linux/drivers/net/wireless/silabs/wfx/main.c

499 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Device probe and register.
*
* Copyright (c) 2017-2020, Silicon Laboratories, Inc.
* Copyright (c) 2010, ST-Ericsson
* Copyright (c) 2008, Johannes Berg <johannes@sipsolutions.net>
* Copyright (c) 2008 Nokia Corporation and/or its subsidiary(-ies).
* Copyright (c) 2007-2009, Christian Lamparter <chunkeey@web.de>
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/gpio/consumer.h>
#include <linux/mmc/sdio_func.h>
#include <linux/spi/spi.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
#include "main.h"
#include "wfx.h"
#include "fwio.h"
#include "hwio.h"
#include "bus.h"
#include "bh.h"
#include "sta.h"
#include "key.h"
#include "scan.h"
#include "debug.h"
#include "data_tx.h"
#include "hif_tx_mib.h"
#include "hif_api_cmd.h"
#define WFX_PDS_TLV_TYPE 0x4450 // "PD" (Platform Data) in ascii little-endian
#define WFX_PDS_MAX_CHUNK_SIZE 1500
MODULE_DESCRIPTION("Silicon Labs 802.11 Wireless LAN driver for WF200");
MODULE_AUTHOR("Jérôme Pouiller <jerome.pouiller@silabs.com>");
MODULE_LICENSE("GPL");
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.hw_value = (_rateid), \
.flags = (_flags), \
}
static struct ieee80211_rate wfx_rates[] = {
RATETAB_ENT(10, 0, 0),
RATETAB_ENT(20, 1, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(55, 2, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(110, 3, IEEE80211_RATE_SHORT_PREAMBLE),
RATETAB_ENT(60, 6, 0),
RATETAB_ENT(90, 7, 0),
RATETAB_ENT(120, 8, 0),
RATETAB_ENT(180, 9, 0),
RATETAB_ENT(240, 10, 0),
RATETAB_ENT(360, 11, 0),
RATETAB_ENT(480, 12, 0),
RATETAB_ENT(540, 13, 0),
};
#define CHAN2G(_channel, _freq, _flags) { \
.band = NL80211_BAND_2GHZ, \
.center_freq = (_freq), \
.hw_value = (_channel), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_channel wfx_2ghz_chantable[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static const struct ieee80211_supported_band wfx_band_2ghz = {
.channels = wfx_2ghz_chantable,
.n_channels = ARRAY_SIZE(wfx_2ghz_chantable),
.bitrates = wfx_rates,
.n_bitrates = ARRAY_SIZE(wfx_rates),
.ht_cap = {
/* Receive caps */
.cap = IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_MAX_AMSDU | (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT),
.ht_supported = 1,
.ampdu_factor = IEEE80211_HT_MAX_AMPDU_16K,
.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE,
.mcs = {
.rx_mask = { 0xFF }, /* MCS0 to MCS7 */
.rx_highest = cpu_to_le16(72),
.tx_params = IEEE80211_HT_MCS_TX_DEFINED,
},
},
};
static const struct ieee80211_iface_limit wdev_iface_limits[] = {
{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION) },
{ .max = 1, .types = BIT(NL80211_IFTYPE_AP) },
};
static const struct ieee80211_iface_combination wfx_iface_combinations[] = {
{
.num_different_channels = 2,
.max_interfaces = 2,
.limits = wdev_iface_limits,
.n_limits = ARRAY_SIZE(wdev_iface_limits),
}
};
static const struct ieee80211_ops wfx_ops = {
.start = wfx_start,
.stop = wfx_stop,
.add_interface = wfx_add_interface,
.remove_interface = wfx_remove_interface,
.config = wfx_config,
.tx = wfx_tx,
.wake_tx_queue = ieee80211_handle_wake_tx_queue,
