_unmountfs(
xfs_blockgc_stop(mp);
xfs_fs_unreserve_ag_blocks(mp);
xfs_qm_unmount_quotas(mp);
if (xfs_has_zoned(mp))
xfs_unmount_zones(mp);
xfs_rtunmount_inodes(mp);
xfs_irele(mp->m_rootip);
if (mp->m_metadirip)

View file

@ -219,6 +219,7 @@ typedef struct xfs_mount {
bool m_fail_unmount;
bool m_finobt_nores; /* no per-AG finobt resv. */
bool m_update_sb; /* sb needs update in mount */
unsigned int m_max_open_zones;
/*
* Bitsets of per-fs metadata that have been checked and/or are sick.
@ -267,6 +268,7 @@ typedef struct xfs_mount {
struct xfs_groups m_groups[XG_TYPE_MAX];
struct delayed_work m_reclaim_work; /* background inode reclaim */
struct xfs_zone_info *m_zone_info; /* zone allocator information */
struct dentry *m_debugfs; /* debugfs parent */
struct xfs_kobj m_kobj;
struct xfs_kobj m_error_kobj;

View file

@ -33,6 +33,7 @@
#include "xfs_trace.h"
#include "xfs_rtrefcount_btree.h"
#include "xfs_reflink.h"
#include "xfs_zone_alloc.h"
/*
* Return whether there are any free extents in the size range given
@ -663,7 +664,8 @@ xfs_rtunmount_rtg(
for (i = 0; i < XFS_RTGI_MAX; i++)
xfs_rtginode_irele(&rtg->rtg_inodes[i]);
kvfree(rtg->rtg_rsum_cache);
if (!xfs_has_zoned(rtg_mount(rtg)))
kvfree(rtg->rtg_rsum_cache);
}
static int
@ -1573,6 +1575,8 @@ xfs_rtmount_rtg(
}
}
if (xfs_has_zoned(mp))
return 0;
return xfs_alloc_rsum_cache(rtg, mp->m_sb.sb_rbmblocks);
}

View file

@ -49,6 +49,8 @@
#include "xfs_metafile.h"
#include "xfs_metadir.h"
#include "xfs_rtgroup.h"
#include "xfs_zone_alloc.h"
#include "xfs_zone_priv.h"
/*
* We include this last to have the helpers above available for the trace

View file

@ -102,6 +102,7 @@ struct xfs_rmap_intent;
struct xfs_refcount_intent;
struct xfs_metadir_update;
struct xfs_rtgroup;
struct xfs_open_zone;
#define XFS_ATTR_FILTER_FLAGS \
{ XFS_ATTR_ROOT, "ROOT" }, \
@ -265,6 +266,105 @@ DEFINE_GROUP_REF_EVENT(xfs_group_grab);
DEFINE_GROUP_REF_EVENT(xfs_group_grab_next_tag);
DEFINE_GROUP_REF_EVENT(xfs_group_rele);
#ifdef CONFIG_XFS_RT
DECLARE_EVENT_CLASS(xfs_zone_class,
TP_PROTO(struct xfs_rtgroup *rtg),
TP_ARGS(rtg),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_rgnumber_t, rgno)
__field(xfs_rgblock_t, used)
__field(unsigned int, nr_open)
),
TP_fast_assign(
struct xfs_mount *mp = rtg_mount(rtg);
__entry->dev = mp->m_super->s_dev;
__entry->rgno = rtg_rgno(rtg);
__entry->used = rtg_rmap(rtg)->i_used_blocks;
__entry->nr_open = mp->m_zone_info->zi_nr_open_zones;
),
TP_printk("dev %d:%d rgno 0x%x used 0x%x nr_open %u",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->rgno,
__entry->used,
__entry->nr_open)
);
#define DEFINE_ZONE_EVENT(name) \
DEFINE_EVENT(xfs_zone_class, name, \
TP_PROTO(struct xfs_rtgroup *rtg), \
TP_ARGS(rtg))
DEFINE_ZONE_EVENT(xfs_zone_full);
DEFINE_ZONE_EVENT(xfs_zone_opened);
TRACE_EVENT(xfs_zone_free_blocks,
TP_PROTO(struct xfs_rtgroup *rtg, xfs_rgblock_t rgbno,
xfs_extlen_t len),
TP_ARGS(rtg, rgbno, len),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_rgnumber_t, rgno)
__field(xfs_rgblock_t, used)
__field(xfs_rgblock_t, rgbno)
__field(xfs_extlen_t, len)
),
TP_fast_assign(
__entry->dev = rtg_mount(rtg)->m_super->s_dev;
__entry->rgno = rtg_rgno(rtg);
__entry->used = rtg_rmap(rtg)->i_used_blocks;
__entry->rgbno = rgbno;
__entry->len = len;
),
TP_printk("dev %d:%d rgno 0x%x used 0x%x rgbno 0x%x len 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->rgno,
__entry->used,
__entry->rgbno,
__entry->len)
);
DECLARE_EVENT_CLASS(xfs_zone_alloc_class,
TP_PROTO(struct xfs_open_zone *oz, xfs_rgblock_t rgbno,
xfs_extlen_t len),
TP_ARGS(oz, rgbno, len),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(xfs_rgnumber_t, rgno)
