mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
btrfs: convert the buffer_radix to an xarray
In order to fully utilize xarray tagging to improve writeback we need to convert the buffer_radix to a proper xarray. This conversion is relatively straightforward as the radix code uses the xarray underneath. Using xarray directly allows for quite a lot less code. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
parent
656e9f51de
commit
19d7f65f03
5 changed files with 111 additions and 167 deletions
|
@ -2761,10 +2761,21 @@ static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
|
|||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Lockdep gets confused between our buffer_tree which requires IRQ locking because
|
||||
* we modify marks in the IRQ context, and our delayed inode xarray which doesn't
|
||||
* have these requirements. Use a class key so lockdep doesn't get them mixed up.
|
||||
*/
|
||||
static struct lock_class_key buffer_xa_class;
|
||||
|
||||
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
|
||||
{
|
||||
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
|
||||
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
|
||||
|
||||
/* Use the same flags as mapping->i_pages. */
|
||||
xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
|
||||
lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
|
||||
|
||||
INIT_LIST_HEAD(&fs_info->trans_list);
|
||||
INIT_LIST_HEAD(&fs_info->dead_roots);
|
||||
INIT_LIST_HEAD(&fs_info->delayed_iputs);
|
||||
|
@ -2776,7 +2787,6 @@ void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
|
|||
spin_lock_init(&fs_info->delayed_iput_lock);
|
||||
spin_lock_init(&fs_info->defrag_inodes_lock);
|
||||
spin_lock_init(&fs_info->super_lock);
|
||||
spin_lock_init(&fs_info->buffer_lock);
|
||||
spin_lock_init(&fs_info->unused_bgs_lock);
|
||||
spin_lock_init(&fs_info->treelog_bg_lock);
|
||||
spin_lock_init(&fs_info->zone_active_bgs_lock);
|
||||
|
|
|
@ -1866,19 +1866,17 @@ static void set_btree_ioerr(struct extent_buffer *eb)
|
|||
* context.
|
||||
*/
|
||||
static struct extent_buffer *find_extent_buffer_nolock(
|
||||
const struct btrfs_fs_info *fs_info, u64 start)
|
||||
struct btrfs_fs_info *fs_info, u64 start)
|
||||
{
|
||||
struct extent_buffer *eb;
|
||||
unsigned long index = (start >> fs_info->sectorsize_bits);
|
||||
|
||||
rcu_read_lock();
|
||||
eb = radix_tree_lookup(&fs_info->buffer_radix,
|
||||
start >> fs_info->sectorsize_bits);
|
||||
if (eb && atomic_inc_not_zero(&eb->refs)) {
|
||||
eb = xa_load(&fs_info->buffer_tree, index);
|
||||
if (eb && !atomic_inc_not_zero(&eb->refs))
|
||||
eb = NULL;
|
||||
rcu_read_unlock();
|
||||
return eb;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void end_bbio_meta_write(struct btrfs_bio *bbio)
|
||||
|
@ -2742,11 +2740,10 @@ static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct fo
|
|||
|
||||
if (!btrfs_meta_is_subpage(fs_info)) {
|
||||
/*
|
||||
* We do this since we'll remove the pages after we've
|
||||
* removed the eb from the radix tree, so we could race
|
||||
* and have this page now attached to the new eb. So
|
||||
* only clear folio if it's still connected to
|
||||
* this eb.
|
||||
* We do this since we'll remove the pages after we've removed
|
||||
* the eb from the xarray, so we could race and have this page
|
||||
* now attached to the new eb. So only clear folio if it's
|
||||
* still connected to this eb.
|
||||
*/
|
||||
if (folio_test_private(folio) && folio_get_private(folio) == eb) {
|
||||
BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
|
||||
|
@ -2911,9 +2908,9 @@ static void check_buffer_tree_ref(struct extent_buffer *eb)
|
|||
{
|
||||
int refs;
|
||||
/*
|
||||
* The TREE_REF bit is first set when the extent_buffer is added
|
||||
* to the radix tree. It is also reset, if unset, when a new reference
|
||||
* is created by find_extent_buffer.