.join_ibss = wfx_join_ibss,
.leave_ibss = wfx_leave_ibss,
.conf_tx = wfx_conf_tx,
.hw_scan = wfx_hw_scan,
.cancel_hw_scan = wfx_cancel_hw_scan,
.start_ap = wfx_start_ap,
.stop_ap = wfx_stop_ap,
.sta_add = wfx_sta_add,
.sta_remove = wfx_sta_remove,
.set_tim = wfx_set_tim,
.set_key = wfx_set_key,
.set_rts_threshold = wfx_set_rts_threshold,
.set_default_unicast_key = wfx_set_default_unicast_key,
.bss_info_changed = wfx_bss_info_changed,
.configure_filter = wfx_configure_filter,
.ampdu_action = wfx_ampdu_action,
.flush = wfx_flush,
.add_chanctx = wfx_add_chanctx,
.remove_chanctx = wfx_remove_chanctx,
.change_chanctx = wfx_change_chanctx,
.assign_vif_chanctx = wfx_assign_vif_chanctx,
.unassign_vif_chanctx = wfx_unassign_vif_chanctx,
.remain_on_channel = wfx_remain_on_channel,
.cancel_remain_on_channel = wfx_cancel_remain_on_channel,
};
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
bool wfx_api_older_than(struct wfx_dev *wdev, int major, int minor)
{
if (wdev->hw_caps.api_version_major < major)
return true;
if (wdev->hw_caps.api_version_major > major)
return false;
if (wdev->hw_caps.api_version_minor < minor)
return true;
return false;
}
/* The device needs data about the antenna configuration. This information in provided by PDS
* (Platform Data Set, this is the wording used in WF200 documentation) files. For hardware
* integrators, the full process to create PDS files is described here:
* https://github.com/SiliconLabs/wfx-firmware/blob/master/PDS/README.md
*
* The PDS file is an array of Time-Length-Value structs.
*/
int wfx_send_pds(struct wfx_dev *wdev, u8 *buf, size_t len)
{
int ret, chunk_type, chunk_len, chunk_num = 0;
if (*buf == '{') {
dev_err(wdev->dev, "PDS: malformed file (legacy format?)\n");
return -EINVAL;
}
while (len > 0) {
chunk_type = get_unaligned_le16(buf + 0);
chunk_len = get_unaligned_le16(buf + 2);
if (chunk_len < 4 || chunk_len > len) {
dev_err(wdev->dev, "PDS:%d: corrupted file\n", chunk_num);
return -EINVAL;
}
if (chunk_type != WFX_PDS_TLV_TYPE) {
dev_info(wdev->dev, "PDS:%d: skip unknown data\n", chunk_num);
goto next;
}
if (chunk_len > WFX_PDS_MAX_CHUNK_SIZE)
dev_warn(wdev->dev, "PDS:%d: unexpectedly large chunk\n", chunk_num);
if (buf[4] != '{' || buf[chunk_len - 1] != '}')
dev_warn(wdev->dev, "PDS:%d: unexpected content\n", chunk_num);
ret = wfx_hif_configuration(wdev, buf + 4, chunk_len - 4);
if (ret > 0) {
dev_err(wdev->dev, "PDS:%d: invalid data (unsupported options?)\n", chunk_num);
return -EINVAL;
}
if (ret == -ETIMEDOUT) {
dev_err(wdev->dev, "PDS:%d: chip didn't reply (corrupted file?)\n", chunk_num);
return ret;
}
if (ret) {
dev_err(wdev->dev, "PDS:%d: chip returned an unknown error\n", chunk_num);
return -EIO;
}
next:
chunk_num++;
len -= chunk_len;
buf += chunk_len;
}
return 0;
}
static int wfx_send_pdata_pds(struct wfx_dev *wdev)
{
int ret = 0;
const struct firmware *pds;
u8 *tmp_buf;
ret = request_firmware(&pds, wdev->pdata.file_pds, wdev->dev);
if (ret) {
dev_err(wdev->dev, "can't load antenna parameters (PDS file %s). The device may be unstable.\n",
wdev->pdata.file_pds);
return ret;
}
tmp_buf = kmemdup(pds->data, pds->size, GFP_KERNEL);
if (!tmp_buf) {
ret = -ENOMEM;