__field(xfs_rgblock_t, used)
__field(xfs_rgblock_t, written)
__field(xfs_rgblock_t, write_pointer)
__field(xfs_rgblock_t, rgbno)
__field(xfs_extlen_t, len)
),
TP_fast_assign(
__entry->dev = rtg_mount(oz->oz_rtg)->m_super->s_dev;
__entry->rgno = rtg_rgno(oz->oz_rtg);
__entry->used = rtg_rmap(oz->oz_rtg)->i_used_blocks;
__entry->written = oz->oz_written;
__entry->write_pointer = oz->oz_write_pointer;
__entry->rgbno = rgbno;
__entry->len = len;
),
TP_printk("dev %d:%d rgno 0x%x used 0x%x written 0x%x wp 0x%x rgbno 0x%x len 0x%x",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->rgno,
__entry->used,
__entry->written,
__entry->write_pointer,
__entry->rgbno,
__entry->len)
);
#define DEFINE_ZONE_ALLOC_EVENT(name) \
DEFINE_EVENT(xfs_zone_alloc_class, name, \
TP_PROTO(struct xfs_open_zone *oz, xfs_rgblock_t rgbno, \
xfs_extlen_t len), \
TP_ARGS(oz, rgbno, len))
DEFINE_ZONE_ALLOC_EVENT(xfs_zone_record_blocks);
DEFINE_ZONE_ALLOC_EVENT(xfs_zone_alloc_blocks);
#endif /* CONFIG_XFS_RT */
TRACE_EVENT(xfs_inodegc_worker,
TP_PROTO(struct xfs_mount *mp, unsigned int shrinker_hits),
TP_ARGS(mp, shrinker_hits),
@ -3983,6 +4083,7 @@ DEFINE_SIMPLE_IO_EVENT(xfs_reflink_cancel_cow_range);
DEFINE_SIMPLE_IO_EVENT(xfs_reflink_end_cow);
DEFINE_INODE_IREC_EVENT(xfs_reflink_cow_remap_from);
DEFINE_INODE_IREC_EVENT(xfs_reflink_cow_remap_to);
DEFINE_INODE_IREC_EVENT(xfs_reflink_cow_remap_skip);
DEFINE_INODE_ERROR_EVENT(xfs_reflink_cancel_cow_range_error);
DEFINE_INODE_ERROR_EVENT(xfs_reflink_end_cow_error);

956
fs/xfs/xfs_zone_alloc.c Normal file
View file

@ -0,0 +1,956 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023-2025 Christoph Hellwig.
* Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_error.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_iomap.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_refcount.h"
#include "xfs_rtbitmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_zone_alloc.h"
#include "xfs_zone_priv.h"
#include "xfs_zones.h"
#include "xfs_trace.h"
void
xfs_open_zone_put(
struct xfs_open_zone *oz)
{
if (atomic_dec_and_test(&oz->oz_ref)) {
xfs_rtgroup_rele(oz->oz_rtg);
kfree(oz);
}
}
static void
xfs_open_zone_mark_full(
struct xfs_open_zone *oz)
{
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
trace_xfs_zone_full(rtg);
WRITE_ONCE(rtg->rtg_open_zone, NULL);
spin_lock(&zi->zi_open_zones_lock);
if (oz->oz_is_gc) {
ASSERT(current == zi->zi_gc_thread);
zi->zi_open_gc_zone = NULL;
} else {
zi->zi_nr_open_zones--;
list_del_init(&oz->oz_entry);
}
spin_unlock(&zi->zi_open_zones_lock);
xfs_open_zone_put(oz);
wake_up_all(&zi->zi_zone_wait);
}
static void
xfs_zone_record_blocks(
struct xfs_trans *tp,
xfs_fsblock_t fsbno,
xfs_filblks_t len,
struct xfs_open_zone *oz,
bool used)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_inode *rmapip = rtg_rmap(rtg);
trace_xfs_zone_record_blocks(oz, xfs_rtb_to_rgbno(mp, fsbno), len);
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
xfs_rtgroup_trans_join(tp, rtg, XFS_RTGLOCK_RMAP);
if (used) {
rmapip->i_used_blocks += len;
ASSERT(rmapip->i_used_blocks <= rtg_blocks(rtg));
} else {
xfs_add_frextents(mp, len);
}
oz->oz_written += len;
if (oz->oz_written == rtg_blocks(rtg))
xfs_open_zone_mark_full(oz);
xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
}
static int
xfs_zoned_map_extent(
struct xfs_trans *tp,
struct xfs_inode *ip,
struct xfs_bmbt_irec *new,
struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock)
{
struct xfs_bmbt_irec data;
int nmaps = 1;
int error;
/* Grab the corresponding mapping in the data fork. */
error = xfs_bmapi_read(ip, new->br_startoff, new->br_blockcount, &data,
&nmaps, 0);
if (error)
return error;
/*
* Cap the update to the existing extent in the data fork because we can
* only overwrite one extent at a time.
