- Correctly handle 'invariant' system registers for protected VMs
 
 - Improved handling of VNCR data aborts, including external aborts
 
 - Fixes for handling of FEAT_RAS for NV guests, providing a sane
   fault context during SEA injection and preventing the use of
   RASv1p1 fault injection hardware
 
 - Ensure that page table destruction when a VM is destroyed gives an
   opportunity to reschedule
 
 - Large fix to KVM's infrastructure for managing guest context loaded
   on the CPU, addressing issues where the output of AT emulation
   doesn't get reflected to the guest
 
 - Fix AT S12 emulation to actually perform stage-2 translation when
   necessary
 
 - Avoid attempting vLPI irqbypass when GICv4 has been explicitly
   disabled for a VM
 
 - Minor KVM + selftest fixes
 
 RISC-V:
 
 - Fix pte settings within kvm_riscv_gstage_ioremap()
 
 - Fix comments in kvm_riscv_check_vcpu_requests()
 
 - Fix stack overrun when setting vlenb via ONE_REG
 
 x86:
 
 - Use array_index_nospec() to sanitize the target vCPU ID when handling PV
   IPIs and yields as the ID is guest-controlled.
 
 - Drop a superfluous cpumask_empty() check when reclaiming SEV memory, as
   the common case, by far, is that at least one CPU will have entered the
   VM, and wbnoinvd_on_cpus_mask() will naturally handle the rare case where
   the set of have_run_cpus is empty.
 
 Selftests (not KVM):
 
 - Rename the is_signed_type() macro in kselftest_harness.h to is_signed_var()
   to fix a collision with linux/overflow.h.  The collision generates compiler
   warnings due to the two macros having different meaning.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmix3OMUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOZGAf+K+xTAhbMuY4bK5Sn93/QssYUVsFv
 wWc/q5FXUd8t21eAN+b/qhGF4d71eDuoIUNzOBwbJ9qY/0F42Xgihfr7BarSBBqD
 anqQBnhhtCyPCa1tF8SyBv34HewNKts3bgSxnwo2V2CBGWqomm6cZ9Uh3yALFBGJ
 kqHi0kKql+QL9G9DbRQ8lEJAPnCnktFFtA94T5B+o7yh1vvPeBsK40chH8bi19nh
 vCdoGhNLr+k+MoYpfJ8lyOJ7QctijJBK7OlsteksMvCXKQdfz1/X7TnoF11rb4yV
 MPfMUDOGlIVEBaVBkokyHXXPv0Fg4zGlt/SYzOZWRHIYgQNQ+aSscAKODA==
 =W51r
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "ARM:

   - Correctly handle 'invariant' system registers for protected VMs

   - Improved handling of VNCR data aborts, including external aborts

   - Fixes for handling of FEAT_RAS for NV guests, providing a sane
     fault context during SEA injection and preventing the use of
     RASv1p1 fault injection hardware

   - Ensure that page table destruction when a VM is destroyed gives an
     opportunity to reschedule

   - Large fix to KVM's infrastructure for managing guest context loaded
     on the CPU, addressing issues where the output of AT emulation
     doesn't get reflected to the guest

   - Fix AT S12 emulation to actually perform stage-2 translation when
     necessary

   - Avoid attempting vLPI irqbypass when GICv4 has been explicitly
     disabled for a VM

   - Minor KVM + selftest fixes

  RISC-V:

   - Fix pte settings within kvm_riscv_gstage_ioremap()

   - Fix comments in kvm_riscv_check_vcpu_requests()

   - Fix stack overrun when setting vlenb via ONE_REG

  x86:

   - Use array_index_nospec() to sanitize the target vCPU ID when
     handling PV IPIs and yields as the ID is guest-controlled.

   - Drop a superfluous cpumask_empty() check when reclaiming SEV
     memory, as the common case, by far, is that at least one CPU will
     have entered the VM, and wbnoinvd_on_cpus_mask() will naturally
     handle the rare case where the set of have_run_cpus is empty.

  Selftests (not KVM):

   - Rename the is_signed_type() macro in kselftest_harness.h to
     is_signed_var() to fix a collision with linux/overflow.h. The
     collision generates compiler warnings due to the two macros having
     different meaning"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (29 commits)
  KVM: arm64: nv: Fix ATS12 handling of single-stage translation
  KVM: arm64: Remove __vcpu_{read,write}_sys_reg_{from,to}_cpu()
  KVM: arm64: Fix vcpu_{read,write}_sys_reg() accessors
  KVM: arm64: Simplify sysreg access on exception delivery
  KVM: arm64: Check for SYSREGS_ON_CPU before accessing the 32bit state
  RISC-V: KVM: fix stack overrun when loading vlenb
  RISC-V: KVM: Correct kvm_riscv_check_vcpu_requests() comment
  RISC-V: KVM: Fix pte settings within kvm_riscv_gstage_ioremap()
  KVM: arm64: selftests: Sync ID_AA64MMFR3_EL1 in set_id_regs
  KVM: arm64: Get rid of ARM64_FEATURE_MASK()
  KVM: arm64: Make ID_AA64PFR1_EL1.RAS_frac writable
  KVM: arm64: Make ID_AA64PFR0_EL1.RAS writable
  KVM: arm64: Ignore HCR_EL2.FIEN set by L1 guest's EL2
  KVM: arm64: Handle RASv1p1 registers
  arm64: Add capability denoting FEAT_RASv1p1
  KVM: arm64: Reschedule as needed when destroying the stage-2 page-tables
  KVM: arm64: Split kvm_pgtable_stage2_destroy()
  selftests: harness: Rename is_signed_type() to avoid collision with overflow.h
  KVM: SEV: don't check have_run_cpus in sev_writeback_caches()
  KVM: arm64: Correctly populate FAR_EL2 on nested SEA injection
  ...
This commit is contained in:
Linus Torvalds 2025-08-29 13:54:26 -07:00
commit 11e7861d68
41 changed files with 585 additions and 368 deletions

