linux/tools/testing/selftests/resctrl/mbm_test.c

146 lines
3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Memory Bandwidth Monitoring (MBM) test
*
* Copyright (C) 2018 Intel Corporation
*
* Authors:
* Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
* Fenghua Yu <fenghua.yu@intel.com>
*/
#include "resctrl.h"
#define RESULT_FILE_NAME "result_mbm"
selftests/resctrl: Fix MBA/MBM results reporting format MBM unit test starts fill_buf (default built-in benchmark) in a new con_mon group (c1, m1) and records resctrl reported mbm values and iMC (Integrated Memory Controller) values every second. It does this for five seconds (randomly chosen value) in total. It then calculates average of resctrl_mbm values and imc_mbm values and if the difference is greater than 300 MB/sec (randomly chosen value), the test treats it as a failure. MBA unit test is similar to MBM but after every run it changes schemata. Checking for a difference of 300 MB/sec doesn't look very meaningful when the mbm values are changing over a wide range. For example, below are the values running MBA test on SKL with different allocations 1. With 10% as schemata both iMC and resctrl mbm_values are around 2000 MB/sec 2. With 100% as schemata both iMC and resctrl mbm_values are around 10000 MB/sec A 300 MB/sec difference between resctrl_mbm and imc_mbm values is acceptable at 100% schemata but it isn't acceptable at 10% schemata because that's a huge difference. So, fix this by checking for percentage difference instead of absolute difference i.e. check if the difference between resctrl_mbm value and imc_mbm value is within 5% (randomly chosen value) of imc_mbm value. If the difference is greater than 5% of imc_mbm value, treat it is a failure. Tested-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-03-17 02:22:48 +00:00
#define MAX_DIFF_PERCENT 5
#define NUM_OF_RUNS 5
static int
show_bw_info(unsigned long *bw_imc, unsigned long *bw_resc, int span)
{
unsigned long avg_bw_imc = 0, avg_bw_resc = 0;
unsigned long sum_bw_imc = 0, sum_bw_resc = 0;
selftests/resctrl: Fix MBA/MBM results reporting format MBM unit test starts fill_buf (default built-in benchmark) in a new con_mon group (c1, m1) and records resctrl reported mbm values and iMC (Integrated Memory Controller) values every second. It does this for five seconds (randomly chosen value) in total. It then calculates average of resctrl_mbm values and imc_mbm values and if the difference is greater than 300 MB/sec (randomly chosen value), the test treats it as a failure. MBA unit test is similar to MBM but after every run it changes schemata. Checking for a difference of 300 MB/sec doesn't look very meaningful when the mbm values are changing over a wide range. For example, below are the values running MBA test on SKL with different allocations 1. With 10% as schemata both iMC and resctrl mbm_values are around 2000 MB/sec 2. With 100% as schemata both iMC and resctrl mbm_values are around 10000 MB/sec A 300 MB/sec difference between resctrl_mbm and imc_mbm values is acceptable at 100% schemata but it isn't acceptable at 10% schemata because that's a huge difference. So, fix this by checking for percentage difference instead of absolute difference i.e. check if the difference between resctrl_mbm value and imc_mbm value is within 5% (randomly chosen value) of imc_mbm value. If the difference is greater than 5% of imc_mbm value, treat it is a failure. Tested-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-03-17 02:22:48 +00:00
int runs, ret, avg_diff_per;
float avg_diff = 0;
/*
* Discard the first value which is inaccurate due to monitoring setup
* transition phase.
*/
for (runs = 1; runs < NUM_OF_RUNS ; runs++) {
sum_bw_imc += bw_imc[runs];
sum_bw_resc += bw_resc[runs];
}
avg_bw_imc = sum_bw_imc / 4;
avg_bw_resc = sum_bw_resc / 4;
selftests/resctrl: Fix MBA/MBM results reporting format MBM unit test starts fill_buf (default built-in benchmark) in a new con_mon group (c1, m1) and records resctrl reported mbm values and iMC (Integrated Memory Controller) values every second. It does this for five seconds (randomly chosen value) in total. It then calculates average of resctrl_mbm values and imc_mbm values and if the difference is greater than 300 MB/sec (randomly chosen value), the test treats it as a failure. MBA unit test is similar to MBM but after every run it changes schemata. Checking for a difference of 300 MB/sec doesn't look very meaningful when the mbm values are changing over a wide range. For example, below are the values running MBA test on SKL with different allocations 1. With 10% as schemata both iMC and resctrl mbm_values are around 2000 MB/sec 2. With 100% as schemata both iMC and resctrl mbm_values are around 10000 MB/sec A 300 MB/sec difference between resctrl_mbm and imc_mbm values is acceptable at 100% schemata but it isn't acceptable at 10% schemata because that's a huge difference. So, fix this by checking for percentage difference instead of absolute difference i.e. check if the difference between resctrl_mbm value and imc_mbm value is within 5% (randomly chosen value) of imc_mbm value. If the difference is greater than 5% of imc_mbm value, treat it is a failure. Tested-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-03-17 02:22:48 +00:00
