linux/drivers/net/ethernet/microchip/sparx5/sparx5_switchdev.c

764 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/* Microchip Sparx5 Switch driver
*
* Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
*/
#include <linux/if_bridge.h>
#include <net/switchdev.h>
#include "sparx5_main_regs.h"
#include "sparx5_main.h"
static struct workqueue_struct *sparx5_owq;
struct sparx5_switchdev_event_work {
struct work_struct work;
struct switchdev_notifier_fdb_info fdb_info;
struct net_device *dev;
struct sparx5 *sparx5;
unsigned long event;
};
static int sparx5_port_attr_pre_bridge_flags(struct sparx5_port *port,
struct switchdev_brport_flags flags)
{
if (flags.mask & ~(BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD))
return -EINVAL;
return 0;
}
static void sparx5_port_update_mcast_ip_flood(struct sparx5_port *port, bool flood_flag)
{
bool should_flood = flood_flag || port->is_mrouter;
int pgid;
for (pgid = PGID_IPV4_MC_DATA; pgid <= PGID_IPV6_MC_CTRL; pgid++)
sparx5_pgid_update_mask(port, pgid, should_flood);
}
static void sparx5_port_attr_bridge_flags(struct sparx5_port *port,
struct switchdev_brport_flags flags)
{
if (flags.mask & BR_MCAST_FLOOD) {
sparx5_pgid_update_mask(port, PGID_MC_FLOOD, !!(flags.val & BR_MCAST_FLOOD));
sparx5_port_update_mcast_ip_flood(port, !!(flags.val & BR_MCAST_FLOOD));
}
if (flags.mask & BR_FLOOD)
sparx5_pgid_update_mask(port, PGID_UC_FLOOD, !!(flags.val & BR_FLOOD));
if (flags.mask & BR_BCAST_FLOOD)
sparx5_pgid_update_mask(port, PGID_BCAST, !!(flags.val & BR_BCAST_FLOOD));
}
static void sparx5_attr_stp_state_set(struct sparx5_port *port,
u8 state)
{
struct sparx5 *sparx5 = port->sparx5;
if (!test_bit(port->portno, sparx5->bridge_mask)) {
netdev_err(port->ndev,
"Controlling non-bridged port %d?\n", port->portno);
return;
}
switch (state) {
case BR_STATE_FORWARDING:
set_bit(port->portno, sparx5->bridge_fwd_mask);
fallthrough;
case BR_STATE_LEARNING:
set_bit(port->portno, sparx5->bridge_lrn_mask);
break;
default:
/* All other states treated as blocking */
clear_bit(port->portno, sparx5->bridge_fwd_mask);
clear_bit(port->portno, sparx5->bridge_lrn_mask);
break;
}
/* apply the bridge_fwd_mask to all the ports */
sparx5_update_fwd(sparx5);
}
static void sparx5_port_attr_ageing_set(struct sparx5_port *port,
unsigned long ageing_clock_t)
{
unsigned long ageing_jiffies = clock_t_to_jiffies(ageing_clock_t);
u32 ageing_time = jiffies_to_msecs(ageing_jiffies);
sparx5_set_ageing(port->sparx5, ageing_time);
}
static void sparx5_port_attr_mrouter_set(struct sparx5_port *port,
struct net_device *orig_dev,
bool enable)
{
struct sparx5 *sparx5 = port->sparx5;
struct sparx5_mdb_entry *e;
bool flood_flag;
if ((enable && port->is_mrouter) || (!enable && !port->is_mrouter))
return;
/* Add/del mrouter port on all active mdb entries in HW.
* Don't change entry port mask, since that represents
* ports that actually joined that group.
*/
mutex_lock(&sparx5->mdb_lock);
list_for_each_entry(e, &sparx5->mdb_entries, list) {
if (!test_bit(port->portno, e->port_mask) &&
ether_addr_is_ip_mcast(e->addr))
sparx5_pgid_update_mask(port, e->pgid_idx, enable);
}
mutex_unlock(&sparx5->mdb_lock);
/* Enable/disable flooding depending on if port is mrouter port
* or if mcast flood is enabled.
*/
port->is_mrouter = enable;
flood_flag = br_port_flag_is_set(port->ndev, BR_MCAST_FLOOD);
sparx5_port_update_mcast_ip_flood(port, flood_flag);
}
static int sparx5_port_attr_set(struct net_device *dev, const void *ctx,
const struct switchdev_attr *attr,
struct netlink_ext_ack *extack)
{
struct sparx5_port *port = netdev_priv(dev);
switch (attr->id) {
case SWITCHDEV_ATTR_ID_PORT_PRE_BRIDGE_FLAGS:
return sparx5_port_attr_pre_bridge_flags(port,
attr->u.brport_flags);
case SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS:
sparx5_port_attr_bridge_flags(port, attr->u.brport_flags);
break;
case SWITCHDEV_ATTR_ID_PORT_STP_STATE:
sparx5_attr_stp_state_set(port, attr->u.stp_state);
break;
case SWITCHDEV_ATTR_ID_BRIDGE_AGEING_TIME:
sparx5_port_attr_ageing_set(port, attr->u.ageing_time);
break;
case SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING:
/* Used PVID 1 when default_pvid is 0, to avoid
* collision with non-bridged ports.