*/
ASSERT(new->br_blockcount >= data.br_blockcount);
new->br_blockcount = data.br_blockcount;
/*
* If a data write raced with this GC write, keep the existing data in
* the data fork, mark our newly written GC extent as reclaimable, then
* move on to the next extent.
*/
if (old_startblock != NULLFSBLOCK &&
old_startblock != data.br_startblock)
goto skip;
trace_xfs_reflink_cow_remap_from(ip, new);
trace_xfs_reflink_cow_remap_to(ip, &data);
error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
XFS_IEXT_REFLINK_END_COW_CNT);
if (error)
return error;
if (data.br_startblock != HOLESTARTBLOCK) {
ASSERT(data.br_startblock != DELAYSTARTBLOCK);
ASSERT(!isnullstartblock(data.br_startblock));
xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
if (xfs_is_reflink_inode(ip)) {
xfs_refcount_decrease_extent(tp, true, &data);
} else {
error = xfs_free_extent_later(tp, data.br_startblock,
data.br_blockcount, NULL,
XFS_AG_RESV_NONE,
XFS_FREE_EXTENT_REALTIME);
if (error)
return error;
}
}
xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz,
true);
/* Map the new blocks into the data fork. */
xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, new);
return 0;
skip:
trace_xfs_reflink_cow_remap_skip(ip, new);
xfs_zone_record_blocks(tp, new->br_startblock, new->br_blockcount, oz,
false);
return 0;
}
int
xfs_zoned_end_io(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t count,
xfs_daddr_t daddr,
struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
struct xfs_bmbt_irec new = {
.br_startoff = XFS_B_TO_FSBT(mp, offset),
.br_startblock = xfs_daddr_to_rtb(mp, daddr),
.br_state = XFS_EXT_NORM,
};
unsigned int resblks =
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
struct xfs_trans *tp;
int error;
if (xfs_is_shutdown(mp))
return -EIO;
while (new.br_startoff < end_fsb) {
new.br_blockcount = end_fsb - new.br_startoff;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
XFS_TRANS_RESERVE | XFS_TRANS_RES_FDBLKS, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
error = xfs_zoned_map_extent(tp, ip, &new, oz, old_startblock);
if (error)
xfs_trans_cancel(tp);
else
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
return error;
new.br_startoff += new.br_blockcount;
new.br_startblock += new.br_blockcount;
if (old_startblock != NULLFSBLOCK)
old_startblock += new.br_blockcount;
}
return 0;
}
/*
* "Free" blocks allocated in a zone.
*
* Just decrement the used blocks counter and report the space as freed.
*/
int
xfs_zone_free_blocks(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg,
xfs_fsblock_t fsbno,
xfs_filblks_t len)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_inode *rmapip = rtg_rmap(rtg);
xfs_assert_ilocked(rmapip, XFS_ILOCK_EXCL);
if (len > rmapip->i_used_blocks) {
xfs_err(mp,
"trying to free more blocks (%lld) than used counter (%u).",
len, rmapip->i_used_blocks);
ASSERT(len <= rmapip->i_used_blocks);
xfs_rtginode_mark_sick(rtg, XFS_RTGI_RMAP);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return -EFSCORRUPTED;
}
trace_xfs_zone_free_blocks(rtg, xfs_rtb_to_rgbno(mp, fsbno), len);
rmapip->i_used_blocks -= len;
xfs_add_frextents(mp, len);
xfs_trans_log_inode(tp, rmapip, XFS_ILOG_CORE);
return 0;
}
/*
* Check if the zone containing the data just before the offset we are
* writing to is still open and has space.