|
||||
* The TREE_REF bit is first set when the extent_buffer is added to the
|
||||
* xarray. It is also reset, if unset, when a new reference is created
|
||||
* by find_extent_buffer.
|
||||
*
|
||||
* It is only cleared in two cases: freeing the last non-tree
|
||||
* reference to the extent_buffer when its STALE bit is set or
|
||||
|
@ -2925,13 +2922,12 @@ static void check_buffer_tree_ref(struct extent_buffer *eb)
|
|||
* conditions between the calls to check_buffer_tree_ref in those
|
||||
* codepaths and clearing TREE_REF in try_release_extent_buffer.
|
||||
*
|
||||
* The actual lifetime of the extent_buffer in the radix tree is
|
||||
* adequately protected by the refcount, but the TREE_REF bit and
|
||||
* its corresponding reference are not. To protect against this
|
||||
* class of races, we call check_buffer_tree_ref from the codepaths
|
||||
* which trigger io. Note that once io is initiated, TREE_REF can no
|
||||
* longer be cleared, so that is the moment at which any such race is
|
||||
* best fixed.
|
||||
* The actual lifetime of the extent_buffer in the xarray is adequately
|
||||
* protected by the refcount, but the TREE_REF bit and its corresponding
|
||||
* reference are not. To protect against this class of races, we call
|
||||
* check_buffer_tree_ref() from the code paths which trigger io. Note that
|
||||
* once io is initiated, TREE_REF can no longer be cleared, so that is
|
||||
* the moment at which any such race is best fixed.
|
||||
*/
|
||||
refs = atomic_read(&eb->refs);
|
||||
if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
|
||||
|
@ -2995,23 +2991,25 @@ struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
|
|||
return ERR_PTR(-ENOMEM);
|
||||
eb->fs_info = fs_info;
|
||||
again:
|
||||
ret = radix_tree_preload(GFP_NOFS);
|
||||
if (ret) {
|
||||
exists = ERR_PTR(ret);
|
||||
goto free_eb;
|
||||
xa_lock_irq(&fs_info->buffer_tree);
|
||||
exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->sectorsize_bits,
|
||||
NULL, eb, GFP_NOFS);
|
||||
if (xa_is_err(exists)) {
|
||||
ret = xa_err(exists);
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
btrfs_release_extent_buffer(eb);
|
||||
return ERR_PTR(ret);
|
||||
}
|
||||
spin_lock(&fs_info->buffer_lock);
|
||||
ret = radix_tree_insert(&fs_info->buffer_radix,
|
||||
start >> fs_info->sectorsize_bits, eb);
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
radix_tree_preload_end();
|
||||
if (ret == -EEXIST) {
|
||||
exists = find_extent_buffer(fs_info, start);
|
||||
if (exists)
|
||||
goto free_eb;
|
||||
else
|
||||
if (exists) {
|
||||
if (!atomic_inc_not_zero(&exists->refs)) {
|
||||
/* The extent buffer is being freed, retry. */
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
goto again;
|
||||
}
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
goto free_eb;
|
||||
}
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
check_buffer_tree_ref(eb);
|
||||
|
||||
return eb;
|
||||
|
@ -3032,9 +3030,9 @@ static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
|
|||
lockdep_assert_held(&folio->mapping->i_private_lock);
|
||||
|
||||
/*
|
||||
* For subpage case, we completely rely on radix tree to ensure we
|
||||
* don't try to insert two ebs for the same bytenr. So here we always
|
||||
* return NULL and just continue.
|
||||
* For subpage case, we completely rely on xarray to ensure we don't try
|
||||
* to insert two ebs for the same bytenr. So here we always return NULL
|
||||
* and just continue.