*/
if (port->pvid == 0)
port->pvid = 1;
port->vlan_aware = attr->u.vlan_filtering;
sparx5_vlan_port_apply(port->sparx5, port);
break;
case SWITCHDEV_ATTR_ID_PORT_MROUTER:
sparx5_port_attr_mrouter_set(port,
attr->orig_dev,
attr->u.mrouter);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int sparx5_port_bridge_join(struct sparx5_port *port,
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
struct net_device *bridge,
struct netlink_ext_ack *extack)
{
struct sparx5 *sparx5 = port->sparx5;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
struct net_device *ndev = port->ndev;
int err;
if (bitmap_empty(sparx5->bridge_mask, SPX5_PORTS))
/* First bridged port */
sparx5->hw_bridge_dev = bridge;
else
if (sparx5->hw_bridge_dev != bridge)
/* This is adding the port to a second bridge, this is
* unsupported
*/
return -ENODEV;
set_bit(port->portno, sparx5->bridge_mask);
net: bridge: move the switchdev object replay helpers to "push" mode Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined mdb entries"), DSA has introduced some bridge helpers that replay switchdev events (FDB/MDB/VLAN additions and deletions) that can be lost by the switchdev drivers in a variety of circumstances: - an IP multicast group was host-joined on the bridge itself before any switchdev port joined the bridge, leading to the host MDB entries missing in the hardware database. - during the bridge creation process, the MAC address of the bridge was added to the FDB as an entry pointing towards the bridge device itself, but with no switchdev ports being part of the bridge yet, this local FDB entry would remain unknown to the switchdev hardware database. - a VLAN/FDB/MDB was added to a bridge port that is a LAG interface, before any switchdev port joined that LAG, leading to the hardware database missing those entries. - a switchdev port left a LAG that is a bridge port, while the LAG remained part of the bridge, and all FDB/MDB/VLAN entries remained installed in the hardware database of the switchdev port. Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events for LAG ports which didn't request replay"), DSA introduced a method, based on a const void *ctx, to ensure that two switchdev ports under the same LAG that is a bridge port do not see the same MDB/VLAN entry being replayed twice by the bridge, once for every bridge port that joins the LAG. With so many ordering corner cases being possible, it seems unreasonable to expect a switchdev driver writer to get it right from the first try. Therefore, now that DSA has experimented with the bridge replay helpers for a little bit, we can move the code to the bridge driver where it is more readily available to all switchdev drivers. To convert the switchdev object replay helpers from "pull mode" (where the driver asks for them) to a "push mode" (where the bridge offers them automatically), the biggest problem is that the bridge needs to be aware when a switchdev port joins and leaves, even when the switchdev is only indirectly a bridge port (for example when the bridge port is a LAG upper of the switchdev). Luckily, we already have a hook for that, in the form of the newly introduced switchdev_bridge_port_offload() and switchdev_bridge_port_unoffload() calls. These offer a natural place for hooking the object addition and deletion replays. Extend the above 2 functions with: - pointers to the switchdev atomic notifier (for FDB replays) and the blocking notifier (for MDB and VLAN replays). - the "const void *ctx" argument required for drivers to be able to disambiguate between which port is targeted, when multiple ports are lowers of the same LAG that is a bridge port. Most of the drivers pass NULL to this argument, except the ones that support LAG offload and have the proper context check already in place in the switchdev blocking notifier handler. Also unexport the replay helpers, since nobody except the bridge calls them directly now. Note that: (a) we abuse the terminology slightly, because FDB entries are not "switchdev objects", but we count them as objects nonetheless. With no direct way to prove it, I think they are not modeled as switchdev objects because those can only be installed by the bridge to the hardware (as opposed to FDB entries which can be propagated in the other direction too). This is merely an abuse of terms, FDB entries are replayed too, despite not being objects. (b) the bridge does not attempt to sync port attributes to newly joined ports, just the countable stuff (the objects). The reason for this is simple: no universal and symmetric way to sync and unsync them is known. For example, VLAN filtering: what to do on unsync, disable or leave it enabled? Similarly, STP state, ageing timer, etc etc. What a switchdev port does when it becomes standalone again is not really up to the bridge's competence, and the driver should deal with it. On the other hand, replaying deletions of switchdev objects can be seen a matter of cleanup and therefore be treated by the bridge, hence this patch. We make the replay helpers opt-in for drivers, because they might not bring immediate benefits for them: - nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(), so br_vlan_replay() should not do anything for the new drivers on which we call it. The existing drivers where there was even a slight possibility for there to exist a VLAN on a bridge port before they join