*/
static struct xfs_open_zone *
xfs_last_used_zone(
struct iomap_ioend *ioend)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t offset_fsb = XFS_B_TO_FSB(mp, ioend->io_offset);
struct xfs_rtgroup *rtg = NULL;
struct xfs_open_zone *oz = NULL;
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec got;
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (!xfs_iext_lookup_extent_before(ip, &ip->i_df, &offset_fsb,
&icur, &got)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return NULL;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
rtg = xfs_rtgroup_grab(mp, xfs_rtb_to_rgno(mp, got.br_startblock));
if (!rtg)
return NULL;
xfs_ilock(rtg_rmap(rtg), XFS_ILOCK_SHARED);
oz = READ_ONCE(rtg->rtg_open_zone);
if (oz && (oz->oz_is_gc || !atomic_inc_not_zero(&oz->oz_ref)))
oz = NULL;
xfs_iunlock(rtg_rmap(rtg), XFS_ILOCK_SHARED);
xfs_rtgroup_rele(rtg);
return oz;
}
static struct xfs_group *
xfs_find_free_zone(
struct xfs_mount *mp,
unsigned long start,
unsigned long end)
{
struct xfs_zone_info *zi = mp->m_zone_info;
XA_STATE (xas, &mp->m_groups[XG_TYPE_RTG].xa, start);
struct xfs_group *xg;
xas_lock(&xas);
xas_for_each_marked(&xas, xg, end, XFS_RTG_FREE)
if (atomic_inc_not_zero(&xg->xg_active_ref))
goto found;
xas_unlock(&xas);
return NULL;
found:
xas_clear_mark(&xas, XFS_RTG_FREE);
atomic_dec(&zi->zi_nr_free_zones);
zi->zi_free_zone_cursor = xg->xg_gno;
xas_unlock(&xas);
return xg;
}
static struct xfs_open_zone *
xfs_init_open_zone(
struct xfs_rtgroup *rtg,
xfs_rgblock_t write_pointer,
bool is_gc)
{
struct xfs_open_zone *oz;
oz = kzalloc(sizeof(*oz), GFP_NOFS | __GFP_NOFAIL);
spin_lock_init(&oz->oz_alloc_lock);
atomic_set(&oz->oz_ref, 1);
oz->oz_rtg = rtg;
oz->oz_write_pointer = write_pointer;
oz->oz_written = write_pointer;
oz->oz_is_gc = is_gc;
/*
* All dereferences of rtg->rtg_open_zone hold the ILOCK for the rmap
* inode, but we don't really want to take that here because we are
* under the zone_list_lock. Ensure the pointer is only set for a fully
* initialized open zone structure so that a racy lookup finding it is
* fine.
*/
WRITE_ONCE(rtg->rtg_open_zone, oz);
return oz;
}
/*
* Find a completely free zone, open it, and return a reference.
*/
struct xfs_open_zone *
xfs_open_zone(
struct xfs_mount *mp,
bool is_gc)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_group *xg;
xg = xfs_find_free_zone(mp, zi->zi_free_zone_cursor, ULONG_MAX);
if (!xg)
xg = xfs_find_free_zone(mp, 0, zi->zi_free_zone_cursor);
if (!xg)
return NULL;
set_current_state(TASK_RUNNING);
return xfs_init_open_zone(to_rtg(xg), 0, is_gc);
}
static struct xfs_open_zone *
xfs_try_open_zone(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz;
if (zi->zi_nr_open_zones >= mp->m_max_open_zones - XFS_OPEN_GC_ZONES)
return NULL;
if (atomic_read(&zi->zi_nr_free_zones) <
XFS_GC_ZONES - XFS_OPEN_GC_ZONES)
return NULL;
/*
* Increment the open zone count to reserve our slot before dropping
* zi_open_zones_lock.
*/
zi->zi_nr_open_zones++;
spin_unlock(&zi->zi_open_zones_lock);
oz = xfs_open_zone(mp, false);
spin_lock(&zi->zi_open_zones_lock);
if (!oz) {
zi->zi_nr_open_zones--;
return NULL;
}
atomic_inc(&oz->oz_ref);
list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
/*
* If this was the last free zone, other waiters might be waiting
* on us to write to it as well.
*/
wake_up_all(&zi->zi_zone_wait);
trace_xfs_zone_opened(oz->oz_rtg);
return oz;
}
static bool
xfs_try_use_zone(
struct xfs_zone_info *zi,
struct xfs_open_zone *oz)
{
if (oz->oz_write_pointer == rtg_blocks(oz->oz_rtg))
return false;
if (!atomic_inc_not_zero(&oz->oz_ref))
return false;
/*
* If we couldn't match by inode or life time we just pick the first
* zone with enough space above. For that we want the least busy zone
* for some definition of "least" busy. For now this simple LRU
* algorithm that rotates every zone to the end of the list will do it,
* even if it isn't exactly cache friendly.
*/
if (!list_is_last(&oz->oz_entry, &zi->zi_open_zones))
list_move_tail(&oz->oz_entry, &zi->zi_open_zones);
return true;
}
static struct xfs_open_zone *
xfs_select_open_zone_lru(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
lockdep_assert_held(&zi->zi_open_zones_lock);
list_for_each_entry(oz, &zi->zi_open_zones, oz_entry)
if (xfs_try_use_zone(zi, oz))
return oz;
cond_resched_lock(&zi->zi_open_zones_lock);
return NULL;
}
static struct xfs_open_zone *
xfs_select_open_zone_mru(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
lockdep_assert_held(&zi->zi_open_zones_lock);
list_for_each_entry_reverse(oz, &zi->zi_open_zones, oz_entry)
if (xfs_try_use_zone(zi, oz))
return oz;
cond_resched_lock(&zi->zi_open_zones_lock);
return NULL;
}
/*
* Try to pack inodes that are written back after they were closed tight instead
* of trying to open new zones for them or spread them to the least recently
* used zone. This optimizes the data layout for workloads that untar or copy
* a lot of small files. Right now this does not separate multiple such
* streams.