goto release_fw;
}
ret = wfx_send_pds(wdev, tmp_buf, pds->size);
kfree(tmp_buf);
release_fw:
release_firmware(pds);
return ret;
}
static void wfx_free_common(void *data)
{
struct wfx_dev *wdev = data;
mutex_destroy(&wdev->tx_power_loop_info_lock);
mutex_destroy(&wdev->rx_stats_lock);
mutex_destroy(&wdev->scan_lock);
mutex_destroy(&wdev->conf_mutex);
ieee80211_free_hw(wdev->hw);
}
struct wfx_dev *wfx_init_common(struct device *dev, const struct wfx_platform_data *pdata,
const struct wfx_hwbus_ops *hwbus_ops, void *hwbus_priv)
{
struct ieee80211_hw *hw;
struct wfx_dev *wdev;
hw = ieee80211_alloc_hw(sizeof(struct wfx_dev), &wfx_ops);
if (!hw)
return NULL;
SET_IEEE80211_DEV(hw, dev);
ieee80211_hw_set(hw, TX_AMPDU_SETUP_IN_HW);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, CONNECTION_MONITOR);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, MFP_CAPABLE);
hw->vif_data_size = sizeof(struct wfx_vif);
hw->sta_data_size = sizeof(struct wfx_sta_priv);
hw->queues = 4;
hw->max_rates = 8;
hw->max_rate_tries = 8;
hw->extra_tx_headroom = sizeof(struct wfx_hif_msg) + sizeof(struct wfx_hif_req_tx) +
4 /* alignment */ + 8 /* TKIP IV */;
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_AP);
hw->wiphy->probe_resp_offload = NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P |
NL80211_PROBE_RESP_OFFLOAD_SUPPORT_80211U;
hw->wiphy->features |= NL80211_FEATURE_AP_SCAN;
hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;
hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
hw->wiphy->max_remain_on_channel_duration = 5000;
hw->wiphy->max_ap_assoc_sta = HIF_LINK_ID_MAX;
hw->wiphy->max_scan_ssids = 2;
hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
hw->wiphy->n_iface_combinations = ARRAY_SIZE(wfx_iface_combinations);
hw->wiphy->iface_combinations = wfx_iface_combinations;
/* FIXME: also copy wfx_rates and wfx_2ghz_chantable */
hw->wiphy->bands[NL80211_BAND_2GHZ] = devm_kmemdup(dev, &wfx_band_2ghz,
sizeof(wfx_band_2ghz), GFP_KERNEL);
if (!hw->wiphy->bands[NL80211_BAND_2GHZ])
goto err;
wdev = hw->priv;
wdev->hw = hw;
wdev->dev = dev;
wdev->hwbus_ops = hwbus_ops;
wdev->hwbus_priv = hwbus_priv;
memcpy(&wdev->pdata, pdata, sizeof(*pdata));
of_property_read_string(dev->of_node, "silabs,antenna-config-file", &wdev->pdata.file_pds);
wdev->pdata.gpio_wakeup = devm_gpiod_get_optional(dev, "wakeup", GPIOD_OUT_LOW);
if (IS_ERR(wdev->pdata.gpio_wakeup))
goto err;
if (wdev->pdata.gpio_wakeup)
gpiod_set_consumer_name(wdev->pdata.gpio_wakeup, "wfx wakeup");
mutex_init(&wdev->conf_mutex);
mutex_init(&wdev->scan_lock);
mutex_init(&wdev->rx_stats_lock);
mutex_init(&wdev->tx_power_loop_info_lock);
init_completion(&wdev->firmware_ready);
INIT_DELAYED_WORK(&wdev->cooling_timeout_work, wfx_cooling_timeout_work);
skb_queue_head_init(&wdev->tx_pending);
init_waitqueue_head(&wdev->tx_dequeue);
wfx_init_hif_cmd(&wdev->hif_cmd);
if (devm_add_action_or_reset(dev, wfx_free_common, wdev))
return NULL;
return wdev;
err:
ieee80211_free_hw(hw);
return NULL;
}
int wfx_probe(struct wfx_dev *wdev)
{
int i;
int err;
struct gpio_desc *gpio_saved;
/* During first part of boot, gpio_wakeup cannot yet been used. So prevent bh() to touch
* it.