it are already guarded against this: mlxsw and prestera deny joining LAG interfaces that are members of a bridge. - br_fdb_replay() should now notify of local FDB entries, but I patched all drivers except DSA to ignore these new entries in commit 2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB notifications"). Driver authors can lift this restriction as they wish, and when they do, they can also opt into the FDB replay functionality. - br_mdb_replay() should fix a real issue which is described in commit 4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined mdb entries"). However most drivers do not offload the SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw offload this switchdev object, and I don't completely understand the way in which they offload this switchdev object anyway. So I'll leave it up to these drivers' respective maintainers to opt into br_mdb_replay(). So most of the drivers pass NULL notifier blocks for the replay helpers, except: - dpaa2-switch which was already acked/regression-tested with the helpers enabled (and there isn't much of a downside in having them) - ocelot which already had replay logic in "pull" mode - DSA which already had replay logic in "pull" mode An important observation is that the drivers which don't currently request bridge event replays don't even have the switchdev_bridge_port_{offload,unoffload} calls placed in proper places right now. This was done to avoid unnecessary rework for drivers which might never even add support for this. For driver writers who wish to add replay support, this can be used as a tentative placement guide: https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/ Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
err = switchdev_bridge_port_offload(ndev, ndev, NULL, NULL, NULL,
net: bridge: switchdev: allow the TX data plane forwarding to be offloaded Allow switchdevs to forward frames from the CPU in accordance with the bridge configuration in the same way as is done between bridge ports. This means that the bridge will only send a single skb towards one of the ports under the switchdev's control, and expects the driver to deliver the packet to all eligible ports in its domain. Primarily this improves the performance of multicast flows with multiple subscribers, as it allows the hardware to perform the frame replication. The basic flow between the driver and the bridge is as follows: - When joining a bridge port, the switchdev driver calls switchdev_bridge_port_offload() with tx_fwd_offload = true. - The bridge sends offloadable skbs to one of the ports under the switchdev's control using skb->offload_fwd_mark = true. - The switchdev driver checks the skb->offload_fwd_mark field and lets its FDB lookup select the destination port mask for this packet. v1->v2: - convert br_input_skb_cb::fwd_hwdoms to a plain unsigned long - introduce a static key "br_switchdev_fwd_offload_used" to minimize the impact of the newly introduced feature on all the setups which don't have hardware that can make use of it - introduce a check for nbp->flags & BR_FWD_OFFLOAD to optimize cache line access - reorder nbp_switchdev_frame_mark_accel() and br_handle_vlan() in __br_forward() - do not strip VLAN on egress if forwarding offload on VLAN-aware bridge is being used - propagate errors from .ndo_dfwd_add_station() if not EOPNOTSUPP v2->v3: - replace the solution based on .ndo_dfwd_add_station with a solution based on switchdev_bridge_port_offload - rename BR_FWD_OFFLOAD to BR_TX_FWD_OFFLOAD v3->v4: rebase v4->v5: - make sure the static key is decremented on bridge port unoffload - more function and variable renaming and comments for them: br_switchdev_fwd_offload_used to br_switchdev_tx_fwd_offload br_switchdev_accels_skb to br_switchdev_frame_uses_tx_fwd_offload nbp_switchdev_frame_mark_tx_fwd to nbp_switchdev_frame_mark_tx_fwd_to_hwdom nbp_switchdev_frame_mark_accel to nbp_switchdev_frame_mark_tx_fwd_offload fwd_accel to tx_fwd_offload Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-22 18:55:38 +03:00
false, extack);
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
if (err)
goto err_switchdev_offload;
/* Remove standalone port entry */
sparx5_mact_forget(sparx5, ndev->dev_addr, 0);
/* Port enters in bridge mode therefore don't need to copy to CPU
* frames for multicast in case the bridge is not requesting them
*/
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
__dev_mc_unsync(ndev, sparx5_mc_unsync);
return 0;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
err_switchdev_offload:
clear_bit(port->portno, sparx5->bridge_mask);
return err;
}
static void sparx5_port_bridge_leave(struct sparx5_port *port,
struct net_device *bridge)
{
struct sparx5 *sparx5 = port->sparx5;