View file

@ -1160,115 +1160,8 @@ u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
__v; \
})
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
/*
* *** VHE ONLY ***
*
* System registers listed in the switch are not saved on every
* exit from the guest but are only saved on vcpu_put.
*
* SYSREGS_ON_CPU *MUST* be checked before using this helper.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the guest cannot modify its
* own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
* thread when emulating cross-VCPU communication.
*/
if (!has_vhe())
return false;
switch (reg) {
case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
case TCR2_EL1: *val = read_sysreg_s(SYS_TCR2_EL12); break;
case PIR_EL1: *val = read_sysreg_s(SYS_PIR_EL12); break;
case PIRE0_EL1: *val = read_sysreg_s(SYS_PIRE0_EL12); break;
case POR_EL1: *val = read_sysreg_s(SYS_POR_EL12); break;
case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
case SPSR_EL1: *val = read_sysreg_s(SYS_SPSR_EL12); break;
case PAR_EL1: *val = read_sysreg_par(); break;
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
case ZCR_EL1: *val = read_sysreg_s(SYS_ZCR_EL12); break;
case SCTLR2_EL1: *val = read_sysreg_s(SYS_SCTLR2_EL12); break;
default: return false;
}
return true;
}
static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
/*
* *** VHE ONLY ***
*
* System registers listed in the switch are not restored on every
* entry to the guest but are only restored on vcpu_load.
*
* SYSREGS_ON_CPU *MUST* be checked before using this helper.
*
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
* should never be listed below, because the MPIDR should only be set
* once, before running the VCPU, and never changed later.
*/
if (!has_vhe())
return false;
switch (reg) {
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
case TCR2_EL1: write_sysreg_s(val, SYS_TCR2_EL12); break;
case PIR_EL1: write_sysreg_s(val, SYS_PIR_EL12); break;
case PIRE0_EL1: write_sysreg_s(val, SYS_PIRE0_EL12); break;
case POR_EL1: write_sysreg_s(val, SYS_POR_EL12); break;
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
case ZCR_EL1: write_sysreg_s(val, SYS_ZCR_EL12); break;
case SCTLR2_EL1: write_sysreg_s(val, SYS_SCTLR2_EL12); break;
default: return false;
}
return true;
}
u64 vcpu_read_sys_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
void vcpu_write_sys_reg(struct kvm_vcpu *, u64, enum vcpu_sysreg);
struct kvm_vm_stat {
struct kvm_vm_stat_generic generic;

View file

@ -180,6 +180,7 @@ void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
phys_addr_t pa, unsigned long size, bool writable);
int kvm_handle_guest_sea(struct kvm_vcpu *vcpu);
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void);

View file

@ -355,6 +355,11 @@ static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walke
return pteref;
}
static inline kvm_pte_t *kvm_dereference_pteref_raw(kvm_pteref_t pteref)
{
return pteref;
}
static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
{
/*
@ -384,6 +389,11 @@ static inline kvm_pte_t *kvm_dereference_pteref(struct kvm_pgtable_walker *walke
return rcu_dereference_check(pteref, !(walker->flags & KVM_PGTABLE_WALK_SHARED));
}
static inline kvm_pte_t *kvm_dereference_pteref_raw(kvm_pteref_t pteref)
{
return rcu_dereference_raw(pteref);
}
static inline int kvm_pgtable_walk_begin(struct kvm_pgtable_walker *walker)
{
if (walker->flags & KVM_PGTABLE_WALK_SHARED)
@ -551,6 +561,26 @@ static inline int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2
*/
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
/**
* kvm_pgtable_stage2_destroy_range() - Destroy the unlinked range of addresses.
* @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
* @addr: Intermediate physical address at which to place the mapping.
* @size: Size of the mapping.
*
* The page-table is assumed to be unreachable by any hardware walkers prior
* to freeing and therefore no TLB invalidation is performed.
*/
void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
u64 addr, u64 size);
/**
* kvm_pgtable_stage2_destroy_pgd() - Destroy the PGD of guest stage-2 page-table.
* @pgt: Page-table structure initialised by kvm_pgtable_stage2_init*().
*
* It is assumed that the rest of the page-table is freed before this operation.
*/
void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt);
/**
* kvm_pgtable_stage2_free_unlinked() - Free an unlinked stage-2 paging structure.
* @mm_ops: Memory management callbacks.

View file

@ -179,7 +179,9 @@ struct pkvm_mapping {
int pkvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops);
void pkvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt);
void pkvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
u64 addr, u64 size);
void pkvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt);
int pkvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
enum kvm_pgtable_prot prot, void *mc,
enum kvm_pgtable_walk_flags flags);

View file

@ -1,25 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2018 - Arm Ltd */
#ifndef __ARM64_KVM_RAS_H__
#define __ARM64_KVM_RAS_H__
#include <linux/acpi.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <asm/acpi.h>
/*
* Was this synchronous external abort a RAS notification?
* Returns '0' for errors handled by some RAS subsystem, or -ENOENT.
*/
static inline int kvm_handle_guest_sea(void)
{
/* apei_claim_sea(NULL) expects to mask interrupts itself */
lockdep_assert_irqs_enabled();
return apei_claim_sea(NULL);
}
#endif /* __ARM64_KVM_RAS_H__ */

View file

@ -1142,9 +1142,6 @@
#define ARM64_FEATURE_FIELD_BITS 4
/* Defined for compatibility only, do not add new users. */
#define ARM64_FEATURE_MASK(x) (x##_MASK)
#ifdef __ASSEMBLY__
.macro mrs_s, rt, sreg

View file

@ -2269,6 +2269,24 @@ static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
/* Firmware may have left a deferred SError in this register. */
write_sysreg_s(0, SYS_DISR_EL1);
}
static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
{
const struct arm64_cpu_capabilities rasv1p1_caps[] = {
{
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
},
{
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
},
{
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
},
};
return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
(has_cpuid_feature(&rasv1p1_caps[1], scope) &&
has_cpuid_feature(&rasv1p1_caps[2], scope)));
}
#endif /* CONFIG_ARM64_RAS_EXTN */
#ifdef CONFIG_ARM64_PTR_AUTH
@ -2687,6 +2705,12 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
.cpu_enable = cpu_clear_disr,
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
},
{
.desc = "RASv1p1 Extension Support",
.capability = ARM64_HAS_RASV1P1_EXTN,
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
.matches = has_rasv1p1,
},
#endif /* CONFIG_ARM64_RAS_EXTN */
#ifdef CONFIG_ARM64_AMU_EXTN
{

View file

@ -2408,12 +2408,12 @@ static u64 get_hyp_id_aa64pfr0_el1(void)
*/
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
val &= ~(ID_AA64PFR0_EL1_CSV2 |
ID_AA64PFR0_EL1_CSV3);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
return val;

View file

@ -1420,10 +1420,10 @@ void __kvm_at_s12(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
return;
/*
* If we only have a single stage of translation (E2H=0 or
* TGE=1), exit early. Same thing if {VM,DC}=={0,0}.
* If we only have a single stage of translation (EL2&0), exit
* early. Same thing if {VM,DC}=={0,0}.
*/
if (!vcpu_el2_e2h_is_set(vcpu) || vcpu_el2_tge_is_set(vcpu) ||
if (compute_translation_regime(vcpu, op) == TR_EL20 ||
!(vcpu_read_sys_reg(vcpu, HCR_EL2) & (HCR_VM | HCR_DC)))
return;

View file

@ -2833,7 +2833,7 @@ int kvm_inject_nested_sea(struct kvm_vcpu *vcpu, bool iabt, u64 addr)
iabt ? ESR_ELx_EC_IABT_LOW : ESR_ELx_EC_DABT_LOW);
esr |= ESR_ELx_FSC_EXTABT | ESR_ELx_IL;
vcpu_write_sys_reg(vcpu, FAR_EL2, addr);
vcpu_write_sys_reg(vcpu, addr, FAR_EL2);
if (__vcpu_sys_reg(vcpu, SCTLR2_EL2) & SCTLR2_EL1_EASE)
return kvm_inject_nested(vcpu, esr, except_type_serror);