*/
static inline bool xfs_zoned_pack_tight(struct xfs_inode *ip)
{
return !inode_is_open_for_write(VFS_I(ip)) &&
!(ip->i_diflags & XFS_DIFLAG_APPEND);
}
/*
* Pick a new zone for writes.
*
* If we aren't using up our budget of open zones just open a new one from the
* freelist. Else try to find one that matches the expected data lifetime. If
* we don't find one that is good pick any zone that is available.
*/
static struct xfs_open_zone *
xfs_select_zone_nowait(
struct xfs_mount *mp,
bool pack_tight)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz = NULL;
if (xfs_is_shutdown(mp))
return NULL;
spin_lock(&zi->zi_open_zones_lock);
if (pack_tight)
oz = xfs_select_open_zone_mru(zi);
if (oz)
goto out_unlock;
/*
* See if we can open a new zone and use that.
*/
oz = xfs_try_open_zone(mp);
if (oz)
goto out_unlock;
oz = xfs_select_open_zone_lru(zi);
out_unlock:
spin_unlock(&zi->zi_open_zones_lock);
return oz;
}
static struct xfs_open_zone *
xfs_select_zone(
struct xfs_mount *mp,
bool pack_tight)
{
struct xfs_zone_info *zi = mp->m_zone_info;
DEFINE_WAIT (wait);
struct xfs_open_zone *oz;
oz = xfs_select_zone_nowait(mp, pack_tight);
if (oz)
return oz;
for (;;) {
prepare_to_wait(&zi->zi_zone_wait, &wait, TASK_UNINTERRUPTIBLE);
oz = xfs_select_zone_nowait(mp, pack_tight);
if (oz)
break;
schedule();
}
finish_wait(&zi->zi_zone_wait, &wait);
return oz;
}
static unsigned int
xfs_zone_alloc_blocks(
struct xfs_open_zone *oz,
xfs_filblks_t count_fsb,
sector_t *sector,
bool *is_seq)
{
struct xfs_rtgroup *rtg = oz->oz_rtg;
struct xfs_mount *mp = rtg_mount(rtg);
xfs_rgblock_t rgbno;
spin_lock(&oz->oz_alloc_lock);
count_fsb = min3(count_fsb, XFS_MAX_BMBT_EXTLEN,
(xfs_filblks_t)rtg_blocks(rtg) - oz->oz_write_pointer);
if (!count_fsb) {
spin_unlock(&oz->oz_alloc_lock);
return 0;
}
rgbno = oz->oz_write_pointer;
oz->oz_write_pointer += count_fsb;
spin_unlock(&oz->oz_alloc_lock);
trace_xfs_zone_alloc_blocks(oz, rgbno, count_fsb);
*sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *sector);
if (!*is_seq)
*sector += XFS_FSB_TO_BB(mp, rgbno);
return XFS_FSB_TO_B(mp, count_fsb);
}
void
xfs_mark_rtg_boundary(
struct iomap_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
sector_t sector = ioend->io_bio.bi_iter.bi_sector;
if (xfs_rtb_to_rgbno(mp, xfs_daddr_to_rtb(mp, sector)) == 0)
ioend->io_flags |= IOMAP_IOEND_BOUNDARY;
}
static void
xfs_submit_zoned_bio(
struct iomap_ioend *ioend,
struct xfs_open_zone *oz,
bool is_seq)
{
ioend->io_bio.bi_iter.bi_sector = ioend->io_sector;
ioend->io_private = oz;
atomic_inc(&oz->oz_ref); /* for xfs_zoned_end_io */
if (is_seq) {
ioend->io_bio.bi_opf &= ~REQ_OP_WRITE;
ioend->io_bio.bi_opf |= REQ_OP_ZONE_APPEND;
} else {
xfs_mark_rtg_boundary(ioend);
}
submit_bio(&ioend->io_bio);
}
void
xfs_zone_alloc_and_submit(
struct iomap_ioend *ioend,
struct xfs_open_zone **oz)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_mount *mp = ip->i_mount;
bool pack_tight = xfs_zoned_pack_tight(ip);
unsigned int alloc_len;
struct iomap_ioend *split;
bool is_seq;
if (xfs_is_shutdown(mp))
goto out_error;
/*
* If we don't have a cached zone in this write context, see if the
* last extent before the one we are writing to points to an active
* zone. If so, just continue writing to it.
