2019-08-25 10:49:17 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2008-02-04 22:30:43 -08:00
|
|
|
/*
|
2015-11-02 16:16:37 +00:00
|
|
|
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
|
2008-02-04 22:30:43 -08:00
|
|
|
* Copyright (C) 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
|
|
|
*/
|
|
|
|
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
#include <signal.h>
|
2008-02-04 22:30:43 -08:00
|
|
|
#include <sched.h>
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
#include <asm/unistd.h>
|
2008-02-04 22:30:43 -08:00
|
|
|
#include <sys/time.h>
|
2012-10-08 03:27:32 +01:00
|
|
|
#include <as-layout.h>
|
|
|
|
#include <ptrace_user.h>
|
|
|
|
#include <stub-data.h>
|
|
|
|
#include <sysdep/stub.h>
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
|
2008-02-04 22:30:43 -08:00
|
|
|
/*
|
|
|
|
* This is in a separate file because it needs to be compiled with any
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
* extraneous gcc flags (-pg, -fprofile-arcs, -ftest-coverage) disabled
|
2005-11-21 21:32:10 -08:00
|
|
|
*
|
|
|
|
* Use UM_KERN_PAGE_SIZE instead of PAGE_SIZE because that calls getpagesize
|
|
|
|
* on some systems.
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
*/
|
2005-11-21 21:32:04 -08:00
|
|
|
|
2020-10-26 15:39:37 -07:00
|
|
|
void __attribute__ ((__section__ (".__syscall_stub")))
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
stub_clone_handler(void)
|
|
|
|
{
|
2021-07-13 23:47:10 +02:00
|
|
|
struct stub_data *data = get_stub_page();
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
long err;
|
|
|
|
|
|
|
|
err = stub_syscall2(__NR_clone, CLONE_PARENT | CLONE_FILES | SIGCHLD,
|
um: Fix stack pointer alignment
GCC assumes that stack is aligned to 16-byte on call sites [1].
Since GCC 8, GCC began using 16-byte aligned SSE instructions to
implement assignments to structs on stack. When
CC_OPTIMIZE_FOR_PERFORMANCE is enabled, this affects
os-Linux/sigio.c, write_sigio_thread:
struct pollfds *fds, tmp;
tmp = current_poll;
Note that struct pollfds is exactly 16 bytes in size.
GCC 8+ generates assembly similar to:
movdqa (%rdi),%xmm0
movaps %xmm0,-0x50(%rbp)
This is an issue, because movaps will #GP if -0x50(%rbp) is not
aligned to 16 bytes [2], and how rbp gets assigned to is via glibc
clone thread_start, then function prologue, going though execution
trace similar to (showing only relevant instructions):
sub $0x10,%rsi
mov %rcx,0x8(%rsi)
mov %rdi,(%rsi)
syscall
pop %rax
pop %rdi
callq *%rax
push %rbp
mov %rsp,%rbp
The stack pointer always points to the topmost element on stack,
rather then the space right above the topmost. On push, the
pointer decrements first before writing to the memory pointed to
by it. Therefore, there is no need to have the stack pointer
pointer always point to valid memory unless the stack is poped;
so the `- sizeof(void *)` in the code is unnecessary.
On the other hand, glibc reserves the 16 bytes it needs on stack
and pops itself, so by the call instruction the stack pointer
is exactly the caller-supplied sp. It then push the 16 bytes of
the return address and the saved stack pointer, so the base
pointer will be 16-byte aligned if and only if the caller
supplied sp is 16-byte aligned. Therefore, the caller must supply
a 16-byte aligned pointer, which `stack + UM_KERN_PAGE_SIZE`
already satisfies.
On a side note, musl is unaffected by this issue because it forces
16 byte alignment via `and $-16,%rsi` in its clone wrapper.
Similarly, glibc i386 is also unaffected because it has
`andl $0xfffffff0, %ecx`.
To reproduce this bug, enable CONFIG_UML_RTC and
CC_OPTIMIZE_FOR_PERFORMANCE. uml_rtc will call
add_sigio_fd which will then cause write_sigio_thread to either go
into segfault loop or panic with "Segfault with no mm".
Similarly, signal stacks will be aligned by the host kernel upon
signal delivery. `- sizeof(void *)` to sigaltstack is
unconventional and extraneous.
On a related note, initialization of longjmp buffers do require
`- sizeof(void *)`. This is to account for the return address
that would have been pushed to the stack at the call site.
The reason for uml to respect 16-byte alignment, rather than
telling GCC to assume 8-byte alignment like the host kernel since
commit d9b0cde91c60 ("x86-64, gcc: Use
-mpreferred-stack-boundary=3 if supported"), is because uml links
against libc. There is no reason to assume libc is also compiled
with that flag and assumes 8-byte alignment rather than 16-byte.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=40838
[2] https://c9x.me/x86/html/file_module_x86_id_180.html
Signed-off-by: YiFei Zhu <zhuyifei1999@gmail.com>
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Richard Weinberger <richard@nod.at>
2021-04-20 00:56:10 -05:00
|
|
|
(unsigned long)data + UM_KERN_PAGE_SIZE / 2);
|
2021-01-13 22:09:42 +01:00
|
|
|
if (err) {
|
|
|
|
data->parent_err = err;
|
|
|
|
goto done;
|
|
|
|
}
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
|
|
|
|
err = stub_syscall4(__NR_ptrace, PTRACE_TRACEME, 0, 0, 0);
|
2021-01-13 22:09:42 +01:00
|
|
|
if (err) {
|
|
|
|
data->child_err = err;
|
|
|
|
goto done;
|
|
|
|
}
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
|
2021-01-13 22:09:43 +01:00
|
|
|
remap_stack_and_trap();
|
2005-12-18 17:50:39 +01:00
|
|
|
|
|
|
|
done:
|
[PATCH] uml: Proper clone support for skas0
This patch implements the clone-stub mechanism, which allows skas0 to run
with proc_mm==0, even if the clib in UML uses modify_ldt.
Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from
running properly on a SMP-box. In full skas3, I never really saw problems,
but in skas0 they showed up.
More commentary by jdike - What this patch does is makes sure that the host
parent of each new host process matches the UML parent of the corresponding
UML process. This ensures that any changed LDTs are inherited. This is
done by having clone actually called by the UML process from its stub,
rather than by the kernel. We have special syscall stubs that are loaded
onto the stub code page because that code must be completely
self-contained. These stubs are given C interfaces, and used like normal C
functions, but there are subtleties. Principally, we have to be careful
about stack variables in stub_clone_handler after the clone. The code is
written so that there aren't any - everything boils down to a fixed
address. If there were any locals, references to them after the clone
would be wrong because the stack just changed.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07 17:56:50 -07:00
|
|
|
trap_myself();
|
|
|
|
}
|