View file

@ -22,36 +22,28 @@
static inline u64 __vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
{
u64 val;
if (unlikely(vcpu_has_nv(vcpu)))
if (has_vhe())
return vcpu_read_sys_reg(vcpu, reg);
else if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
__vcpu_read_sys_reg_from_cpu(reg, &val))
return val;
return __vcpu_sys_reg(vcpu, reg);
}
static inline void __vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
if (unlikely(vcpu_has_nv(vcpu)))
if (has_vhe())
vcpu_write_sys_reg(vcpu, val, reg);
else if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU) ||
!__vcpu_write_sys_reg_to_cpu(val, reg))
else
__vcpu_assign_sys_reg(vcpu, reg, val);
}
static void __vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long target_mode,
u64 val)
{
if (unlikely(vcpu_has_nv(vcpu))) {
if (has_vhe()) {
if (target_mode == PSR_MODE_EL1h)
vcpu_write_sys_reg(vcpu, val, SPSR_EL1);
else
vcpu_write_sys_reg(vcpu, val, SPSR_EL2);
} else if (has_vhe()) {
write_sysreg_el1(val, SYS_SPSR);
} else {
__vcpu_assign_sys_reg(vcpu, SPSR_EL1, val);
}
@ -59,7 +51,7 @@ static void __vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long target_mode,
static void __vcpu_write_spsr_abt(struct kvm_vcpu *vcpu, u64 val)
{
if (has_vhe())
if (has_vhe() && vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
write_sysreg(val, spsr_abt);
else
vcpu->arch.ctxt.spsr_abt = val;
@ -67,7 +59,7 @@ static void __vcpu_write_spsr_abt(struct kvm_vcpu *vcpu, u64 val)
static void __vcpu_write_spsr_und(struct kvm_vcpu *vcpu, u64 val)
{
if (has_vhe())
if (has_vhe() && vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
write_sysreg(val, spsr_und);
else
vcpu->arch.ctxt.spsr_und = val;

View file

@ -17,7 +17,7 @@ static inline __must_check bool nvhe_check_data_corruption(bool v)
bool corruption = unlikely(condition); \
if (corruption) { \
if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) { \
BUG_ON(1); \
BUG(); \
} else \
WARN_ON(1); \
} \

View file

@ -253,6 +253,7 @@ static void inject_undef64(struct kvm_vcpu *vcpu)
*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
*vcpu_cpsr(vcpu) = read_sysreg_el2(SYS_SPSR);
__vcpu_assign_sys_reg(vcpu, read_sysreg_el1(SYS_VBAR), VBAR_EL1);
kvm_pend_exception(vcpu, EXCEPT_AA64_EL1_SYNC);
@ -372,6 +373,9 @@ static const struct sys_reg_desc pvm_sys_reg_descs[] = {
/* Debug and Trace Registers are restricted. */
/* Group 1 ID registers */
HOST_HANDLED(SYS_REVIDR_EL1),
/* AArch64 mappings of the AArch32 ID registers */
/* CRm=1 */
AARCH32(SYS_ID_PFR0_EL1),
@ -460,6 +464,7 @@ static const struct sys_reg_desc pvm_sys_reg_descs[] = {
HOST_HANDLED(SYS_CCSIDR_EL1),
HOST_HANDLED(SYS_CLIDR_EL1),
HOST_HANDLED(SYS_AIDR_EL1),
HOST_HANDLED(SYS_CSSELR_EL1),
HOST_HANDLED(SYS_CTR_EL0),

View file

@ -1551,21 +1551,38 @@ static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
return 0;
}
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
void kvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
u64 addr, u64 size)
{
size_t pgd_sz;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
}
void kvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt)
{
size_t pgd_sz;
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
/*
* Since the pgtable is unlinked at this point, and not shared with
* other walkers, safely deference pgd with kvm_dereference_pteref_raw()
*/
pgt->mm_ops->free_pages_exact(kvm_dereference_pteref_raw(pgt->pgd), pgd_sz);
pgt->pgd = NULL;
}
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
kvm_pgtable_stage2_destroy_range(pgt, 0, BIT(pgt->ia_bits));
kvm_pgtable_stage2_destroy_pgd(pgt);
}
void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
{
kvm_pteref_t ptep = (kvm_pteref_t)pgtable;

View file

@ -20,7 +20,7 @@ static bool __is_be(struct kvm_vcpu *vcpu)
if (vcpu_mode_is_32bit(vcpu))
return !!(read_sysreg_el2(SYS_SPSR) & PSR_AA32_E_BIT);
return !!(read_sysreg(SCTLR_EL1) & SCTLR_ELx_EE);
return !!(read_sysreg_el1(SYS_SCTLR) & SCTLR_ELx_EE);
}
/*

View file

@ -43,8 +43,11 @@ DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
*
* - API/APK: they are already accounted for by vcpu_load(), and can
* only take effect across a load/put cycle (such as ERET)
*
* - FIEN: no way we let a guest have access to the RAS "Common Fault
* Injection" thing, whatever that does
*/
#define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK)
#define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK | HCR_FIEN)
static u64 __compute_hcr(struct kvm_vcpu *vcpu)
{

View file

@ -4,19 +4,20 @@
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/acpi.h>
#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
#include <linux/hugetlb.h>
#include <linux/sched/signal.h>
#include <trace/events/kvm.h>
#include <asm/acpi.h>
#include <asm/pgalloc.h>
#include <asm/cacheflush.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/kvm_pkvm.h>
#include <asm/kvm_ras.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/virt.h>
@ -903,6 +904,38 @@ static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
return 0;
}
/*
* Assume that @pgt is valid and unlinked from the KVM MMU to free the
* page-table without taking the kvm_mmu_lock and without performing any
* TLB invalidations.
*
* Also, the range of addresses can be large enough to cause need_resched
* warnings, for instance on CONFIG_PREEMPT_NONE kernels. Hence, invoke
* cond_resched() periodically to prevent hogging the CPU for a long time
* and schedule something else, if required.
*/
static void stage2_destroy_range(struct kvm_pgtable *pgt, phys_addr_t addr,
phys_addr_t end)
{
u64 next;
do {
next = stage2_range_addr_end(addr, end);
KVM_PGT_FN(kvm_pgtable_stage2_destroy_range)(pgt, addr,
next - addr);
if (next != end)
cond_resched();
} while (addr = next, addr != end);
}
static void kvm_stage2_destroy(struct kvm_pgtable *pgt)
{
unsigned int ia_bits = VTCR_EL2_IPA(pgt->mmu->vtcr);
stage2_destroy_range(pgt, 0, BIT(ia_bits));
KVM_PGT_FN(kvm_pgtable_stage2_destroy_pgd)(pgt);
}
/**
* kvm_init_stage2_mmu - Initialise a S2 MMU structure
* @kvm: The pointer to the KVM structure
@ -979,7 +1012,7 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t
return 0;
out_destroy_pgtable:
KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
kvm_stage2_destroy(pgt);
out_free_pgtable:
kfree(pgt);
return err;
@ -1076,7 +1109,7 @@ void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
write_unlock(&kvm->mmu_lock);
if (pgt) {
KVM_PGT_FN(kvm_pgtable_stage2_destroy)(pgt);
kvm_stage2_destroy(pgt);
kfree(pgt);
}
}
@ -1811,6 +1844,19 @@ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
read_unlock(&vcpu->kvm->mmu_lock);
}
int kvm_handle_guest_sea(struct kvm_vcpu *vcpu)
{
/*
* Give APEI the opportunity to claim the abort before handling it
* within KVM. apei_claim_sea() expects to be called with IRQs enabled.
*/
lockdep_assert_irqs_enabled();
if (apei_claim_sea(NULL) == 0)
return 1;
return kvm_inject_serror(vcpu);
}
/**
* kvm_handle_guest_abort - handles all 2nd stage aborts
* @vcpu: the VCPU pointer
@ -1834,17 +1880,8 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
gfn_t gfn;
int ret, idx;
/* Synchronous External Abort? */
if (kvm_vcpu_abt_issea(vcpu)) {
/*
* For RAS the host kernel may handle this abort.
* There is no need to pass the error into the guest.
*/
if (kvm_handle_guest_sea())
return kvm_inject_serror(vcpu);
return 1;
}
if (kvm_vcpu_abt_issea(vcpu))
return kvm_handle_guest_sea(vcpu);
esr = kvm_vcpu_get_esr(vcpu);