*/
gpio_saved = wdev->pdata.gpio_wakeup;
wdev->pdata.gpio_wakeup = NULL;
wdev->poll_irq = true;
wdev->bh_wq = alloc_workqueue("wfx_bh_wq", WQ_HIGHPRI, 0);
if (!wdev->bh_wq)
return -ENOMEM;
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
wfx_bh_register(wdev);
err = wfx_init_device(wdev);
if (err)
goto bh_unregister;
wfx_bh_poll_irq(wdev);
err = wait_for_completion_timeout(&wdev->firmware_ready, 1 * HZ);
if (err == 0) {
dev_err(wdev->dev, "timeout while waiting for startup indication\n");
err = -ETIMEDOUT;
goto bh_unregister;
}
/* FIXME: fill wiphy::hw_version */
dev_info(wdev->dev, "started firmware %d.%d.%d \"%s\" (API: %d.%d, keyset: %02X, caps: 0x%.8X)\n",
wdev->hw_caps.firmware_major, wdev->hw_caps.firmware_minor,
wdev->hw_caps.firmware_build, wdev->hw_caps.firmware_label,
wdev->hw_caps.api_version_major, wdev->hw_caps.api_version_minor,
wdev->keyset, wdev->hw_caps.link_mode);
snprintf(wdev->hw->wiphy->fw_version,
sizeof(wdev->hw->wiphy->fw_version),
"%d.%d.%d",
wdev->hw_caps.firmware_major,
wdev->hw_caps.firmware_minor,
wdev->hw_caps.firmware_build);
if (wfx_api_older_than(wdev, 1, 0)) {
dev_err(wdev->dev, "unsupported firmware API version (expect 1 while firmware returns %d)\n",
wdev->hw_caps.api_version_major);
err = -EOPNOTSUPP;
goto bh_unregister;
}
if (wdev->hw_caps.link_mode == SEC_LINK_ENFORCED) {
dev_err(wdev->dev, "chip require secure_link, but can't negotiate it\n");
goto bh_unregister;
}
if (wdev->hw_caps.region_sel_mode) {
wdev->hw->wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS;
wdev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels[11].flags |=
IEEE80211_CHAN_NO_IR;
wdev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels[12].flags |=
IEEE80211_CHAN_NO_IR;
wdev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels[13].flags |=
IEEE80211_CHAN_DISABLED;
}
dev_dbg(wdev->dev, "sending configuration file %s\n", wdev->pdata.file_pds);
err = wfx_send_pdata_pds(wdev);
if (err < 0 && err != -ENOENT)
goto bh_unregister;
wdev->poll_irq = false;
err = wdev->hwbus_ops->irq_subscribe(wdev->hwbus_priv);
if (err)
goto bh_unregister;
err = wfx_hif_use_multi_tx_conf(wdev, true);
if (err)
dev_err(wdev->dev, "misconfigured IRQ?\n");
wdev->pdata.gpio_wakeup = gpio_saved;
if (wdev->pdata.gpio_wakeup) {
dev_dbg(wdev->dev, "enable 'quiescent' power mode with wakeup GPIO and PDS file %s\n",
wdev->pdata.file_pds);
gpiod_set_value_cansleep(wdev->pdata.gpio_wakeup, 1);
wfx_control_reg_write(wdev, 0);
wfx_hif_set_operational_mode(wdev, HIF_OP_POWER_MODE_QUIESCENT);
} else {
wfx_hif_set_operational_mode(wdev, HIF_OP_POWER_MODE_DOZE);
}
for (i = 0; i < ARRAY_SIZE(wdev->addresses); i++) {
eth_zero_addr(wdev->addresses[i].addr);
err = of_get_mac_address(wdev->dev->of_node, wdev->addresses[i].addr);
if (!err)
wdev->addresses[i].addr[ETH_ALEN - 1] += i;
else
ether_addr_copy(wdev->addresses[i].addr, wdev->hw_caps.mac_addr[i]);
if (!is_valid_ether_addr(wdev->addresses[i].addr)) {
dev_warn(wdev->dev, "using random MAC address\n");
eth_random_addr(wdev->addresses[i].addr);
}
dev_info(wdev->dev, "MAC address %d: %pM\n", i, wdev->addresses[i].addr);