net: bridge: move the switchdev object replay helpers to "push" mode Starting with commit 4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined mdb entries"), DSA has introduced some bridge helpers that replay switchdev events (FDB/MDB/VLAN additions and deletions) that can be lost by the switchdev drivers in a variety of circumstances: - an IP multicast group was host-joined on the bridge itself before any switchdev port joined the bridge, leading to the host MDB entries missing in the hardware database. - during the bridge creation process, the MAC address of the bridge was added to the FDB as an entry pointing towards the bridge device itself, but with no switchdev ports being part of the bridge yet, this local FDB entry would remain unknown to the switchdev hardware database. - a VLAN/FDB/MDB was added to a bridge port that is a LAG interface, before any switchdev port joined that LAG, leading to the hardware database missing those entries. - a switchdev port left a LAG that is a bridge port, while the LAG remained part of the bridge, and all FDB/MDB/VLAN entries remained installed in the hardware database of the switchdev port. Also, since commit 0d2cfbd41c4a ("net: bridge: ignore switchdev events for LAG ports which didn't request replay"), DSA introduced a method, based on a const void *ctx, to ensure that two switchdev ports under the same LAG that is a bridge port do not see the same MDB/VLAN entry being replayed twice by the bridge, once for every bridge port that joins the LAG. With so many ordering corner cases being possible, it seems unreasonable to expect a switchdev driver writer to get it right from the first try. Therefore, now that DSA has experimented with the bridge replay helpers for a little bit, we can move the code to the bridge driver where it is more readily available to all switchdev drivers. To convert the switchdev object replay helpers from "pull mode" (where the driver asks for them) to a "push mode" (where the bridge offers them automatically), the biggest problem is that the bridge needs to be aware when a switchdev port joins and leaves, even when the switchdev is only indirectly a bridge port (for example when the bridge port is a LAG upper of the switchdev). Luckily, we already have a hook for that, in the form of the newly introduced switchdev_bridge_port_offload() and switchdev_bridge_port_unoffload() calls. These offer a natural place for hooking the object addition and deletion replays. Extend the above 2 functions with: - pointers to the switchdev atomic notifier (for FDB replays) and the blocking notifier (for MDB and VLAN replays). - the "const void *ctx" argument required for drivers to be able to disambiguate between which port is targeted, when multiple ports are lowers of the same LAG that is a bridge port. Most of the drivers pass NULL to this argument, except the ones that support LAG offload and have the proper context check already in place in the switchdev blocking notifier handler. Also unexport the replay helpers, since nobody except the bridge calls them directly now. Note that: (a) we abuse the terminology slightly, because FDB entries are not "switchdev objects", but we count them as objects nonetheless. With no direct way to prove it, I think they are not modeled as switchdev objects because those can only be installed by the bridge to the hardware (as opposed to FDB entries which can be propagated in the other direction too). This is merely an abuse of terms, FDB entries are replayed too, despite not being objects. (b) the bridge does not attempt to sync port attributes to newly joined ports, just the countable stuff (the objects). The reason for this is simple: no universal and symmetric way to sync and unsync them is known. For example, VLAN filtering: what to do on unsync, disable or leave it enabled? Similarly, STP state, ageing timer, etc etc. What a switchdev port does when it becomes standalone again is not really up to the bridge's competence, and the driver should deal with it. On the other hand, replaying deletions of switchdev objects can be seen a matter of cleanup and therefore be treated by the bridge, hence this patch. We make the replay helpers opt-in for drivers, because they might not bring immediate benefits for them: - nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(), so br_vlan_replay() should not do anything for the new drivers on which we call it. The existing drivers where there was even a slight possibility for there to exist a VLAN on a bridge port before they join it are already guarded against this: mlxsw and prestera deny joining LAG interfaces that are members of a bridge. - br_fdb_replay() should now notify of local FDB entries, but I patched all drivers except DSA to ignore these new entries in commit 2c4eca3ef716 ("net: bridge: switchdev: include local flag in FDB notifications"). Driver authors can lift this restriction as they wish, and when they do, they can also opt into the FDB replay functionality. - br_mdb_replay() should fix a real issue which is described in commit 4f2673b3a2b6 ("net: bridge: add helper to replay port and host-joined mdb entries"). However most drivers do not offload the SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw offload this switchdev object, and I don't completely understand the way in which they offload this switchdev object anyway. So I'll leave it up to these drivers' respective maintainers to opt into br_mdb_replay(). So most of the drivers pass NULL notifier blocks for the replay helpers, except: - dpaa2-switch which was already acked/regression-tested with the helpers enabled (and there isn't much of a downside in having them) - ocelot which already had replay logic in "pull" mode - DSA which already had replay logic in "pull" mode An important observation is that the drivers which don't currently request bridge event replays don't even have the switchdev_bridge_port_{offload,unoffload} calls placed in proper places right now. This was done to avoid unnecessary rework for drivers which might never even add support for this. For driver writers who wish to add replay support, this can be used as a tentative placement guide: https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/ Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:03 +03:00