View file

@ -1287,7 +1287,10 @@ int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu)
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
BUG_ON(!(esr & ESR_ELx_VNCR_SHIFT));
WARN_ON_ONCE(!(esr & ESR_ELx_VNCR));
if (kvm_vcpu_abt_issea(vcpu))
return kvm_handle_guest_sea(vcpu);
if (esr_fsc_is_permission_fault(esr)) {
inject_vncr_perm(vcpu);

View file

@ -316,9 +316,16 @@ static int __pkvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 start, u64 e
return 0;
}
void pkvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
void pkvm_pgtable_stage2_destroy_range(struct kvm_pgtable *pgt,
u64 addr, u64 size)
{
__pkvm_pgtable_stage2_unmap(pgt, 0, ~(0ULL));
__pkvm_pgtable_stage2_unmap(pgt, addr, addr + size);
}
void pkvm_pgtable_stage2_destroy_pgd(struct kvm_pgtable *pgt)
{
/* Expected to be called after all pKVM mappings have been released. */
WARN_ON_ONCE(!RB_EMPTY_ROOT(&pgt->pkvm_mappings.rb_root));
}
int pkvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,

View file

@ -82,43 +82,105 @@ static bool write_to_read_only(struct kvm_vcpu *vcpu,
"sys_reg write to read-only register");
}
#define PURE_EL2_SYSREG(el2) \
case el2: { \
*el1r = el2; \
return true; \
}
enum sr_loc_attr {
SR_LOC_MEMORY = 0, /* Register definitely in memory */
SR_LOC_LOADED = BIT(0), /* Register on CPU, unless it cannot */
SR_LOC_MAPPED = BIT(1), /* Register in a different CPU register */
SR_LOC_XLATED = BIT(2), /* Register translated to fit another reg */
SR_LOC_SPECIAL = BIT(3), /* Demanding register, implies loaded */
};
#define MAPPED_EL2_SYSREG(el2, el1, fn) \
case el2: { \
*xlate = fn; \
*el1r = el1; \
return true; \
}
struct sr_loc {
enum sr_loc_attr loc;
enum vcpu_sysreg map_reg;
u64 (*xlate)(u64);
};
static bool get_el2_to_el1_mapping(unsigned int reg,
unsigned int *el1r, u64 (**xlate)(u64))
static enum sr_loc_attr locate_direct_register(const struct kvm_vcpu *vcpu,
enum vcpu_sysreg reg)
{
switch (reg) {
PURE_EL2_SYSREG( VPIDR_EL2 );
PURE_EL2_SYSREG( VMPIDR_EL2 );
PURE_EL2_SYSREG( ACTLR_EL2 );
PURE_EL2_SYSREG( HCR_EL2 );
PURE_EL2_SYSREG( MDCR_EL2 );
PURE_EL2_SYSREG( HSTR_EL2 );
PURE_EL2_SYSREG( HACR_EL2 );
PURE_EL2_SYSREG( VTTBR_EL2 );
PURE_EL2_SYSREG( VTCR_EL2 );
PURE_EL2_SYSREG( TPIDR_EL2 );
PURE_EL2_SYSREG( HPFAR_EL2 );
PURE_EL2_SYSREG( HCRX_EL2 );
PURE_EL2_SYSREG( HFGRTR_EL2 );
PURE_EL2_SYSREG( HFGWTR_EL2 );
PURE_EL2_SYSREG( HFGITR_EL2 );
PURE_EL2_SYSREG( HDFGRTR_EL2 );
PURE_EL2_SYSREG( HDFGWTR_EL2 );
PURE_EL2_SYSREG( HAFGRTR_EL2 );
PURE_EL2_SYSREG( CNTVOFF_EL2 );
PURE_EL2_SYSREG( CNTHCTL_EL2 );
case SCTLR_EL1:
case CPACR_EL1:
case TTBR0_EL1:
case TTBR1_EL1:
case TCR_EL1:
case TCR2_EL1:
case PIR_EL1:
case PIRE0_EL1:
case POR_EL1:
case ESR_EL1:
case AFSR0_EL1:
case AFSR1_EL1:
case FAR_EL1:
case MAIR_EL1:
case VBAR_EL1:
case CONTEXTIDR_EL1:
case AMAIR_EL1:
case CNTKCTL_EL1:
case ELR_EL1:
case SPSR_EL1:
case ZCR_EL1:
case SCTLR2_EL1:
/*
* EL1 registers which have an ELx2 mapping are loaded if
* we're not in hypervisor context.
*/
return is_hyp_ctxt(vcpu) ? SR_LOC_MEMORY : SR_LOC_LOADED;
case TPIDR_EL0:
case TPIDRRO_EL0:
case TPIDR_EL1:
case PAR_EL1:
case DACR32_EL2:
case IFSR32_EL2:
case DBGVCR32_EL2:
/* These registers are always loaded, no matter what */
return SR_LOC_LOADED;
default:
/* Non-mapped EL2 registers are by definition in memory. */
return SR_LOC_MEMORY;
}
}
static void locate_mapped_el2_register(const struct kvm_vcpu *vcpu,
enum vcpu_sysreg reg,
enum vcpu_sysreg map_reg,
u64 (*xlate)(u64),
struct sr_loc *loc)
{
if (!is_hyp_ctxt(vcpu)) {
loc->loc = SR_LOC_MEMORY;
return;
}
loc->loc = SR_LOC_LOADED | SR_LOC_MAPPED;
loc->map_reg = map_reg;
WARN_ON(locate_direct_register(vcpu, map_reg) != SR_LOC_MEMORY);
if (xlate != NULL && !vcpu_el2_e2h_is_set(vcpu)) {
loc->loc |= SR_LOC_XLATED;
loc->xlate = xlate;
}
}
#define MAPPED_EL2_SYSREG(r, m, t) \
case r: { \
locate_mapped_el2_register(vcpu, r, m, t, loc); \
break; \
}
static void locate_register(const struct kvm_vcpu *vcpu, enum vcpu_sysreg reg,
struct sr_loc *loc)
{
if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) {
loc->loc = SR_LOC_MEMORY;
return;
}
switch (reg) {
MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1,
translate_sctlr_el2_to_sctlr_el1 );
MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1,
@ -144,125 +206,189 @@ static bool get_el2_to_el1_mapping(unsigned int reg,
MAPPED_EL2_SYSREG(ZCR_EL2, ZCR_EL1, NULL );
MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL );
MAPPED_EL2_SYSREG(SCTLR2_EL2, SCTLR2_EL1, NULL );
case CNTHCTL_EL2:
/* CNTHCTL_EL2 is super special, until we support NV2.1 */
loc->loc = ((is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) ?
SR_LOC_SPECIAL : SR_LOC_MEMORY);
break;
default:
return false;
loc->loc = locate_direct_register(vcpu, reg);
}
}
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
static u64 read_sr_from_cpu(enum vcpu_sysreg reg)
{
u64 val = 0x8badf00d8badf00d;
u64 (*xlate)(u64) = NULL;
unsigned int el1r;
if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
goto memory_read;
switch (reg) {
case SCTLR_EL1: val = read_sysreg_s(SYS_SCTLR_EL12); break;
case CPACR_EL1: val = read_sysreg_s(SYS_CPACR_EL12); break;
