linux/drivers/net/ethernet/sfc/ef100_tx.c

512 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2018 Solarflare Communications Inc.
* Copyright 2019-2020 Xilinx Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <net/ip6_checksum.h>
#include "net_driver.h"
#include "tx_common.h"
#include "nic_common.h"
#include "mcdi_functions.h"
#include "ef100_regs.h"
#include "io.h"
#include "ef100_tx.h"
#include "ef100_nic.h"
int ef100_tx_probe(struct efx_tx_queue *tx_queue)
{
/* Allocate an extra descriptor for the QMDA status completion entry */
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
(tx_queue->ptr_mask + 2) *
sizeof(efx_oword_t),
GFP_KERNEL);
}
void ef100_tx_init(struct efx_tx_queue *tx_queue)
{
/* must be the inverse of lookup in efx_get_tx_channel */
tx_queue->core_txq =
netdev_get_tx_queue(tx_queue->efx->net_dev,
tx_queue->channel->channel -
tx_queue->efx->tx_channel_offset);
/* This value is purely documentational; as EF100 never passes through
* the switch statement in tx.c:__efx_enqueue_skb(), that switch does
* not handle case 3. EF100's TSOv3 descriptors are generated by
* ef100_make_tso_desc().
* Meanwhile, all efx_mcdi_tx_init() cares about is that it's not 2.
*/
tx_queue->tso_version = 3;
if (efx_mcdi_tx_init(tx_queue))
netdev_WARN(tx_queue->efx->net_dev,
"failed to initialise TXQ %d\n", tx_queue->queue);
}
static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
struct efx_nic *efx = tx_queue->efx;
struct ef100_nic_data *nic_data;
struct efx_tx_buffer *buffer;
size_t header_len;
u32 mss;
nic_data = efx->nic_data;
if (!skb_is_gso_tcp(skb))
return false;
if (!(efx->net_dev->features & NETIF_F_TSO))
return false;
mss = skb_shinfo(skb)->gso_size;
if (unlikely(mss < 4)) {
WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
return false;
}
header_len = efx_tx_tso_header_length(skb);
if (header_len > nic_data->tso_max_hdr_len)
return false;
if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
/* net_dev->gso_max_segs should've caught this */
WARN_ON_ONCE(1);
return false;
}
if (skb->data_len / mss > nic_data->tso_max_frames)
return false;
/* net_dev->gso_max_size should've caught this */
if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
return false;
/* Reserve an empty buffer for the TSO V3 descriptor.
* Convey the length of the header since we already know it.
*/
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
buffer->len = header_len;
buffer->unmap_len = 0;
buffer->skb = skb;
++tx_queue->insert_count;
return true;
}
static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
if (likely(tx_queue->txd.addr))
return ((efx_oword_t *)tx_queue->txd.addr) + index;
else
return NULL;
}
static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned int write_ptr;
efx_dword_t reg;
tx_queue->xmit_pending = false;
if (unlikely(tx_queue->notify_count == tx_queue->write_count))
return;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
/* The write pointer goes into the high word */
EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
tx_queue->notify_count = tx_queue->write_count;
}
static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
{
ef100_notify_tx_desc(tx_queue);
++tx_queue->pushes;
}
static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
struct efx_tx_buffer *buffer, efx_oword_t *txd)
{
efx_oword_t csum;
int csum_start;
if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
return;
/* skb->csum_start has the offset from head, but we need the offset
* from data.