switchdev_bridge_port_unoffload(port->ndev, NULL, NULL, NULL);
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
clear_bit(port->portno, sparx5->bridge_mask);
if (bitmap_empty(sparx5->bridge_mask, SPX5_PORTS))
sparx5->hw_bridge_dev = NULL;
/* Clear bridge vlan settings before updating the port settings */
port->vlan_aware = 0;
port->pvid = NULL_VID;
port->vid = NULL_VID;
/* Forward frames to CPU */
sparx5_mact_learn(sparx5, PGID_CPU, port->ndev->dev_addr, 0);
/* Port enters in host more therefore restore mc list */
__dev_mc_sync(port->ndev, sparx5_mc_sync, sparx5_mc_unsync);
}
static int sparx5_port_changeupper(struct net_device *dev,
struct netdev_notifier_changeupper_info *info)
{
struct sparx5_port *port = netdev_priv(dev);
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
struct netlink_ext_ack *extack;
int err = 0;
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
extack = netdev_notifier_info_to_extack(&info->info);
if (netif_is_bridge_master(info->upper_dev)) {
if (info->linking)
net: bridge: switchdev: let drivers inform which bridge ports are offloaded On reception of an skb, the bridge checks if it was marked as 'already forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it is, it assigns the source hardware domain of that skb based on the hardware domain of the ingress port. Then during forwarding, it enforces that the egress port must have a different hardware domain than the ingress one (this is done in nbp_switchdev_allowed_egress). Non-switchdev drivers don't report any physical switch id (neither through devlink nor .ndo_get_port_parent_id), therefore the bridge assigns them a hardware domain of 0, and packets coming from them will always have skb->offload_fwd_mark = 0. So there aren't any restrictions. Problems appear due to the fact that DSA would like to perform software fallback for bonding and team interfaces that the physical switch cannot offload. +-- br0 ---+ / / | \ / / | \ / | | bond0 / | | / \ swp0 swp1 swp2 swp3 swp4 There, it is desirable that the presence of swp3 and swp4 under a non-offloaded LAG does not preclude us from doing hardware bridging beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high enough that software bridging between {swp0,swp1,swp2} and bond0 is not impractical. But this creates an impossible paradox given the current way in which port hardware domains are assigned. When the driver receives a packet from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to something. - If we set it to 0, then the bridge will forward it towards swp1, swp2 and bond0. But the switch has already forwarded it towards swp1 and swp2 (not to bond0, remember, that isn't offloaded, so as far as the switch is concerned, ports swp3 and swp4 are not looking up the FDB, and the entire bond0 is a destination that is strictly behind the CPU). But we don't want duplicated traffic towards swp1 and swp2, so it's not ok to set skb->offload_fwd_mark = 0. - If we set it to 1, then the bridge will not forward the skb towards the ports with the same switchdev mark, i.e. not to swp1, swp2 and bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should have forwarded the skb there. So the real issue is that bond0 will be assigned the same hardware domain as {swp0,swp1,swp2}, because the function that assigns hardware domains to bridge ports, nbp_switchdev_add(), recurses through bond0's lower interfaces until it finds something that implements devlink (calls dev_get_port_parent_id with bool recurse = true). This is a problem because the fact that bond0 can be offloaded by swp3 and swp4 in our example is merely an assumption. A solution is to give the bridge explicit hints as to what hardware domain it should use for each port. Currently, the bridging offload is very 'silent': a driver registers a netdevice notifier, which is put on the netns's notifier chain, and which sniffs around for NETDEV_CHANGEUPPER events where the upper is a bridge, and the lower is an interface it knows about (one registered by this driver, normally). Then, from within that notifier, it does a bunch of stuff behind the bridge's back, without the bridge necessarily knowing that there's somebody offloading that port. It looks like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v call_netdevice_notifiers | v dsa_slave_netdevice_event | v oh, hey! it's for me! | v .port_bridge_join What we do to solve the conundrum is to be less silent, and change the switchdev drivers to present themselves to the bridge. Something like this: ip link set swp0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | hardware domain for v | this port, and zero dsa_slave_netdevice_event | if I got nothing. | | v | oh, hey! it's for me! | | | v | .port_bridge_join | | | +------------------------+ switchdev_bridge_port_offload(swp0, swp0) Then stacked interfaces (like bond0 on top of swp3/swp4) would be treated differently in DSA, depending on whether we can or cannot offload them. The offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge: Aye! I'll use this call_netdevice_notifiers ^ ppid as the | | switchdev mark for v | bond0. dsa_slave_netdevice_event | Coincidentally (or not), | | bond0 and swp0, swp1, swp2 v | all have the same switchdev hmm, it's not quite for me, | mark now, since the ASIC but my driver has already | is able to forward towards called .port_lag_join | all these ports in hw. for it, because I have | a port with dp->lag_dev == bond0. | | | v | .port_bridge_join | for swp3 and swp4 | | | +------------------------+ switchdev_bridge_port_offload(bond0, swp3) switchdev_bridge_port_offload(bond0, swp4) And the non-offload case: ip link set bond0 master br0 | v br_add_if() calls netdev_master_upper_dev_link() | v bridge waiting: call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload | | wasn't called, okay, I'll use a v | hwdom of zero for this one. dsa_slave_netdevice_event : Then packets received on swp0 will | : not be software-forwarded towards v : swp1, but they will towards bond0. it's not for me, but bond0 is an upper of swp3 and swp4, but their dp->lag_dev is NULL because they couldn't offload it. Basically we can draw the conclusion that the lowers of a bridge port can come and go, so depending on the configuration of lowers for a bridge port, it can dynamically toggle between offloaded and unoffloaded. Therefore, we need an equivalent switchdev_bridge_port_unoffload too. This patch changes the way any switchdev driver interacts with the bridge. From now on, everybody needs to call switchdev_bridge_port_offload and switchdev_bridge_port_unoffload, otherwise the bridge will treat the port as non-offloaded and allow software flooding to other ports from the same ASIC. Note that these functions lay the ground for a more complex handshake between switchdev drivers and the bridge in the future. For drivers that will request a replay of the switchdev objects when they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we place the call to switchdev_bridge_port_unoffload() strategically inside the NETDEV_PRECHANGEUPPER notifier's code path, and not inside NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers need the netdev adjacency lists to be valid, and that is only true in NETDEV_PRECHANGEUPPER. Cc: Vadym Kochan <vkochan@marvell.com> Cc: Taras Chornyi <tchornyi@marvell.com> Cc: Ioana Ciornei <ioana.ciornei@nxp.com> Cc: Lars Povlsen <lars.povlsen@microchip.com> Cc: Steen Hegelund <Steen.Hegelund@microchip.com> Cc: UNGLinuxDriver@microchip.com Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-21 19:24:01 +03:00
err = sparx5_port_bridge_join(port, info->upper_dev,
extack);
else
sparx5_port_bridge_leave(port, info->upper_dev);
sparx5_vlan_port_apply(port->sparx5, port);
}
return err;
}
static int sparx5_port_add_addr(struct net_device *dev, bool up)
{
struct sparx5_port *port = netdev_priv(dev);
struct sparx5 *sparx5 = port->sparx5;
u16 vid = port->pvid;
if (up)
sparx5_mact_learn(sparx5, PGID_CPU, port->ndev->dev_addr, vid);
else
sparx5_mact_forget(sparx5, port->ndev->dev_addr, vid);
return 0;
}
static int sparx5_netdevice_port_event(struct net_device *dev,
struct notifier_block *nb,
unsigned long event, void *ptr)
{
int err = 0;
if (!sparx5_netdevice_check(dev))
return 0;
switch (event) {
case NETDEV_CHANGEUPPER:
err = sparx5_port_changeupper(dev, ptr);
break;
case NETDEV_PRE_UP:
err = sparx5_port_add_addr(dev, true);
break;
case NETDEV_DOWN:
err = sparx5_port_add_addr(dev, false);
break;
}
return err;
}
static int sparx5_netdevice_event(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
int ret = 0;
ret = sparx5_netdevice_port_event(dev, nb, event, ptr);
return notifier_from_errno(ret);
}
static void sparx5_switchdev_bridge_fdb_event_work(struct work_struct *work)
{
struct sparx5_switchdev_event_work *switchdev_work =
container_of(work, struct sparx5_switchdev_event_work, work);
struct net_device *dev = switchdev_work->dev;
struct switchdev_notifier_fdb_info *fdb_info;
struct sparx5_port *port;
struct sparx5 *sparx5;
bool host_addr;
u16 vid;
rtnl_lock();
if (!sparx5_netdevice_check(dev)) {
host_addr = true;
sparx5 = switchdev_work->sparx5;
} else {
host_addr = false;
sparx5 = switchdev_work->sparx5;
port = netdev_priv(dev);
}
fdb_info = &switchdev_work->fdb_info;
/* Used PVID 1 when default_pvid is 0, to avoid
* collision with non-bridged ports.
*/
if (fdb_info->vid == 0)
vid = 1;
else
vid = fdb_info->vid;
switch (switchdev_work->event) {
case SWITCHDEV_FDB_ADD_TO_DEVICE:
if (host_addr)
sparx5_add_mact_entry(sparx5, dev, PGID_CPU,
fdb_info->addr, vid);
else
sparx5_add_mact_entry(sparx5, port->ndev, port->portno,
fdb_info->addr, vid);
break;
case SWITCHDEV_FDB_DEL_TO_DEVICE:
sparx5_del_mact_entry(sparx5, fdb_info->addr, vid);
break;
}
rtnl_unlock();
kfree(switchdev_work->fdb_info.addr);
kfree(switchdev_work);
dev_put(dev);
}
static void sparx5_schedule_work(struct work_struct *work)
{
queue_work(sparx5_owq, work);
}
static int sparx5_switchdev_event(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct net_device *dev = switchdev_notifier_info_to_dev(ptr);
struct sparx5_switchdev_event_work *switchdev_work;
struct switchdev_notifier_fdb_info *fdb_info;
struct switchdev_notifier_info *info = ptr;
struct sparx5 *spx5;
int err;
spx5 = container_of(nb, struct sparx5, switchdev_nb);
switch (event) {
case SWITCHDEV_PORT_ATTR_SET:
err = switchdev_handle_port_attr_set(dev, ptr,
sparx5_netdevice_check,
sparx5_port_attr_set);
return notifier_from_errno(err);
case SWITCHDEV_FDB_ADD_TO_DEVICE:
fallthrough;
case SWITCHDEV_FDB_DEL_TO_DEVICE:
switchdev_work = kzalloc(sizeof(*switchdev_work), GFP_ATOMIC);
if (!switchdev_work)
return NOTIFY_BAD;
switchdev_work->dev = dev;
switchdev_work->event = event;
switchdev_work->sparx5 = spx5;
fdb_info = container_of(info,
struct switchdev_notifier_fdb_info,
info);
INIT_WORK(&switchdev_work->work,
sparx5_switchdev_bridge_fdb_event_work);
memcpy(&switchdev_work->fdb_info, ptr,
sizeof(switchdev_work->fdb_info));
switchdev_work->fdb_info.addr = kzalloc(ETH_ALEN, GFP_ATOMIC);
if (!switchdev_work->fdb_info.addr)
goto err_addr_alloc;
ether_addr_copy((u8 *)switchdev_work->fdb_info.addr,
fdb_info->addr);
dev_hold(dev);
sparx5_schedule_work(&switchdev_work->work);
break;
}
return NOTIFY_DONE;
err_addr_alloc:
kfree(switchdev_work);
return NOTIFY_BAD;
}
static int sparx5_handle_port_vlan_add(struct net_device *dev,
struct notifier_block *nb,
const struct switchdev_obj_port_vlan *v)
{
struct sparx5_port *port = netdev_priv(dev);
if (netif_is_bridge_master(dev)) {
struct sparx5 *sparx5 =
container_of(nb, struct sparx5,
switchdev_blocking_nb);
/* Flood broadcast to CPU */
sparx5_mact_learn(sparx5, PGID_BCAST, dev->broadcast,
v->vid);
return 0;
}
if (!sparx5_netdevice_check(dev))
return -EOPNOTSUPP;
return sparx5_vlan_vid_add(port, v->vid,
v->flags & BRIDGE_VLAN_INFO_PVID,
v->flags & BRIDGE_VLAN_INFO_UNTAGGED);
}
static int sparx5_alloc_mdb_entry(struct sparx5 *sparx5,
const unsigned char *addr,
u16 vid,
struct sparx5_mdb_entry **entry_out)
{
struct sparx5_mdb_entry *entry;
u16 pgid_idx;
int err;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
err = sparx5_pgid_alloc_mcast(sparx5, &pgid_idx);
if (err) {
kfree(entry);
return err;
}
memcpy(entry->addr, addr, ETH_ALEN);
entry->vid = vid;
entry->pgid_idx = pgid_idx;
mutex_lock(&sparx5->mdb_lock);
list_add_tail(&entry->list, &sparx5->mdb_entries);
mutex_unlock(&sparx5->mdb_lock);
*entry_out = entry;
return 0;
}
static void sparx5_free_mdb_entry(struct sparx5 *sparx5,
const unsigned char *addr,
u16 vid)
{
struct sparx5_mdb_entry *entry, *tmp;
mutex_lock(&sparx5->mdb_lock);
list_for_each_entry_safe(entry, tmp, &sparx5->mdb_entries, list) {
if ((vid == 0 || entry->vid == vid) &&
ether_addr_equal(addr, entry->addr)) {
list_del(&entry->list);
sparx5_pgid_free(sparx5, entry->pgid_idx);
kfree(entry);
goto out;
}
}
out:
mutex_unlock(&sparx5->mdb_lock);
}
static struct sparx5_mdb_entry *sparx5_mdb_get_entry(struct sparx5 *sparx5,
const unsigned char *addr,
u16 vid)
{
struct sparx5_mdb_entry *e, *found = NULL;
mutex_lock(&sparx5->mdb_lock);
list_for_each_entry(e, &sparx5->mdb_entries, list) {
if (ether_addr_equal(e->addr, addr) && e->vid == vid) {
found = e;
goto out;
}
}
out:
mutex_unlock(&sparx5->mdb_lock);
return found;
}
static void sparx5_cpu_copy_ena(struct sparx5 *spx5, u16 pgid, bool enable)
{
spx5_rmw(ANA_AC_PGID_MISC_CFG_PGID_CPU_COPY_ENA_SET(enable),
ANA_AC_PGID_MISC_CFG_PGID_CPU_COPY_ENA, spx5,
ANA_AC_PGID_MISC_CFG(pgid));
}
static int sparx5_handle_port_mdb_add(struct net_device *dev,
struct notifier_block *nb,
const struct switchdev_obj_port_mdb *v)
{
struct sparx5_port *port = netdev_priv(dev);
struct sparx5 *spx5 = port->sparx5;
struct sparx5_mdb_entry *entry;
bool is_host, is_new;
int err, i;
u16 vid;
if (!sparx5_netdevice_check(dev))
return -EOPNOTSUPP;
is_host = netif_is_bridge_master(v->obj.orig_dev);
/* When VLAN unaware the vlan value is not parsed and we receive vid 0.
* Fall back to bridge vid 1.
*/
if (!br_vlan_enabled(spx5->hw_bridge_dev))
vid = 1;
else
vid = v->vid;
is_new = false;
entry = sparx5_mdb_get_entry(spx5, v->addr, vid);
if (!entry) {
err = sparx5_alloc_mdb_entry(spx5, v->addr, vid, &entry);
is_new = true;
if (err)
return err;
}
mutex_lock(&spx5->mdb_lock);
/* Add any mrouter ports to the new entry */
if (is_new && ether_addr_is_ip_mcast(v->addr))
for (i = 0; i < SPX5_PORTS; i++)
if (spx5->ports[i] && spx5->ports[i]->is_mrouter)
sparx5_pgid_update_mask(spx5->ports[i],
entry->pgid_idx,
true);
if (is_host && !entry->cpu_copy) {
sparx5_cpu_copy_ena(spx5, entry->pgid_idx, true);
entry->cpu_copy = true;
} else if (!is_host) {
sparx5_pgid_update_mask(port, entry->pgid_idx, true);
set_bit(port->portno, entry->port_mask);
}
mutex_unlock(&spx5->mdb_lock);
sparx5_mact_learn(spx5, entry->pgid_idx, entry->addr, entry->vid);
return 0;
}
static int sparx5_handle_port_mdb_del(struct net_device *dev,
struct notifier_block *nb,
const struct switchdev_obj_port_mdb *v)
{
struct sparx5_port *port = netdev_priv(dev);
struct sparx5 *spx5 = port->sparx5;
struct sparx5_mdb_entry *entry;
bool is_host;
u16 vid;
if (!sparx5_netdevice_check(dev))
return -EOPNOTSUPP;
is_host = netif_is_bridge_master(v->obj.orig_dev);
if (!br_vlan_enabled(spx5->hw_bridge_dev))
vid = 1;
else
vid = v->vid;
entry = sparx5_mdb_get_entry(spx5, v->addr, vid);
if (!entry)
return 0;
mutex_lock(&spx5->mdb_lock);
if (is_host && entry->cpu_copy) {
sparx5_cpu_copy_ena(spx5, entry->pgid_idx, false);
entry->cpu_copy = false;
} else if (!is_host) {
clear_bit(port->portno, entry->port_mask);
/* Port not mrouter port or addr is L2 mcast, remove port from mask. */
if (!port->is_mrouter || !ether_addr_is_ip_mcast(v->addr))
sparx5_pgid_update_mask(port, entry->pgid_idx, false);
}
mutex_unlock(&spx5->mdb_lock);
if (bitmap_empty(entry->port_mask, SPX5_PORTS) && !entry->cpu_copy) {
/* Clear pgid in case mrouter ports exists
* that are not part of the group.