}
wdev->hw->wiphy->n_addresses = ARRAY_SIZE(wdev->addresses);
wdev->hw->wiphy->addresses = wdev->addresses;
if (!wfx_api_older_than(wdev, 3, 8))
wdev->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
err = ieee80211_register_hw(wdev->hw);
if (err)
goto irq_unsubscribe;
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
err = wfx_debug_init(wdev);
if (err)
goto ieee80211_unregister;
return 0;
ieee80211_unregister:
ieee80211_unregister_hw(wdev->hw);
irq_unsubscribe:
wdev->hwbus_ops->irq_unsubscribe(wdev->hwbus_priv);
bh_unregister:
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
wfx_bh_unregister(wdev);
destroy_workqueue(wdev->bh_wq);
return err;
}
void wfx_release(struct wfx_dev *wdev)
{
ieee80211_unregister_hw(wdev->hw);
wfx_hif_shutdown(wdev);
wdev->hwbus_ops->irq_unsubscribe(wdev->hwbus_priv);
staging: wfx: add IRQ handling bh_work() is in charge to schedule all HIF message from/to chip. On normal operation, when an IRQ is received, driver can get size of next message in control register. In order to save control register access, when chip send a message, it also appends a copy of control register after the message (this register is not accounted in message length declared in message header, but must accounted in bus request). This copy of control register is called "piggyback". It also handles a power saving mechanism specific to WFxxx series. This mechanism is based on a GPIO called "wakeup" GPIO. Obviously, this gpio is not part of SPI/SDIO standard buses and must be declared independently (this is the main reason for why SDIO mode try to get parameters from DT). When wakeup is enabled, host can communicate with chip only if it is awake. To wake up chip, there are two cases: - host receive an IRQ from chip (chip initiate communication): host just have to set wakeup GPIO before reading data - host want to send data to chip: host set wakeup GPIO, then wait for an IRQ (in fact, wait for an empty message) and finally send data bh_work() is also in charge to track usage of chip buffers. Normally each request expect a confirmation. However, you can notice that special "multi tx" confirmation can acknowledge multiple requests at time. Finally, note that wfx_bh_request_rx() is not atomic (because of control_reg_read()). So, in SPI mode, hard-irq handler only postpone all processing to wfx_spi_request_rx(). Signed-off-by: Jérôme Pouiller <jerome.pouiller@silabs.com> Link: https://lore.kernel.org/r/20190919142527.31797-8-Jerome.Pouiller@silabs.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 14:25:40 +00:00
wfx_bh_unregister(wdev);
destroy_workqueue(wdev->bh_wq);
}
static int __init wfx_core_init(void)
{
int ret = 0;
if (IS_ENABLED(CONFIG_SPI))
ret = spi_register_driver(&wfx_spi_driver);
if (IS_ENABLED(CONFIG_MMC) && !ret)
ret = sdio_register_driver(&wfx_sdio_driver);
return ret;
}
module_init(wfx_core_init);
static void __exit wfx_core_exit(void)
{
if (IS_ENABLED(CONFIG_MMC))
sdio_unregister_driver(&wfx_sdio_driver);
if (IS_ENABLED(CONFIG_SPI))
spi_unregister_driver(&wfx_spi_driver);
}
module_exit(wfx_core_exit);