|
||||
*/
|
||||
if (btrfs_meta_is_subpage(fs_info))
|
||||
return NULL;
|
||||
|
@ -3165,7 +3163,7 @@ finish:
|
|||
/*
|
||||
* To inform we have an extra eb under allocation, so that
|
||||
* detach_extent_buffer_page() won't release the folio private when the
|
||||
* eb hasn't been inserted into radix tree yet.
|
||||
* eb hasn't been inserted into the xarray yet.
|
||||
*
|
||||
* The ref will be decreased when the eb releases the page, in
|
||||
* detach_extent_buffer_page(). Thus needs no special handling in the
|
||||
|
@ -3299,10 +3297,9 @@ reallocate:
|
|||
|
||||
/*
|
||||
* We can't unlock the pages just yet since the extent buffer
|
||||
* hasn't been properly inserted in the radix tree, this
|
||||
* opens a race with btree_release_folio which can free a page
|
||||
* while we are still filling in all pages for the buffer and
|
||||
* we could crash.
|
||||
* hasn't been properly inserted into the xarray, this opens a
|
||||
* race with btree_release_folio() which can free a page while we
|
||||
* are still filling in all pages for the buffer and we could crash.
|
||||
*/
|
||||
}
|
||||
if (uptodate)
|
||||
|
@ -3311,23 +3308,25 @@ reallocate:
|
|||
if (page_contig)
|
||||
eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
|
||||
again:
|
||||
ret = radix_tree_preload(GFP_NOFS);
|
||||
if (ret)
|
||||
xa_lock_irq(&fs_info->buffer_tree);
|
||||
existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
|
||||
start >> fs_info->sectorsize_bits, NULL, eb,
|
||||
GFP_NOFS);
|
||||
if (xa_is_err(existing_eb)) {
|
||||
ret = xa_err(existing_eb);
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
goto out;
|
||||
|
||||
spin_lock(&fs_info->buffer_lock);
|
||||
ret = radix_tree_insert(&fs_info->buffer_radix,
|
||||
start >> fs_info->sectorsize_bits, eb);
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
radix_tree_preload_end();
|
||||
if (ret == -EEXIST) {
|
||||
ret = 0;
|
||||
existing_eb = find_extent_buffer(fs_info, start);
|
||||
if (existing_eb)
|
||||
goto out;
|
||||
else
|
||||
}
|
||||
if (existing_eb) {
|
||||
if (!atomic_inc_not_zero(&existing_eb->refs)) {
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
goto again;
|
||||
}
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
goto out;
|
||||
}
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
|
||||
/* add one reference for the tree */
|
||||
check_buffer_tree_ref(eb);
|
||||
|
||||
|
@ -3397,10 +3396,23 @@ static int release_extent_buffer(struct extent_buffer *eb)
|
|||
|
||||
spin_unlock(&eb->refs_lock);
|
||||
|
||||
spin_lock(&fs_info->buffer_lock);
|
||||
radix_tree_delete_item(&fs_info->buffer_radix,
|
||||
eb->start >> fs_info->sectorsize_bits, eb);
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
/*
|
||||
* We're erasing, theoretically there will be no allocations, so
|
||||
* just use GFP_ATOMIC.
|
||||
*
|
||||
* We use cmpxchg instead of erase because we do not know if
|
||||
* this eb is actually in the tree or not, we could be cleaning
|
||||
* up an eb that we allocated but never inserted into the tree.
|
||||
* Thus use cmpxchg to remove it from the tree if it is there,
|
||||
* or leave the other entry if this isn't in the tree.
|
||||
*
|
||||
* The documentation says that putting a NULL value is the same
|
||||
* as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
|
||||
* in this case.