*/
if (!*oz && ioend->io_offset)
*oz = xfs_last_used_zone(ioend);
if (!*oz) {
select_zone:
*oz = xfs_select_zone(mp, pack_tight);
if (!*oz)
goto out_error;
}
alloc_len = xfs_zone_alloc_blocks(*oz, XFS_B_TO_FSB(mp, ioend->io_size),
&ioend->io_sector, &is_seq);
if (!alloc_len) {
xfs_open_zone_put(*oz);
goto select_zone;
}
while ((split = iomap_split_ioend(ioend, alloc_len, is_seq))) {
if (IS_ERR(split))
goto out_split_error;
alloc_len -= split->io_bio.bi_iter.bi_size;
xfs_submit_zoned_bio(split, *oz, is_seq);
if (!alloc_len) {
xfs_open_zone_put(*oz);
goto select_zone;
}
}
xfs_submit_zoned_bio(ioend, *oz, is_seq);
return;
out_split_error:
ioend->io_bio.bi_status = errno_to_blk_status(PTR_ERR(split));
out_error:
bio_io_error(&ioend->io_bio);
}
void
xfs_zoned_wake_all(
struct xfs_mount *mp)
{
if (!(mp->m_super->s_flags & SB_ACTIVE))
return; /* can happen during log recovery */
wake_up_all(&mp->m_zone_info->zi_zone_wait);
}
/*
* Check if @rgbno in @rgb is a potentially valid block. It might still be
* unused, but that information is only found in the rmap.
*/
bool
xfs_zone_rgbno_is_valid(
struct xfs_rtgroup *rtg,
xfs_rgnumber_t rgbno)
{
lockdep_assert_held(&rtg_rmap(rtg)->i_lock);
if (rtg->rtg_open_zone)
return rgbno < rtg->rtg_open_zone->oz_write_pointer;
return !xa_get_mark(&rtg_mount(rtg)->m_groups[XG_TYPE_RTG].xa,
rtg_rgno(rtg), XFS_RTG_FREE);
}
static void
xfs_free_open_zones(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz;
spin_lock(&zi->zi_open_zones_lock);
while ((oz = list_first_entry_or_null(&zi->zi_open_zones,
struct xfs_open_zone, oz_entry))) {
list_del(&oz->oz_entry);
xfs_open_zone_put(oz);
}
spin_unlock(&zi->zi_open_zones_lock);
}
struct xfs_init_zones {
struct xfs_mount *mp;
uint64_t available;
uint64_t reclaimable;
};
static int
xfs_init_zone(
struct xfs_init_zones *iz,
struct xfs_rtgroup *rtg,
struct blk_zone *zone)
{
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
uint64_t used = rtg_rmap(rtg)->i_used_blocks;
xfs_rgblock_t write_pointer, highest_rgbno;
if (zone && !xfs_zone_validate(zone, rtg, &write_pointer))
return -EFSCORRUPTED;
/*
* For sequential write required zones we retrieved the hardware write
* pointer above.
*
* For conventional zones or conventional devices we don't have that
* luxury. Instead query the rmap to find the highest recorded block
* and set the write pointer to the block after that. In case of a
* power loss this misses blocks where the data I/O has completed but
* not recorded in the rmap yet, and it also rewrites blocks if the most
* recently written ones got deleted again before unmount, but this is
* the best we can do without hardware support.
*/
if (!zone || zone->cond == BLK_ZONE_COND_NOT_WP) {
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
highest_rgbno = xfs_rtrmap_highest_rgbno(rtg);
if (highest_rgbno == NULLRGBLOCK)
write_pointer = 0;
else
write_pointer = highest_rgbno + 1;
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
}
if (write_pointer == 0) {
/* zone is empty */
atomic_inc(&zi->zi_nr_free_zones);
xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
iz->available += rtg_blocks(rtg);
} else if (write_pointer < rtg_blocks(rtg)) {
/* zone is open */
struct xfs_open_zone *oz;
atomic_inc(&rtg_group(rtg)->xg_active_ref);
oz = xfs_init_open_zone(rtg, write_pointer, false);
list_add_tail(&oz->oz_entry, &zi->zi_open_zones);
zi->zi_nr_open_zones++;
iz->available += (rtg_blocks(rtg) - write_pointer);
iz->reclaimable += write_pointer - used;
} else if (used < rtg_blocks(rtg)) {
/* zone fully written, but has freed blocks */
iz->reclaimable += (rtg_blocks(rtg) - used);
}
return 0;
}
static int
xfs_get_zone_info_cb(
struct blk_zone *zone,
unsigned int idx,
void *data)
{
struct xfs_init_zones *iz = data;
struct xfs_mount *mp = iz->mp;
xfs_fsblock_t zsbno = xfs_daddr_to_rtb(mp, zone->start);
xfs_rgnumber_t rgno;
struct xfs_rtgroup *rtg;
int error;
if (xfs_rtb_to_rgbno(mp, zsbno) != 0) {
xfs_warn(mp, "mismatched zone start 0x%llx.", zsbno);
return -EFSCORRUPTED;
}
rgno = xfs_rtb_to_rgno(mp, zsbno);
rtg = xfs_rtgroup_grab(mp, rgno);
if (!rtg) {
xfs_warn(mp, "realtime group not found for zone %u.", rgno);
return -EFSCORRUPTED;
}
error = xfs_init_zone(iz, rtg, zone);
xfs_rtgroup_rele(rtg);
return error;
}
/*
* Calculate the max open zone limit based on the of number of
* backing zones available
*/
static inline uint32_t
xfs_max_open_zones(
struct xfs_mount *mp)
{
unsigned int max_open, max_open_data_zones;
/*
* We need two zones for every open data zone,
* one in reserve as we don't reclaim open zones. One data zone
* and its spare is included in XFS_MIN_ZONES.