*/
csum_start = skb_checksum_start_offset(skb);
EFX_POPULATE_OWORD_3(csum,
ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
csum_start >> 1,
ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
skb->csum_offset >> 1);
EFX_OR_OWORD(*txd, *txd, csum);
}
static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
{
u16 vlan_tci = skb_vlan_tag_get(skb);
efx_oword_t vlan;
EFX_POPULATE_OWORD_2(vlan,
ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
EFX_OR_OWORD(*txd, *txd, vlan);
}
static void ef100_make_send_desc(struct efx_nic *efx,
const struct sk_buff *skb,
struct efx_tx_buffer *buffer, efx_oword_t *txd,
unsigned int segment_count)
{
/* TX send descriptor */
EFX_POPULATE_OWORD_3(*txd,
ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
ESF_GZ_TX_SEND_LEN, buffer->len,
ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
ef100_set_tx_csum_partial(skb, buffer, txd);
if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
skb && skb_vlan_tag_present(skb))
ef100_set_tx_hw_vlan(skb, txd);
}
static void ef100_make_tso_desc(struct efx_nic *efx,
const struct sk_buff *skb,
struct efx_tx_buffer *buffer, efx_oword_t *txd,
unsigned int segment_count)
{
bool gso_partial = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
unsigned int len, ip_offset, tcp_offset, payload_segs;
u32 mangleid = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
unsigned int outer_ip_offset, outer_l4_offset;
u16 vlan_tci = skb_vlan_tag_get(skb);
u32 mss = skb_shinfo(skb)->gso_size;
bool encap = skb->encapsulation;
bool udp_encap = false;
u16 vlan_enable = 0;
struct tcphdr *tcp;
bool outer_csum;
u32 paylen;
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID)
mangleid = ESE_GZ_TX_DESC_IP4_ID_NO_OP;
if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX)
vlan_enable = skb_vlan_tag_present(skb);
len = skb->len - buffer->len;
/* We use 1 for the TSO descriptor and 1 for the header */
payload_segs = segment_count - 2;
if (encap) {
outer_ip_offset = skb_network_offset(skb);
outer_l4_offset = skb_transport_offset(skb);
ip_offset = skb_inner_network_offset(skb);
tcp_offset = skb_inner_transport_offset(skb);
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM))
udp_encap = true;
} else {
ip_offset = skb_network_offset(skb);
tcp_offset = skb_transport_offset(skb);
outer_ip_offset = outer_l4_offset = 0;
}
outer_csum = skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM;
/* subtract TCP payload length from inner checksum */
tcp = (void *)skb->data + tcp_offset;
paylen = skb->len - tcp_offset;
csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
EFX_POPULATE_OWORD_19(*txd,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
ESF_GZ_TX_TSO_MSS, mss,
ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
ESF_GZ_TX_TSO_CSO_OUTER_L4, outer_csum,
ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_ip_offset >> 1,
ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_l4_offset >> 1,
ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, udp_encap && !gso_partial,
ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, encap && !gso_partial,
ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, encap ? mangleid :
ESE_GZ_TX_DESC_IP4_ID_NO_OP,
ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
);
}
static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb,
unsigned int segment_count,
struct efx_rep *efv)
{
unsigned int old_write_count = tx_queue->write_count;
unsigned int new_write_count = old_write_count;
struct efx_tx_buffer *buffer;
unsigned int next_desc_type;
unsigned int write_ptr;
efx_oword_t *txd;
unsigned int nr_descs = tx_queue->insert_count - old_write_count;
if (unlikely(nr_descs == 0))
return;
if (segment_count)
next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
else
next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
if (unlikely(efv)) {
/* Create TX override descriptor */
write_ptr = new_write_count & tx_queue->ptr_mask;
txd = ef100_tx_desc(tx_queue, write_ptr);
++new_write_count;
tx_queue->packet_write_count = new_write_count;
EFX_POPULATE_OWORD_3(*txd,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_PREFIX,
ESF_GZ_TX_PREFIX_EGRESS_MPORT, efv->mport,
ESF_GZ_TX_PREFIX_EGRESS_MPORT_EN, 1);
nr_descs--;
}
/* if it's a raw write (such as XDP) then always SEND single frames */
if (!skb)
nr_descs = 1;
do {
write_ptr = new_write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = ef100_tx_desc(tx_queue, write_ptr);
++new_write_count;
/* Create TX descriptor ring entry */
tx_queue->packet_write_count = new_write_count;
switch (next_desc_type) {
case ESE_GZ_TX_DESC_TYPE_SEND:
ef100_make_send_desc(tx_queue->efx, skb,
buffer, txd, nr_descs);
break;
case ESE_GZ_TX_DESC_TYPE_TSO:
/* TX TSO descriptor */
WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
ef100_make_tso_desc(tx_queue->efx, skb,
buffer, txd, nr_descs);
break;
default:
/* TX segment descriptor */
EFX_POPULATE_OWORD_3(*txd,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
ESF_GZ_TX_SEG_LEN, buffer->len,
ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
}
/* if it's a raw write (such as XDP) then always SEND */
next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
ESE_GZ_TX_DESC_TYPE_SEND;
/* mark as an EFV buffer if applicable */
if (unlikely(efv))
buffer->flags |= EFX_TX_BUF_EFV;
} while (new_write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
tx_queue->write_count = new_write_count;
/* The write_count above must be updated before reading
* channel->holdoff_doorbell to avoid a race with the
* completion path, so ensure these operations are not
* re-ordered. This also flushes the update of write_count
* back into the cache.