case TTBR0_EL1: val = read_sysreg_s(SYS_TTBR0_EL12); break;
case TTBR1_EL1: val = read_sysreg_s(SYS_TTBR1_EL12); break;
case TCR_EL1: val = read_sysreg_s(SYS_TCR_EL12); break;
case TCR2_EL1: val = read_sysreg_s(SYS_TCR2_EL12); break;
case PIR_EL1: val = read_sysreg_s(SYS_PIR_EL12); break;
case PIRE0_EL1: val = read_sysreg_s(SYS_PIRE0_EL12); break;
case POR_EL1: val = read_sysreg_s(SYS_POR_EL12); break;
case ESR_EL1: val = read_sysreg_s(SYS_ESR_EL12); break;
case AFSR0_EL1: val = read_sysreg_s(SYS_AFSR0_EL12); break;
case AFSR1_EL1: val = read_sysreg_s(SYS_AFSR1_EL12); break;
case FAR_EL1: val = read_sysreg_s(SYS_FAR_EL12); break;
case MAIR_EL1: val = read_sysreg_s(SYS_MAIR_EL12); break;
case VBAR_EL1: val = read_sysreg_s(SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
case AMAIR_EL1: val = read_sysreg_s(SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
case ELR_EL1: val = read_sysreg_s(SYS_ELR_EL12); break;
case SPSR_EL1: val = read_sysreg_s(SYS_SPSR_EL12); break;
case ZCR_EL1: val = read_sysreg_s(SYS_ZCR_EL12); break;
case SCTLR2_EL1: val = read_sysreg_s(SYS_SCTLR2_EL12); break;
case TPIDR_EL0: val = read_sysreg_s(SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: val = read_sysreg_s(SYS_TPIDR_EL1); break;
case PAR_EL1: val = read_sysreg_par(); break;
case DACR32_EL2: val = read_sysreg_s(SYS_DACR32_EL2); break;
case IFSR32_EL2: val = read_sysreg_s(SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
default: WARN_ON_ONCE(1);
}
if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
if (!is_hyp_ctxt(vcpu))
goto memory_read;
return val;
}
static void write_sr_to_cpu(enum vcpu_sysreg reg, u64 val)
{
switch (reg) {
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
case TCR2_EL1: write_sysreg_s(val, SYS_TCR2_EL12); break;
case PIR_EL1: write_sysreg_s(val, SYS_PIR_EL12); break;
case PIRE0_EL1: write_sysreg_s(val, SYS_PIRE0_EL12); break;
case POR_EL1: write_sysreg_s(val, SYS_POR_EL12); break;
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break;
case ZCR_EL1: write_sysreg_s(val, SYS_ZCR_EL12); break;
case SCTLR2_EL1: write_sysreg_s(val, SYS_SCTLR2_EL12); break;
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
default: WARN_ON_ONCE(1);
}
}
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg reg)
{
struct sr_loc loc = {};
locate_register(vcpu, reg, &loc);
WARN_ON_ONCE(!has_vhe() && loc.loc != SR_LOC_MEMORY);
if (loc.loc & SR_LOC_SPECIAL) {
u64 val;
WARN_ON_ONCE(loc.loc & ~SR_LOC_SPECIAL);
/*
* CNTHCTL_EL2 requires some special treatment to
* account for the bits that can be set via CNTKCTL_EL1.
* CNTHCTL_EL2 requires some special treatment to account
* for the bits that can be set via CNTKCTL_EL1 when E2H==1.
*/
switch (reg) {
case CNTHCTL_EL2:
if (vcpu_el2_e2h_is_set(vcpu)) {
val = read_sysreg_el1(SYS_CNTKCTL);
val &= CNTKCTL_VALID_BITS;
val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
return val;
}
break;
val = read_sysreg_el1(SYS_CNTKCTL);
val &= CNTKCTL_VALID_BITS;
val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
return val;
default:
WARN_ON_ONCE(1);
}
/*
* If this register does not have an EL1 counterpart,
* then read the stored EL2 version.
*/
if (reg == el1r)
goto memory_read;
/*
* If we have a non-VHE guest and that the sysreg
* requires translation to be used at EL1, use the
* in-memory copy instead.
*/
if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
goto memory_read;
/* Get the current version of the EL1 counterpart. */
WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
if (reg >= __SANITISED_REG_START__)
val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
return val;
}
/* EL1 register can't be on the CPU if the guest is in vEL2. */
if (unlikely(is_hyp_ctxt(vcpu)))
goto memory_read;
if (loc.loc & SR_LOC_LOADED) {
enum vcpu_sysreg map_reg = reg;
if (__vcpu_read_sys_reg_from_cpu(reg, &val))
return val;
if (loc.loc & SR_LOC_MAPPED)
map_reg = loc.map_reg;
if (!(loc.loc & SR_LOC_XLATED)) {
u64 val = read_sr_from_cpu(map_reg);
if (reg >= __SANITISED_REG_START__)
val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
return val;
}
}
memory_read:
return __vcpu_sys_reg(vcpu, reg);
}
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, enum vcpu_sysreg reg)
{
u64 (*xlate)(u64) = NULL;
unsigned int el1r;
struct sr_loc loc = {};
if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
goto memory_write;
locate_register(vcpu, reg, &loc);
if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
if (!is_hyp_ctxt(vcpu))
goto memory_write;
WARN_ON_ONCE(!has_vhe() && loc.loc != SR_LOC_MEMORY);
/*
* Always store a copy of the write to memory to avoid having
* to reverse-translate virtual EL2 system registers for a
* non-VHE guest hypervisor.
*/
__vcpu_assign_sys_reg(vcpu, reg, val);
if (loc.loc & SR_LOC_SPECIAL) {
WARN_ON_ONCE(loc.loc & ~SR_LOC_SPECIAL);
switch (reg) {
case CNTHCTL_EL2:
/*
* If E2H=0, CNHTCTL_EL2 is a pure shadow register.
* Otherwise, some of the bits are backed by
* If E2H=1, some of the bits are backed by
* CNTKCTL_EL1, while the rest is kept in memory.
* Yes, this is fun stuff.
*/
if (vcpu_el2_e2h_is_set(vcpu))
write_sysreg_el1(val, SYS_CNTKCTL);
return;
write_sysreg_el1(val, SYS_CNTKCTL);
break;