*/
max_open_data_zones = (mp->m_sb.sb_rgcount - XFS_MIN_ZONES) / 2 + 1;
max_open = max_open_data_zones + XFS_OPEN_GC_ZONES;
/*
* Cap the max open limit to 1/4 of available space
*/
max_open = min(max_open, mp->m_sb.sb_rgcount / 4);
return max(XFS_MIN_OPEN_ZONES, max_open);
}
/*
* Normally we use the open zone limit that the device reports. If there is
* none let the user pick one from the command line.
*
* If the device doesn't report an open zone limit and there is no override,
* allow to hold about a quarter of the zones open. In theory we could allow
* all to be open, but at that point we run into GC deadlocks because we can't
* reclaim open zones.
*
* When used on conventional SSDs a lower open limit is advisable as we'll
* otherwise overwhelm the FTL just as much as a conventional block allocator.
*
* Note: To debug the open zone management code, force max_open to 1 here.
*/
static int
xfs_calc_open_zones(
struct xfs_mount *mp)
{
struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
unsigned int bdev_open_zones = bdev_max_open_zones(bdev);
if (!mp->m_max_open_zones) {
if (bdev_open_zones)
mp->m_max_open_zones = bdev_open_zones;
else
mp->m_max_open_zones = xfs_max_open_zones(mp);
}
if (mp->m_max_open_zones < XFS_MIN_OPEN_ZONES) {
xfs_notice(mp, "need at least %u open zones.",
XFS_MIN_OPEN_ZONES);
return -EIO;
}
if (bdev_open_zones && bdev_open_zones < mp->m_max_open_zones) {
mp->m_max_open_zones = bdev_open_zones;
xfs_info(mp, "limiting open zones to %u due to hardware limit.\n",
bdev_open_zones);
}
if (mp->m_max_open_zones > xfs_max_open_zones(mp)) {
mp->m_max_open_zones = xfs_max_open_zones(mp);
xfs_info(mp,
"limiting open zones to %u due to total zone count (%u)",
mp->m_max_open_zones, mp->m_sb.sb_rgcount);
}
return 0;
}
static struct xfs_zone_info *
xfs_alloc_zone_info(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi;
zi = kzalloc(sizeof(*zi), GFP_KERNEL);
if (!zi)
return NULL;
INIT_LIST_HEAD(&zi->zi_open_zones);
INIT_LIST_HEAD(&zi->zi_reclaim_reservations);
spin_lock_init(&zi->zi_reset_list_lock);
spin_lock_init(&zi->zi_open_zones_lock);
spin_lock_init(&zi->zi_reservation_lock);
init_waitqueue_head(&zi->zi_zone_wait);
return zi;
}
static void
xfs_free_zone_info(
struct xfs_zone_info *zi)
{
xfs_free_open_zones(zi);
kfree(zi);
}
int
xfs_mount_zones(
struct xfs_mount *mp)
{
struct xfs_init_zones iz = {
.mp = mp,
};
struct xfs_buftarg *bt = mp->m_rtdev_targp;
int error;
if (!bt) {
xfs_notice(mp, "RT device missing.");
return -EINVAL;
}
if (!xfs_has_rtgroups(mp) || !xfs_has_rmapbt(mp)) {
xfs_notice(mp, "invalid flag combination.");
return -EFSCORRUPTED;
}
if (mp->m_sb.sb_rextsize != 1) {
xfs_notice(mp, "zoned file systems do not support rextsize.");
return -EFSCORRUPTED;
}
if (mp->m_sb.sb_rgcount < XFS_MIN_ZONES) {
xfs_notice(mp,
"zoned file systems need to have at least %u zones.", XFS_MIN_ZONES);
return -EFSCORRUPTED;
}
error = xfs_calc_open_zones(mp);
if (error)
return error;
mp->m_zone_info = xfs_alloc_zone_info(mp);
if (!mp->m_zone_info)
return -ENOMEM;
xfs_info(mp, "%u zones of %u blocks size (%u max open)",
mp->m_sb.sb_rgcount, mp->m_groups[XG_TYPE_RTG].blocks,
mp->m_max_open_zones);
if (bdev_is_zoned(bt->bt_bdev)) {
error = blkdev_report_zones(bt->bt_bdev,
XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart),
mp->m_sb.sb_rgcount, xfs_get_zone_info_cb, &iz);
if (error < 0)
goto out_free_zone_info;
} else {
struct xfs_rtgroup *rtg = NULL;
while ((rtg = xfs_rtgroup_next(mp, rtg))) {
error = xfs_init_zone(&iz, rtg, NULL);
if (error)
goto out_free_zone_info;
}
}