*/
smp_mb();
}
void ef100_tx_write(struct efx_tx_queue *tx_queue)
{
ef100_tx_make_descriptors(tx_queue, NULL, 0, NULL);
ef100_tx_push_buffers(tx_queue);
}
sfc: use budget for TX completions When running workloads heavy unbalanced towards TX (high TX, low RX traffic), sfc driver can retain the CPU during too long times. Although in many cases this is not enough to be visible, it can affect performance and system responsiveness. A way to reproduce it is to use a debug kernel and run some parallel netperf TX tests. In some systems, this will lead to this message being logged: kernel:watchdog: BUG: soft lockup - CPU#12 stuck for 22s! The reason is that sfc driver doesn't account any NAPI budget for the TX completion events work. With high-TX/low-RX traffic, this makes that the CPU is held for long time for NAPI poll. Documentations says "drivers can process completions for any number of Tx packets but should only process up to budget number of Rx packets". However, many drivers do limit the amount of TX completions that they process in a single NAPI poll. In the same way, this patch adds a limit for the TX work in sfc. With the patch applied, the watchdog warning never appears. Tested with netperf in different combinations: single process / parallel processes, TCP / UDP and different sizes of UDP messages. Repeated the tests before and after the patch, without any noticeable difference in network or CPU performance. Test hardware: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz (4 cores, 2 threads/core) Solarflare Communications XtremeScale X2522-25G Network Adapter Fixes: 5227ecccea2d ("sfc: remove tx and MCDI handling from NAPI budget consideration") Fixes: d19a53721863 ("sfc_ef100: TX path for EF100 NICs") Reported-by: Fei Liu <feliu@redhat.com> Signed-off-by: Íñigo Huguet <ihuguet@redhat.com> Acked-by: Martin Habets <habetsm.xilinx@gmail.com> Link: https://lore.kernel.org/r/20230615084929.10506-1-ihuguet@redhat.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-15 10:49:29 +02:00
int ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
{
unsigned int tx_done =
EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
unsigned int qlabel =
EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
struct efx_tx_queue *tx_queue =
efx_channel_get_tx_queue(channel, qlabel);
unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
tx_queue->ptr_mask;
sfc: use budget for TX completions When running workloads heavy unbalanced towards TX (high TX, low RX traffic), sfc driver can retain the CPU during too long times. Although in many cases this is not enough to be visible, it can affect performance and system responsiveness. A way to reproduce it is to use a debug kernel and run some parallel netperf TX tests. In some systems, this will lead to this message being logged: kernel:watchdog: BUG: soft lockup - CPU#12 stuck for 22s! The reason is that sfc driver doesn't account any NAPI budget for the TX completion events work. With high-TX/low-RX traffic, this makes that the CPU is held for long time for NAPI poll. Documentations says "drivers can process completions for any number of Tx packets but should only process up to budget number of Rx packets". However, many drivers do limit the amount of TX completions that they process in a single NAPI poll. In the same way, this patch adds a limit for the TX work in sfc. With the patch applied, the watchdog warning never appears. Tested with netperf in different combinations: single process / parallel processes, TCP / UDP and different sizes of UDP messages. Repeated the tests before and after the patch, without any noticeable difference in network or CPU performance. Test hardware: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz (4 cores, 2 threads/core) Solarflare Communications XtremeScale X2522-25G Network Adapter Fixes: 5227ecccea2d ("sfc: remove tx and MCDI handling from NAPI budget consideration") Fixes: d19a53721863 ("sfc_ef100: TX path for EF100 NICs") Reported-by: Fei Liu <feliu@redhat.com> Signed-off-by: Íñigo Huguet <ihuguet@redhat.com> Acked-by: Martin Habets <habetsm.xilinx@gmail.com> Link: https://lore.kernel.org/r/20230615084929.10506-1-ihuguet@redhat.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-15 10:49:29 +02:00
return efx_xmit_done(tx_queue, tx_index);
}
/* Add a socket buffer to a TX queue
*
* You must hold netif_tx_lock() to call this function.