default:
WARN_ON_ONCE(1);
}
/* No EL1 counterpart? We're done here.? */
if (reg == el1r)
return;
if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
val = xlate(val);
/* Redirect this to the EL1 version of the register. */
WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
return;
}
/* EL1 register can't be on the CPU if the guest is in vEL2. */
if (unlikely(is_hyp_ctxt(vcpu)))
goto memory_write;
if (loc.loc & SR_LOC_LOADED) {
enum vcpu_sysreg map_reg = reg;
u64 xlated_val;
if (__vcpu_write_sys_reg_to_cpu(val, reg))
return;
if (reg >= __SANITISED_REG_START__)
val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
if (loc.loc & SR_LOC_MAPPED)
map_reg = loc.map_reg;
if (loc.loc & SR_LOC_XLATED)
xlated_val = loc.xlate(val);
else
xlated_val = val;
write_sr_to_cpu(map_reg, xlated_val);
/*
* Fall through to write the backing store anyway, which
* allows translated registers to be directly read without a
* reverse translation.
*/
}
memory_write:
__vcpu_assign_sys_reg(vcpu, reg, val);
}
@ -1584,6 +1710,7 @@ static u8 pmuver_to_perfmon(u8 pmuver)
}
static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
static u64 sanitise_id_aa64pfr1_el1(const struct kvm_vcpu *vcpu, u64 val);
static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
/* Read a sanitised cpufeature ID register by sys_reg_desc */
@ -1606,19 +1733,7 @@ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
val = sanitise_id_aa64pfr0_el1(vcpu, val);
break;
case SYS_ID_AA64PFR1_EL1:
if (!kvm_has_mte(vcpu->kvm)) {
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
}
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
val = sanitise_id_aa64pfr1_el1(vcpu, val);
break;
case SYS_ID_AA64PFR2_EL1:
val &= ID_AA64PFR2_EL1_FPMR |
@ -1628,18 +1743,18 @@ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
break;
case SYS_ID_AA64ISAR1_EL1:
if (!vcpu_has_ptrauth(vcpu))
val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
val &= ~(ID_AA64ISAR1_EL1_APA |
ID_AA64ISAR1_EL1_API |
ID_AA64ISAR1_EL1_GPA |
ID_AA64ISAR1_EL1_GPI);
break;
case SYS_ID_AA64ISAR2_EL1:
if (!vcpu_has_ptrauth(vcpu))
val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
val &= ~(ID_AA64ISAR2_EL1_APA3 |
ID_AA64ISAR2_EL1_GPA3);
if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
has_broken_cntvoff())
val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
val &= ~ID_AA64ISAR2_EL1_WFxT;
break;
case SYS_ID_AA64ISAR3_EL1:
val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
@ -1655,7 +1770,7 @@ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
ID_AA64MMFR3_EL1_S1PIE;
break;
case SYS_ID_MMFR4_EL1:
val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
val &= ~ID_MMFR4_EL1_CCIDX;
break;
}
@ -1836,6 +1951,31 @@ static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
return val;
}
static u64 sanitise_id_aa64pfr1_el1(const struct kvm_vcpu *vcpu, u64 val)
{
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
if (!kvm_has_mte(vcpu->kvm)) {
val &= ~ID_AA64PFR1_EL1_MTE;
val &= ~ID_AA64PFR1_EL1_MTE_frac;
}
if (!(cpus_have_final_cap(ARM64_HAS_RASV1P1_EXTN) &&
SYS_FIELD_GET(ID_AA64PFR0_EL1, RAS, pfr0) == ID_AA64PFR0_EL1_RAS_IMP))
val &= ~ID_AA64PFR1_EL1_RAS_frac;
val &= ~ID_AA64PFR1_EL1_SME;
val &= ~ID_AA64PFR1_EL1_RNDR_trap;
val &= ~ID_AA64PFR1_EL1_NMI;
val &= ~ID_AA64PFR1_EL1_GCS;
val &= ~ID_AA64PFR1_EL1_THE;
val &= ~ID_AA64PFR1_EL1_MTEX;
val &= ~ID_AA64PFR1_EL1_PFAR;
val &= ~ID_AA64PFR1_EL1_MPAM_frac;
return val;
}
static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
{
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
@ -2697,6 +2837,18 @@ static bool access_ras(struct kvm_vcpu *vcpu,
struct kvm *kvm = vcpu->kvm;
switch(reg_to_encoding(r)) {
case SYS_ERXPFGCDN_EL1:
case SYS_ERXPFGCTL_EL1:
case SYS_ERXPFGF_EL1:
case SYS_ERXMISC2_EL1:
case SYS_ERXMISC3_EL1:
if (!(kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1) ||
(kvm_has_feat_enum(kvm, ID_AA64PFR0_EL1, RAS, IMP) &&
kvm_has_feat(kvm, ID_AA64PFR1_EL1, RAS_frac, RASv1p1)))) {
kvm_inject_undefined(vcpu);
return false;
}
break;
default:
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) {
kvm_inject_undefined(vcpu);
@ -2929,7 +3081,6 @@ static const struct sys_reg_desc sys_reg_descs[] = {
~(ID_AA64PFR0_EL1_AMU |
ID_AA64PFR0_EL1_MPAM |
ID_AA64PFR0_EL1_SVE |
ID_AA64PFR0_EL1_RAS |
ID_AA64PFR0_EL1_AdvSIMD |
ID_AA64PFR0_EL1_FP)),
ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
@ -2943,7 +3094,6 @@ static const struct sys_reg_desc sys_reg_descs[] = {
ID_AA64PFR1_EL1_SME |
ID_AA64PFR1_EL1_RES0 |
ID_AA64PFR1_EL1_MPAM_frac |
ID_AA64PFR1_EL1_RAS_frac |
ID_AA64PFR1_EL1_MTE)),
ID_WRITABLE(ID_AA64PFR2_EL1,
ID_AA64PFR2_EL1_FPMR |
@ -3063,8 +3213,13 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_ERXCTLR_EL1), access_ras },
{ SYS_DESC(SYS_ERXSTATUS_EL1), access_ras },
{ SYS_DESC(SYS_ERXADDR_EL1), access_ras },
{ SYS_DESC(SYS_ERXPFGF_EL1), access_ras },
{ SYS_DESC(SYS_ERXPFGCTL_EL1), access_ras },
{ SYS_DESC(SYS_ERXPFGCDN_EL1), access_ras },
{ SYS_DESC(SYS_ERXMISC0_EL1), access_ras },
{ SYS_DESC(SYS_ERXMISC1_EL1), access_ras },
{ SYS_DESC(SYS_ERXMISC2_EL1), access_ras },
{ SYS_DESC(SYS_ERXMISC3_EL1), access_ras },
MTE_REG(TFSR_EL1),
MTE_REG(TFSRE0_EL1),