|
||||
*/
|
||||
xa_cmpxchg_irq(&fs_info->buffer_tree,
|
||||
eb->start >> fs_info->sectorsize_bits, eb, NULL,
|
||||
GFP_ATOMIC);
|
||||
|
||||
btrfs_leak_debug_del_eb(eb);
|
||||
/* Should be safe to release folios at this point. */
|
||||
|
@ -4231,71 +4243,17 @@ void memmove_extent_buffer(const struct extent_buffer *dst,
|
|||
}
|
||||
}
|
||||
|
||||
#define GANG_LOOKUP_SIZE 16
|
||||
static struct extent_buffer *get_next_extent_buffer(
|
||||
const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
|
||||
{
|
||||
struct extent_buffer *gang[GANG_LOOKUP_SIZE];
|
||||
struct extent_buffer *found = NULL;
|
||||
u64 folio_start = folio_pos(folio);
|
||||
u64 cur = folio_start;
|
||||
|
||||
ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
|
||||
lockdep_assert_held(&fs_info->buffer_lock);
|
||||
|
||||
while (cur < folio_start + PAGE_SIZE) {
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
|
||||
(void **)gang, cur >> fs_info->sectorsize_bits,
|
||||
min_t(unsigned int, GANG_LOOKUP_SIZE,
|
||||
PAGE_SIZE / fs_info->nodesize));
|
||||
if (ret == 0)
|
||||
goto out;
|
||||
for (i = 0; i < ret; i++) {
|
||||
/* Already beyond page end */
|
||||
if (gang[i]->start >= folio_start + PAGE_SIZE)
|
||||
goto out;
|
||||
/* Found one */
|
||||
if (gang[i]->start >= bytenr) {
|
||||
found = gang[i];
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
cur = gang[ret - 1]->start + gang[ret - 1]->len;
|
||||
}
|
||||
out:
|
||||
return found;
|
||||
}
|
||||
|
||||
static int try_release_subpage_extent_buffer(struct folio *folio)
|
||||
{
|
||||
struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
|
||||
u64 cur = folio_pos(folio);
|
||||
const u64 end = cur + PAGE_SIZE;
|
||||
struct extent_buffer *eb;
|
||||
unsigned long start = (folio_pos(folio) >> fs_info->sectorsize_bits);
|
||||
unsigned long index = start;
|
||||
unsigned long end = index + (PAGE_SIZE >> fs_info->sectorsize_bits) - 1;
|
||||
int ret;
|
||||
|
||||
while (cur < end) {
|
||||
struct extent_buffer *eb = NULL;
|
||||
|
||||
/*
|
||||
* Unlike try_release_extent_buffer() which uses folio private
|
||||
* to grab buffer, for subpage case we rely on radix tree, thus
|
||||
* we need to ensure radix tree consistency.
|
||||
*
|
||||
* We also want an atomic snapshot of the radix tree, thus go
|
||||
* with spinlock rather than RCU.
|
||||
*/
|
||||
spin_lock(&fs_info->buffer_lock);
|
||||
eb = get_next_extent_buffer(fs_info, folio, cur);
|
||||
if (!eb) {
|
||||
/* No more eb in the page range after or at cur */
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
break;
|
||||
}
|
||||
cur = eb->start + eb->len;
|
||||
|
||||
xa_lock_irq(&fs_info->buffer_tree);
|
||||
xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
|
||||
/*
|
||||
* The same as try_release_extent_buffer(), to ensure the eb
|
||||
* won't disappear out from under us.
|
||||
|
@ -4303,10 +4261,9 @@ static int try_release_subpage_extent_buffer(struct folio *folio)
|
|||
spin_lock(&eb->refs_lock);
|
||||
if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
|
||||
spin_unlock(&eb->refs_lock);
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
break;
|
||||
continue;
|
||||
}
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
|
||||
/*
|
||||
* If tree ref isn't set then we know the ref on this eb is a
|
||||
|
@ -4324,7 +4281,10 @@ static int try_release_subpage_extent_buffer(struct folio *folio)
|
|||
* release_extent_buffer() will release the refs_lock.
|
||||
*/
|
||||
release_extent_buffer(eb);
|
||||
xa_lock_irq(&fs_info->buffer_tree);
|
||||
}
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
|
||||
/*
|
||||
* Finally to check if we have cleared folio private, as if we have
|
||||
* released all ebs in the page, the folio private should be cleared now.