*/
sparx5_pgid_clear(spx5, entry->pgid_idx);
sparx5_mact_forget(spx5, entry->addr, entry->vid);
sparx5_free_mdb_entry(spx5, entry->addr, entry->vid);
}
return 0;
}
static int sparx5_handle_port_obj_add(struct net_device *dev,
struct notifier_block *nb,
struct switchdev_notifier_port_obj_info *info)
{
const struct switchdev_obj *obj = info->obj;
int err;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = sparx5_handle_port_vlan_add(dev, nb,
SWITCHDEV_OBJ_PORT_VLAN(obj));
break;
case SWITCHDEV_OBJ_ID_PORT_MDB:
case SWITCHDEV_OBJ_ID_HOST_MDB:
err = sparx5_handle_port_mdb_add(dev, nb,
SWITCHDEV_OBJ_PORT_MDB(obj));
break;
default:
err = -EOPNOTSUPP;
break;
}
info->handled = true;
return err;
}
static int sparx5_handle_port_vlan_del(struct net_device *dev,
struct notifier_block *nb,
u16 vid)
{
struct sparx5_port *port = netdev_priv(dev);
int ret;
/* Master bridge? */
if (netif_is_bridge_master(dev)) {
struct sparx5 *sparx5 =
container_of(nb, struct sparx5,
switchdev_blocking_nb);
sparx5_mact_forget(sparx5, dev->broadcast, vid);
return 0;
}
if (!sparx5_netdevice_check(dev))
return -EOPNOTSUPP;
ret = sparx5_vlan_vid_del(port, vid);
if (ret)
return ret;
return 0;
}
static int sparx5_handle_port_obj_del(struct net_device *dev,
struct notifier_block *nb,
struct switchdev_notifier_port_obj_info *info)
{
const struct switchdev_obj *obj = info->obj;
int err;
switch (obj->id) {
case SWITCHDEV_OBJ_ID_PORT_VLAN:
err = sparx5_handle_port_vlan_del(dev, nb,
SWITCHDEV_OBJ_PORT_VLAN(obj)->vid);
break;
case SWITCHDEV_OBJ_ID_PORT_MDB:
case SWITCHDEV_OBJ_ID_HOST_MDB:
err = sparx5_handle_port_mdb_del(dev, nb,
SWITCHDEV_OBJ_PORT_MDB(obj));
break;
default:
err = -EOPNOTSUPP;
break;
}
info->handled = true;
return err;
}
static int sparx5_switchdev_blocking_event(struct notifier_block *nb,
unsigned long event,
void *ptr)
{
struct net_device *dev = switchdev_notifier_info_to_dev(ptr);
int err;
switch (event) {
case SWITCHDEV_PORT_OBJ_ADD:
err = sparx5_handle_port_obj_add(dev, nb, ptr);
return notifier_from_errno(err);
case SWITCHDEV_PORT_OBJ_DEL:
err = sparx5_handle_port_obj_del(dev, nb, ptr);
return notifier_from_errno(err);
case SWITCHDEV_PORT_ATTR_SET:
err = switchdev_handle_port_attr_set(dev, ptr,
sparx5_netdevice_check,
sparx5_port_attr_set);
return notifier_from_errno(err);
}
return NOTIFY_DONE;
}
int sparx5_register_notifier_blocks(struct sparx5 *s5)
{
int err;
s5->netdevice_nb.notifier_call = sparx5_netdevice_event;
err = register_netdevice_notifier(&s5->netdevice_nb);
if (err)
return err;
s5->switchdev_nb.notifier_call = sparx5_switchdev_event;
err = register_switchdev_notifier(&s5->switchdev_nb);
if (err)
goto err_switchdev_nb;
s5->switchdev_blocking_nb.notifier_call = sparx5_switchdev_blocking_event;
err = register_switchdev_blocking_notifier(&s5->switchdev_blocking_nb);
if (err)
goto err_switchdev_blocking_nb;
sparx5_owq = alloc_ordered_workqueue("sparx5_order", 0);
if (!sparx5_owq) {
err = -ENOMEM;
goto err_switchdev_blocking_nb;
}
return 0;
err_switchdev_blocking_nb:
unregister_switchdev_notifier(&s5->switchdev_nb);
err_switchdev_nb:
unregister_netdevice_notifier(&s5->netdevice_nb);
return err;
}
void sparx5_unregister_notifier_blocks(struct sparx5 *s5)
{
destroy_workqueue(sparx5_owq);
unregister_switchdev_blocking_notifier(&s5->switchdev_blocking_nb);
unregister_switchdev_notifier(&s5->switchdev_nb);
unregister_netdevice_notifier(&s5->netdevice_nb);
}