View file

@ -50,6 +50,14 @@ bool vgic_has_its(struct kvm *kvm)
bool vgic_supports_direct_msis(struct kvm *kvm)
{
/*
* Deliberately conflate vLPI and vSGI support on GICv4.1 hardware,
* indirectly allowing userspace to control whether or not vPEs are
* allocated for the VM.
*/
if (system_supports_direct_sgis() && !vgic_supports_direct_sgis(kvm))
return false;
return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
}

View file

@ -1091,7 +1091,7 @@ int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
len = vgic_v3_init_dist_iodev(io_device);
break;
default:
BUG_ON(1);
BUG();
}
io_device->base_addr = dist_base_address;

View file

@ -396,15 +396,7 @@ bool vgic_supports_direct_sgis(struct kvm *kvm);
static inline bool vgic_supports_direct_irqs(struct kvm *kvm)
{
/*
* Deliberately conflate vLPI and vSGI support on GICv4.1 hardware,
* indirectly allowing userspace to control whether or not vPEs are
* allocated for the VM.
*/
if (system_supports_direct_sgis())
return vgic_supports_direct_sgis(kvm);
return vgic_supports_direct_msis(kvm);
return vgic_supports_direct_msis(kvm) || vgic_supports_direct_sgis(kvm);
}
int vgic_v4_init(struct kvm *kvm);

View file

@ -53,6 +53,7 @@ HAS_S1PIE
HAS_S1POE
HAS_SCTLR2
HAS_RAS_EXTN
HAS_RASV1P1_EXTN
HAS_RNG
HAS_SB
HAS_STAGE2_FWB

View file

@ -39,6 +39,7 @@ int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
unsigned long size, bool writable, bool in_atomic)
{
int ret = 0;
pgprot_t prot;
unsigned long pfn;
phys_addr_t addr, end;
struct kvm_mmu_memory_cache pcache = {
@ -55,10 +56,12 @@ int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
pfn = __phys_to_pfn(hpa);
prot = pgprot_noncached(PAGE_WRITE);
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
map.addr = addr;
map.pte = pfn_pte(pfn, PAGE_KERNEL_IO);
map.pte = pfn_pte(pfn, prot);
map.pte = pte_mkdirty(map.pte);
map.level = 0;
if (!writable)

View file

@ -683,7 +683,7 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
}
/**
* check_vcpu_requests - check and handle pending vCPU requests
* kvm_riscv_check_vcpu_requests - check and handle pending vCPU requests
* @vcpu: the VCPU pointer
*
* Return: 1 if we should enter the guest

View file

@ -182,6 +182,8 @@ int kvm_riscv_vcpu_set_reg_vector(struct kvm_vcpu *vcpu,
struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
unsigned long reg_val;
if (reg_size != sizeof(reg_val))
return -EINVAL;
if (copy_from_user(&reg_val, uaddr, reg_size))
return -EFAULT;
if (reg_val != cntx->vector.vlenb)

View file

@ -810,6 +810,8 @@ static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
if (min > map->max_apic_id)
return 0;
min = array_index_nospec(min, map->max_apic_id + 1);
for_each_set_bit(i, ipi_bitmap,
min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
if (map->phys_map[min + i]) {

View file

@ -718,13 +718,6 @@ static void sev_clflush_pages(struct page *pages[], unsigned long npages)
static void sev_writeback_caches(struct kvm *kvm)
{
/*
* Note, the caller is responsible for ensuring correctness if the mask
* can be modified, e.g. if a CPU could be doing VMRUN.
*/
if (cpumask_empty(to_kvm_sev_info(kvm)->have_run_cpus))
return;
/*
* Ensure that all dirty guest tagged cache entries are written back
* before releasing the pages back to the system for use. CLFLUSH will
@ -739,6 +732,9 @@ static void sev_writeback_caches(struct kvm *kvm)
* serializing multiple calls and having responding CPUs (to the IPI)
* mark themselves as still running if they are running (or about to
* run) a vCPU for the VM.
*
* Note, the caller is responsible for ensuring correctness if the mask
* can be modified, e.g. if a CPU could be doing VMRUN.
*/
wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
}

View file

@ -9908,8 +9908,11 @@ static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
rcu_read_lock();
map = rcu_dereference(vcpu->kvm->arch.apic_map);
if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
target = map->phys_map[dest_id]->vcpu;
if (likely(map) && dest_id <= map->max_apic_id) {
dest_id = array_index_nospec(dest_id, map->max_apic_id + 1);
if (map->phys_map[dest_id])
target = map->phys_map[dest_id]->vcpu;
}
rcu_read_unlock();

View file

@ -1080,9 +1080,6 @@
#define ARM64_FEATURE_FIELD_BITS 4
/* Defined for compatibility only, do not add new users. */
#define ARM64_FEATURE_MASK(x) (x##_MASK)
#ifdef __ASSEMBLY__
.macro mrs_s, rt, sreg

View file

@ -751,7 +751,7 @@
for (; _metadata->trigger; _metadata->trigger = \
__bail(_assert, _metadata))
#define is_signed_type(var) (!!(((__typeof__(var))(-1)) < (__typeof__(var))1))
#define is_signed_var(var) (!!(((__typeof__(var))(-1)) < (__typeof__(var))1))
#define __EXPECT(_expected, _expected_str, _seen, _seen_str, _t, _assert) do { \
/* Avoid multiple evaluation of the cases */ \
@ -759,7 +759,7 @@
__typeof__(_seen) __seen = (_seen); \
if (!(__exp _t __seen)) { \
/* Report with actual signedness to avoid weird output. */ \
switch (is_signed_type(__exp) * 2 + is_signed_type(__seen)) { \
switch (is_signed_var(__exp) * 2 + is_signed_var(__seen)) { \
case 0: { \
uintmax_t __exp_print = (uintmax_t)__exp; \
uintmax_t __seen_print = (uintmax_t)__seen; \

View file

@ -169,6 +169,7 @@ TEST_GEN_PROGS_arm64 += arm64/vgic_irq
TEST_GEN_PROGS_arm64 += arm64/vgic_lpi_stress
TEST_GEN_PROGS_arm64 += arm64/vpmu_counter_access
TEST_GEN_PROGS_arm64 += arm64/no-vgic-v3
TEST_GEN_PROGS_arm64 += arm64/kvm-uuid
TEST_GEN_PROGS_arm64 += access_tracking_perf_test
TEST_GEN_PROGS_arm64 += arch_timer
TEST_GEN_PROGS_arm64 += coalesced_io_test