*
* Returns 0 on success, error code otherwise. In case of an error this
* function will free the SKB.
*/
netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
return __ef100_enqueue_skb(tx_queue, skb, NULL);
}
int __ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
struct efx_rep *efv)
{
unsigned int old_insert_count = tx_queue->insert_count;
struct efx_nic *efx = tx_queue->efx;
bool xmit_more = netdev_xmit_more();
unsigned int fill_level;
unsigned int segments;
int rc;
if (!tx_queue->buffer || !tx_queue->ptr_mask) {
netif_stop_queue(efx->net_dev);
dev_kfree_skb_any(skb);
return -ENODEV;
}
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
if (segments == 1)
segments = 0; /* Don't use TSO/GSO for a single segment. */
if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
rc = efx_tx_tso_fallback(tx_queue, skb);
tx_queue->tso_fallbacks++;
if (rc)
goto err;
else
return 0;
}
if (unlikely(efv)) {
struct efx_tx_buffer *buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
/* Drop representor packets if the queue is stopped.
* We currently don't assert backoff to representors so this is
* to make sure representor traffic can't starve the main
* net device.
* And, of course, if there are no TX descriptors left.
*/
if (netif_tx_queue_stopped(tx_queue->core_txq) ||
unlikely(efx_tx_buffer_in_use(buffer))) {
atomic64_inc(&efv->stats.tx_errors);
rc = -ENOSPC;
goto err;
}
/* Also drop representor traffic if it could cause us to
* stop the queue. If we assert backoff and we haven't
* received traffic on the main net device recently then the
* TX watchdog can go off erroneously.
*/
fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
fill_level += efx_tx_max_skb_descs(efx);
if (fill_level > efx->txq_stop_thresh) {
struct efx_tx_queue *txq2;
/* Refresh cached fill level and re-check */
efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
txq2->old_read_count = READ_ONCE(txq2->read_count);
fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
fill_level += efx_tx_max_skb_descs(efx);
if (fill_level > efx->txq_stop_thresh) {
atomic64_inc(&efv->stats.tx_errors);
rc = -ENOSPC;
goto err;
}
}
buffer->flags = EFX_TX_BUF_OPTION | EFX_TX_BUF_EFV;
tx_queue->insert_count++;
}
/* Map for DMA and create descriptors */
rc = efx_tx_map_data(tx_queue, skb, segments);
if (rc)
goto err;
ef100_tx_make_descriptors(tx_queue, skb, segments, efv);
fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
if (fill_level > efx->txq_stop_thresh) {
struct efx_tx_queue *txq2;
/* Because of checks above, representor traffic should
* not be able to stop the queue.
*/
WARN_ON(efv);
netif_tx_stop_queue(tx_queue->core_txq);
/* Re-read after a memory barrier in case we've raced with
* the completion path. Otherwise there's a danger we'll never
* restart the queue if all completions have just happened.
*/
smp_mb();
efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
txq2->old_read_count = READ_ONCE(txq2->read_count);
fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
if (fill_level < efx->txq_stop_thresh)
netif_tx_start_queue(tx_queue->core_txq);
}
tx_queue->xmit_pending = true;
/* If xmit_more then we don't need to push the doorbell, unless there
* are 256 descriptors already queued in which case we have to push to
* ensure we never push more than 256 at once.
*
* Always push for representor traffic, and don't account it to parent
* PF netdevice's BQL.
*/
if (unlikely(efv) ||
__netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
tx_queue->write_count - tx_queue->notify_count > 255)
ef100_tx_push_buffers(tx_queue);
if (segments) {
tx_queue->tso_bursts++;
tx_queue->tso_packets += segments;
tx_queue->tx_packets += segments;
} else {
tx_queue->tx_packets++;
}
return 0;
err:
efx_enqueue_unwind(tx_queue, old_insert_count);
if (!IS_ERR_OR_NULL(skb))
dev_kfree_skb_any(skb);
/* If we're not expecting another transmit and we had something to push
* on this queue then we need to push here to get the previous packets
* out. We only enter this branch from before the xmit_more handling
* above, so xmit_pending still refers to the old state.
*/
if (tx_queue->xmit_pending && !xmit_more)
ef100_tx_push_buffers(tx_queue);
return rc;
}