xfs_set_freecounter(mp, XC_FREE_RTEXTENTS,
iz.available + iz.reclaimable);
return 0;
out_free_zone_info:
xfs_free_zone_info(mp->m_zone_info);
return error;
}
void
xfs_unmount_zones(
struct xfs_mount *mp)
{
xfs_free_zone_info(mp->m_zone_info);
}

34
fs/xfs/xfs_zone_alloc.h Normal file
View file

@ -0,0 +1,34 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _XFS_ZONE_ALLOC_H
#define _XFS_ZONE_ALLOC_H
struct iomap_ioend;
struct xfs_open_zone;
void xfs_zone_alloc_and_submit(struct iomap_ioend *ioend,
struct xfs_open_zone **oz);
int xfs_zone_free_blocks(struct xfs_trans *tp, struct xfs_rtgroup *rtg,
xfs_fsblock_t fsbno, xfs_filblks_t len);
int xfs_zoned_end_io(struct xfs_inode *ip, xfs_off_t offset, xfs_off_t count,
xfs_daddr_t daddr, struct xfs_open_zone *oz,
xfs_fsblock_t old_startblock);
void xfs_open_zone_put(struct xfs_open_zone *oz);
void xfs_zoned_wake_all(struct xfs_mount *mp);
bool xfs_zone_rgbno_is_valid(struct xfs_rtgroup *rtg, xfs_rgnumber_t rgbno);
void xfs_mark_rtg_boundary(struct iomap_ioend *ioend);
#ifdef CONFIG_XFS_RT
int xfs_mount_zones(struct xfs_mount *mp);
void xfs_unmount_zones(struct xfs_mount *mp);
#else
static inline int xfs_mount_zones(struct xfs_mount *mp)
{
return -EIO;
}
static inline void xfs_unmount_zones(struct xfs_mount *mp)
{
}
#endif /* CONFIG_XFS_RT */
#endif /* _XFS_ZONE_ALLOC_H */

89
fs/xfs/xfs_zone_priv.h Normal file
View file

@ -0,0 +1,89 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _XFS_ZONE_PRIV_H
#define _XFS_ZONE_PRIV_H
struct xfs_open_zone {
/*
* Entry in the open zone list and refcount. Protected by
* zi_open_zones_lock in struct xfs_zone_info.
*/
struct list_head oz_entry;
atomic_t oz_ref;
/*
* oz_write_pointer is the write pointer at which space is handed out
* for conventional zones, or simple the count of blocks handed out
* so far for sequential write required zones and is protected by
* oz_alloc_lock/
*/
spinlock_t oz_alloc_lock;
xfs_rgblock_t oz_write_pointer;
/*
* oz_written is the number of blocks for which we've received a
* write completion. oz_written must always be <= oz_write_pointer
* and is protected by the ILOCK of the rmap inode.
*/
xfs_rgblock_t oz_written;
/*
* Is this open zone used for garbage collection? There can only be a
* single open GC zone, which is pointed to by zi_open_gc_zone in
* struct xfs_zone_info. Constant over the life time of an open zone.
*/
bool oz_is_gc;
/*
* Pointer to the RT groups structure for this open zone. Constant over
* the life time of an open zone.
*/
struct xfs_rtgroup *oz_rtg;
};
struct xfs_zone_info {
/*
* List of pending space reservations:
*/
spinlock_t zi_reservation_lock;
struct list_head zi_reclaim_reservations;
/*
* List and number of open zones:
*/
spinlock_t zi_open_zones_lock;
struct list_head zi_open_zones;
unsigned int zi_nr_open_zones;
/*
* Free zone search cursor and number of free zones:
*/
unsigned long zi_free_zone_cursor;
atomic_t zi_nr_free_zones;
/*
* Wait queue to wait for free zones or open zone resources to become
* available:
*/
wait_queue_head_t zi_zone_wait;
/*
* Pointer to the GC thread, and the current open zone used by GC
* (if any).
*
* zi_open_gc_zone is mostly private to the GC thread, but can be read
* for debugging from other threads, in which case zi_open_zones_lock
* must be taken to access it.
*/
struct task_struct *zi_gc_thread;
struct xfs_open_zone *zi_open_gc_zone;
/*
* List of zones that need a reset:
*/
spinlock_t zi_reset_list_lock;
struct xfs_group *zi_reset_list;
};
struct xfs_open_zone *xfs_open_zone(struct xfs_mount *mp, bool is_gc);
#endif /* _XFS_ZONE_PRIV_H */