View file

@ -146,7 +146,7 @@ static bool vcpu_aarch64_only(struct kvm_vcpu *vcpu)
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
return el0 == ID_AA64PFR0_EL1_EL0_IMP;
}

View file

@ -116,12 +116,12 @@ static void reset_debug_state(void)
/* Reset all bcr/bvr/wcr/wvr registers */
dfr0 = read_sysreg(id_aa64dfr0_el1);
brps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_BRPs), dfr0);
brps = FIELD_GET(ID_AA64DFR0_EL1_BRPs, dfr0);
for (i = 0; i <= brps; i++) {
write_dbgbcr(i, 0);
write_dbgbvr(i, 0);
}
wrps = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_WRPs), dfr0);
wrps = FIELD_GET(ID_AA64DFR0_EL1_WRPs, dfr0);
for (i = 0; i <= wrps; i++) {
write_dbgwcr(i, 0);
write_dbgwvr(i, 0);
@ -418,7 +418,7 @@ static void guest_code_ss(int test_cnt)
static int debug_version(uint64_t id_aa64dfr0)
{
return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), id_aa64dfr0);
return FIELD_GET(ID_AA64DFR0_EL1_DebugVer, id_aa64dfr0);
}
static void test_guest_debug_exceptions(uint8_t bpn, uint8_t wpn, uint8_t ctx_bpn)
@ -539,14 +539,14 @@ void test_guest_debug_exceptions_all(uint64_t aa64dfr0)
int b, w, c;
/* Number of breakpoints */
brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_BRPs), aa64dfr0) + 1;
brp_num = FIELD_GET(ID_AA64DFR0_EL1_BRPs, aa64dfr0) + 1;
__TEST_REQUIRE(brp_num >= 2, "At least two breakpoints are required");
/* Number of watchpoints */
wrp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_WRPs), aa64dfr0) + 1;
wrp_num = FIELD_GET(ID_AA64DFR0_EL1_WRPs, aa64dfr0) + 1;
/* Number of context aware breakpoints */
ctx_brp_num = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_CTX_CMPs), aa64dfr0) + 1;
ctx_brp_num = FIELD_GET(ID_AA64DFR0_EL1_CTX_CMPs, aa64dfr0) + 1;
pr_debug("%s brp_num:%d, wrp_num:%d, ctx_brp_num:%d\n", __func__,
brp_num, wrp_num, ctx_brp_num);

View file

@ -0,0 +1,70 @@
// SPDX-License-Identifier: GPL-2.0
// Check that nobody has tampered with KVM's UID
#include <errno.h>
#include <linux/arm-smccc.h>
#include <asm/kvm.h>
#include <kvm_util.h>
#include "processor.h"
/*
* Do NOT redefine these constants, or try to replace them with some
* "common" version. They are hardcoded here to detect any potential
* breakage happening in the rest of the kernel.
*
* KVM UID value: 28b46fb6-2ec5-11e9-a9ca-4b564d003a74
*/
#define ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0 0xb66fb428U
#define ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1 0xe911c52eU
#define ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2 0x564bcaa9U
#define ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3 0x743a004dU
static void guest_code(void)
{
struct arm_smccc_res res = {};
smccc_hvc(ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID, 0, 0, 0, 0, 0, 0, 0, &res);
__GUEST_ASSERT(res.a0 == ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0 &&
res.a1 == ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1 &&
res.a2 == ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2 &&
res.a3 == ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3,
"Unexpected KVM-specific UID %lx %lx %lx %lx\n", res.a0, res.a1, res.a2, res.a3);
GUEST_DONE();
}
int main (int argc, char *argv[])
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
struct ucall uc;
bool guest_done = false;
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
while (!guest_done) {
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
break;
case UCALL_DONE:
guest_done = true;
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_PRINTF:
printf("%s", uc.buffer);
break;
default:
TEST_FAIL("Unexpected guest exit");
}
}
kvm_vm_free(vm);
return 0;
}

View file

@ -54,7 +54,7 @@ static void guest_code(void)
* Check that we advertise that ID_AA64PFR0_EL1.GIC == 0, having
* hidden the feature at runtime without any other userspace action.
*/
__GUEST_ASSERT(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC),
__GUEST_ASSERT(FIELD_GET(ID_AA64PFR0_EL1_GIC,
read_sysreg(id_aa64pfr0_el1)) == 0,
"GICv3 wrongly advertised");
@ -165,7 +165,7 @@ int main(int argc, char *argv[])
vm = vm_create_with_one_vcpu(&vcpu, NULL);
pfr0 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
__TEST_REQUIRE(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), pfr0),
__TEST_REQUIRE(FIELD_GET(ID_AA64PFR0_EL1_GIC, pfr0),
"GICv3 not supported.");
kvm_vm_free(vm);

View file

@ -95,14 +95,14 @@ static bool guest_check_lse(void)
uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
uint64_t atomic;
atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
atomic = FIELD_GET(ID_AA64ISAR0_EL1_ATOMIC, isar0);
return atomic >= 2;
}
static bool guest_check_dc_zva(void)
{
uint64_t dczid = read_sysreg(dczid_el0);
uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
uint64_t dzp = FIELD_GET(DCZID_EL0_DZP, dczid);
return dzp == 0;
}
@ -195,7 +195,7 @@ static bool guest_set_ha(void)
uint64_t hadbs, tcr;
/* Skip if HA is not supported. */
hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
hadbs = FIELD_GET(ID_AA64MMFR1_EL1_HAFDBS, mmfr1);
if (hadbs == 0)
return false;

View file

@ -243,6 +243,7 @@ static void guest_code(void)
GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1);
GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
GUEST_REG_SYNC(SYS_CTR_EL0);
GUEST_REG_SYNC(SYS_MIDR_EL1);
@ -594,8 +595,8 @@ static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
*/
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
mte = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), val);
mte_frac = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac), val);
mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val);
mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
@ -612,7 +613,7 @@ static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
}
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
mte_frac = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac), val);
mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
else
@ -774,7 +775,7 @@ int main(void)
/* Check for AARCH64 only system */
val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
ksft_print_header();

View file

@ -441,7 +441,7 @@ static void create_vpmu_vm(void *guest_code)
/* Make sure that PMUv3 support is indicated in the ID register */
dfr0 = vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1));
pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
pmuver = FIELD_GET(ID_AA64DFR0_EL1_PMUVer, dfr0);
TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
"Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver);

View file

@ -573,15 +573,15 @@ void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN4), val);
gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN4, val);
*ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
ID_AA64MMFR0_EL1_TGRAN4_52_BIT);
gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN64), val);
gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN64, val);
*ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
ID_AA64MMFR0_EL1_TGRAN64_IMP);
gran = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_TGRAN16), val);
gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN16, val);
*ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
ID_AA64MMFR0_EL1_TGRAN16_52_BIT);