|
||||
|
|
|
@ -777,10 +777,8 @@ struct btrfs_fs_info {
|
|||
|
||||
struct btrfs_delayed_root *delayed_root;
|
||||
|
||||
/* Extent buffer radix tree */
|
||||
spinlock_t buffer_lock;
|
||||
/* Entries are eb->start / sectorsize */
|
||||
struct radix_tree_root buffer_radix;
|
||||
struct xarray buffer_tree;
|
||||
|
||||
/* Next backup root to be overwritten */
|
||||
int backup_root_index;
|
||||
|
|
|
@ -157,9 +157,9 @@ struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
|
|||
|
||||
void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
|
||||
{
|
||||
struct radix_tree_iter iter;
|
||||
void **slot;
|
||||
struct btrfs_device *dev, *tmp;
|
||||
struct extent_buffer *eb;
|
||||
unsigned long index;
|
||||
|
||||
if (!fs_info)
|
||||
return;
|
||||
|
@ -169,25 +169,13 @@ void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
|
|||
|
||||
test_mnt->mnt_sb->s_fs_info = NULL;
|
||||
|
||||
spin_lock(&fs_info->buffer_lock);
|
||||
radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) {
|
||||
struct extent_buffer *eb;
|
||||
|
||||
eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock);
|
||||
if (!eb)
|
||||
continue;
|
||||
/* Shouldn't happen but that kind of thinking creates CVE's */
|
||||
if (radix_tree_exception(eb)) {
|
||||
if (radix_tree_deref_retry(eb))
|
||||
slot = radix_tree_iter_retry(&iter);
|
||||
continue;
|
||||
xa_lock_irq(&fs_info->buffer_tree);
|
||||
xa_for_each(&fs_info->buffer_tree, index, eb) {
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
free_extent_buffer(eb);
|
||||
xa_lock_irq(&fs_info->buffer_tree);
|
||||
}
|
||||
slot = radix_tree_iter_resume(slot, &iter);
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
free_extent_buffer_stale(eb);
|
||||
spin_lock(&fs_info->buffer_lock);
|
||||
}
|
||||
spin_unlock(&fs_info->buffer_lock);
|
||||
xa_unlock_irq(&fs_info->buffer_tree);
|
||||
|
||||
btrfs_mapping_tree_free(fs_info);
|
||||
list_for_each_entry_safe(dev, tmp, &fs_info->fs_devices->devices,
|
||||
|
|
|
@ -2171,27 +2171,15 @@ static void wait_eb_writebacks(struct btrfs_block_group *block_group)
|
|||
{
|
||||
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
||||
const u64 end = block_group->start + block_group->length;
|
||||
struct radix_tree_iter iter;
|
||||
struct extent_buffer *eb;
|
||||
void __rcu **slot;
|
||||
unsigned long index, start = (block_group->start >> fs_info->sectorsize_bits);
|
||||
|
||||
rcu_read_lock();
|
||||
radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
|
||||
block_group->start >> fs_info->sectorsize_bits) {
|
||||
eb = radix_tree_deref_slot(slot);
|
||||
if (!eb)
|
||||
continue;
|
||||
if (radix_tree_deref_retry(eb)) {
|
||||
slot = radix_tree_iter_retry(&iter);
|
||||
continue;
|
||||
}
|
||||
|
||||
xa_for_each_start(&fs_info->buffer_tree, index, eb, start) {
|
||||
if (eb->start < block_group->start)
|
||||
continue;
|
||||
if (eb->start >= end)
|
||||
break;
|
||||
|
||||
slot = radix_tree_iter_resume(slot, &iter);
|
||||
rcu_read_unlock();
|
||||
wait_on_extent_buffer_writeback(eb);
|
||||
rcu_read_lock();
|
||||
|
|
Loading…
Add table
Reference in a new issue