avg_diff = (float)labs(avg_bw_resc - avg_bw_imc) / avg_bw_imc;
avg_diff_per = (int)(avg_diff * 100);
selftests/resctrl: Fix MBA/MBM results reporting format MBM unit test starts fill_buf (default built-in benchmark) in a new con_mon group (c1, m1) and records resctrl reported mbm values and iMC (Integrated Memory Controller) values every second. It does this for five seconds (randomly chosen value) in total. It then calculates average of resctrl_mbm values and imc_mbm values and if the difference is greater than 300 MB/sec (randomly chosen value), the test treats it as a failure. MBA unit test is similar to MBM but after every run it changes schemata. Checking for a difference of 300 MB/sec doesn't look very meaningful when the mbm values are changing over a wide range. For example, below are the values running MBA test on SKL with different allocations 1. With 10% as schemata both iMC and resctrl mbm_values are around 2000 MB/sec 2. With 100% as schemata both iMC and resctrl mbm_values are around 10000 MB/sec A 300 MB/sec difference between resctrl_mbm and imc_mbm values is acceptable at 100% schemata but it isn't acceptable at 10% schemata because that's a huge difference. So, fix this by checking for percentage difference instead of absolute difference i.e. check if the difference between resctrl_mbm value and imc_mbm value is within 5% (randomly chosen value) of imc_mbm value. If the difference is greater than 5% of imc_mbm value, treat it is a failure. Tested-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-03-17 02:22:48 +00:00
ret = avg_diff_per > MAX_DIFF_PERCENT;
ksft_print_msg("%s Check MBM diff within %d%%\n",
selftests/resctrl: Fix MBA/MBM results reporting format MBM unit test starts fill_buf (default built-in benchmark) in a new con_mon group (c1, m1) and records resctrl reported mbm values and iMC (Integrated Memory Controller) values every second. It does this for five seconds (randomly chosen value) in total. It then calculates average of resctrl_mbm values and imc_mbm values and if the difference is greater than 300 MB/sec (randomly chosen value), the test treats it as a failure. MBA unit test is similar to MBM but after every run it changes schemata. Checking for a difference of 300 MB/sec doesn't look very meaningful when the mbm values are changing over a wide range. For example, below are the values running MBA test on SKL with different allocations 1. With 10% as schemata both iMC and resctrl mbm_values are around 2000 MB/sec 2. With 100% as schemata both iMC and resctrl mbm_values are around 10000 MB/sec A 300 MB/sec difference between resctrl_mbm and imc_mbm values is acceptable at 100% schemata but it isn't acceptable at 10% schemata because that's a huge difference. So, fix this by checking for percentage difference instead of absolute difference i.e. check if the difference between resctrl_mbm value and imc_mbm value is within 5% (randomly chosen value) of imc_mbm value. If the difference is greater than 5% of imc_mbm value, treat it is a failure. Tested-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-03-17 02:22:48 +00:00
ret ? "Fail:" : "Pass:", MAX_DIFF_PERCENT);
ksft_print_msg("avg_diff_per: %d%%\n", avg_diff_per);
ksft_print_msg("Span (MB): %d\n", span);
ksft_print_msg("avg_bw_imc: %lu\n", avg_bw_imc);
ksft_print_msg("avg_bw_resc: %lu\n", avg_bw_resc);
return ret;
}
static int check_results(int span)
{
unsigned long bw_imc[NUM_OF_RUNS], bw_resc[NUM_OF_RUNS];
char temp[1024], *token_array[8];
char output[] = RESULT_FILE_NAME;
int runs, ret;
FILE *fp;
ksft_print_msg("Checking for pass/fail\n");
fp = fopen(output, "r");
if (!fp) {
perror(output);
return errno;
}
runs = 0;
while (fgets(temp, sizeof(temp), fp)) {
char *token = strtok(temp, ":\t");
int i = 0;
while (token) {
token_array[i++] = token;
token = strtok(NULL, ":\t");
}
bw_resc[runs] = strtoul(token_array[5], NULL, 0);
bw_imc[runs] = strtoul(token_array[3], NULL, 0);
runs++;
}
ret = show_bw_info(bw_imc, bw_resc, span);
fclose(fp);
return ret;
}
static int mbm_setup(int num, ...)
{
struct resctrl_val_param *p;
static int num_of_runs;
va_list param;
int ret = 0;
/* Run NUM_OF_RUNS times */
if (num_of_runs++ >= NUM_OF_RUNS)
return END_OF_TESTS;
va_start(param, num);
p = va_arg(param, struct resctrl_val_param *);
va_end(param);
/* Set up shemata with 100% allocation on the first run. */
if (num_of_runs == 0)
ret = write_schemata(p->ctrlgrp, "100", p->cpu_no,
p->resctrl_val);
return ret;
}
void mbm_test_cleanup(void)
{
remove(RESULT_FILE_NAME);
}
int mbm_bw_change(int span, int cpu_no, char *bw_report, char **benchmark_cmd)
{
struct resctrl_val_param param = {
.resctrl_val = MBM_STR,
.ctrlgrp = "c1",
.mongrp = "m1",
.span = span,
.cpu_no = cpu_no,
.mum_resctrlfs = 1,
.filename = RESULT_FILE_NAME,
.bw_report = bw_report,
.setup = mbm_setup
};
int ret;
remove(RESULT_FILE_NAME);
ret = resctrl_val(benchmark_cmd, &param);
if (ret)
return ret;
ret = check_results(span);
if (ret)
return ret;
mbm_test_cleanup();
return 0;
}